孫博非 余 超 曹陽春 蔡傳江 李生祥 姚軍虎*
(1.西北農(nóng)林科技大學(xué)動物科技學(xué)院,楊陵 712100;2.陜西省商洛市畜牧產(chǎn)業(yè)發(fā)展中心,商洛 726000)
奶牛圍產(chǎn)期包括產(chǎn)前3周和產(chǎn)后3周,此階段奶牛營養(yǎng)生理和代謝模式較為特殊,神經(jīng)內(nèi)分泌改變[1],營養(yǎng)素攝入不足且利用率低,主要營養(yǎng)素(脂質(zhì)、蛋白質(zhì)、鈣、磷等)的體貯動員顯著增強(qiáng)[2-3],各器官代謝和免疫功能下降,面臨的應(yīng)激因素增加(分娩、飼糧轉(zhuǎn)換、代謝應(yīng)激、氧化應(yīng)激和環(huán)境應(yīng)激等)[4],奶牛防御有害微生物侵襲的屏障功能減弱[4-5],極易遭受各種代謝性疾病(脂肪肝、酮病、乳熱病等)和微生物疾病(細(xì)菌性乳房炎、細(xì)菌性子宮炎等)的困擾,給奶業(yè)造成巨大損失[6-8]。因此,研究奶牛圍產(chǎn)期營養(yǎng)過程的生理生化機(jī)理,制訂有效的營養(yǎng)調(diào)控技術(shù)方案和飼養(yǎng)管理規(guī)程,對保障奶牛健康和泌乳性能的持續(xù)高效發(fā)揮,促進(jìn)奶業(yè)可持續(xù)發(fā)展具有重要意義。
解析關(guān)鍵營養(yǎng)素攝入、消化、吸收、轉(zhuǎn)運(yùn)、代謝、轉(zhuǎn)化、利用和排泄的機(jī)制網(wǎng)絡(luò),闡明主要代謝應(yīng)激和疾病的發(fā)生機(jī)理,是調(diào)控奶牛圍產(chǎn)期營養(yǎng)高效利用和健康的理論基礎(chǔ)。以脂肪肝和酮病為例,能量負(fù)平衡(negative energy balance,NEB)導(dǎo)致體脂動員,大量未酯化脂肪酸(non-esterified fatty acids,NEFA)進(jìn)入肝臟代謝供能,主要有3條代謝通路[9-11]:1)完全氧化,生成CO2和H2O,并釋放大量ATP,高效供能;2)不完全氧化生成酮體,主要是β-羥基丁酸(β-hydroxybutyric acid,BHBA),供能效率低,且酮體積累極易誘發(fā)奶牛酮??;3)經(jīng)酯化反應(yīng)生成甘油三酯(triglyceride,TG),若TG不能以極低密度脂蛋白(very low density lipoprotein,VLDL)形式轉(zhuǎn)運(yùn)出肝臟,則導(dǎo)致肝細(xì)胞脂肪浸潤或脂肪肝的發(fā)生[12-16]。因此,為降低脂肪肝和酮病發(fā)生的風(fēng)險,可通過下列途徑加以調(diào)控:1)促進(jìn)NEFA的完全氧化,可通過增加肝臟肉毒堿含量,促進(jìn)其限速酶肉毒堿棕櫚酰轉(zhuǎn)移酶(CPT1)的表達(dá)來實現(xiàn)[10-11];2)降低BHBA合成,可通過調(diào)控其關(guān)鍵酶β-羥基-β-甲基戊二酰輔酶A(β-hydroxy-β-methylglutaryl-CoA,HMG-CoA)和HMG-CoA還原酶基因的表達(dá)和分泌來實現(xiàn)[17];3)促進(jìn)VLDL的合成,將過量TG轉(zhuǎn)運(yùn)出肝臟[18-22]。
添加一些營養(yǎng)調(diào)控劑(如膽堿、丙三醇和維生素E等),可增強(qiáng)奶牛圍產(chǎn)期抗氧化和免疫功能,并降低代謝性疾病的發(fā)生,提高產(chǎn)后泌乳和繁殖性能[1,5,23-26]。Lean等[27]系統(tǒng)綜述了奶牛圍產(chǎn)期營養(yǎng)需要及其調(diào)控的研究進(jìn)展和技術(shù)原理,并提出了奶牛圍產(chǎn)期代謝性疾病發(fā)病率的限值和調(diào)控目標(biāo)(表1),可用于指導(dǎo)牧場奶牛圍產(chǎn)期營養(yǎng)和技術(shù)管理。
表1 奶牛圍產(chǎn)期主要代謝性疾病發(fā)生率的限值和調(diào)控目標(biāo)1)
1)除特殊說明外,百分比是指產(chǎn)后14 d內(nèi)發(fā)病奶牛占總奶牛數(shù)的百分比。Except for special instructions, the percentage values are calculated as: (the number of cows with metabolic diseases and other unhealthy problems within 14 days after calving/the total number of cows)×100.
2)對于年齡較大(>8歲)的奶牛,其警戒水平不變,調(diào)控目標(biāo)為2%。For older cows (>8 years old), the alarm level is the same, while the regulatory target is 2%.
3)血液BHBA濃度采用酶法測定,亞臨床型酮病判定標(biāo)準(zhǔn)為血液BHBA濃度>1 mmol/L。Blood BHBA concentration is tested using the enzymatic assay, and subclinical ketosis is declared if blood BHBA concentration>1 mmol/L.
4)分娩后30 d內(nèi)每100頭奶牛中發(fā)病奶牛的數(shù)量。The number of cows with clinical mastitis within 30 days after calving in each 100 cows.
奶牛從停乳到泌乳經(jīng)歷復(fù)雜的生理生化適應(yīng)和代謝調(diào)控機(jī)制,此過渡期是神經(jīng)內(nèi)分泌、機(jī)體代謝信號、消化道微生物及其代謝產(chǎn)物、動物內(nèi)部和外部應(yīng)激及各類病原共同調(diào)控的結(jié)果[6,28-30]。關(guān)于圍產(chǎn)期奶牛群體監(jiān)測、營養(yǎng)需要、代謝調(diào)控和健康干預(yù)等已有一些經(jīng)典綜述[23,27,31-34]。結(jié)合本課題組歷年研究基礎(chǔ),以下將圍繞奶牛圍產(chǎn)期能量代謝,兼顧蛋白質(zhì)代謝,簡述奶牛圍產(chǎn)期能量和蛋白質(zhì)代謝調(diào)控的技術(shù)思路。
本課題組以提高飼糧能量的總體利用率為核心,以提高機(jī)體代謝葡萄糖(metabolizable glucose,MG)供應(yīng)為主要技術(shù)思路,主要研究內(nèi)容(圖1)包括:1)瘤胃健康與高效發(fā)酵的生理機(jī)制和綜合調(diào)控;2)小腸營養(yǎng)素(主要是淀粉)高效利用的科學(xué)基礎(chǔ)及調(diào)控技術(shù);3)肝臟能量代謝和高效轉(zhuǎn)化的通路解析及營養(yǎng)調(diào)控;4)奶牛飼料數(shù)據(jù)庫建設(shè)、營養(yǎng)評估技術(shù)體系和相關(guān)軟件的研發(fā)。為平衡瘤胃和小腸碳水化合物的合理分配和能量的高效轉(zhuǎn)化,本課題組整合系列研究成果,提出反芻動物碳水化合物平衡指數(shù)(carbohydrate balance index,CBI)的概念,計算公式為:CBI=peNDF/RDS,其中peNDF表示物理有效中性洗滌纖維(physically effective neutral detergent fiber),目前建議采用peNDF8.0,RDS表示瘤胃可降解淀粉(rumen degradable starch)。關(guān)于不同長度peNDF在CBI和奶牛生理中的貢獻(xiàn)度,仍需通過研究進(jìn)行量化[35-37]。
CBI:碳水化合物平衡指數(shù) carbohydrate balance index;NDF:中性洗滌纖維 neutral detergent fiber;NFC:非纖維性碳水化合物 non-fibrous carbohydrate;G:葡萄糖 glucose;MG:代謝葡萄糖 metabolizable glucose;mTOR:哺乳動物雷帕霉素靶蛋白mammalian target of rapamycin;peNDF:物理有效中性洗滌纖維physically effective neutral detergent fiber;RDNFC:瘤胃可降解非纖維性碳水化合物 rumen degradable non-fibrous carbohydrate;RES:過瘤胃淀粉 rumen escape starch;RDS:瘤胃可降解淀粉 rumen degradable starch;AA:氨基酸 amino acids。
圖1反芻動物碳水化合物營養(yǎng)及能量代謝調(diào)控的研究網(wǎng)絡(luò)
Fig.1 A research network of carbohydrate nutrition and regulation of energy metabolism in ruminants[37]
瘤胃內(nèi)環(huán)境穩(wěn)態(tài)對奶牛機(jī)體能量、蛋白質(zhì)和其他營養(yǎng)素的供應(yīng)至關(guān)重要,乙酸是乳脂合成的重要底物和調(diào)控因子;丙酸是奶牛肝臟糖異生的主要底物,而葡萄糖不僅是奶牛生命活動的主要能量來源,還是乳糖合成的前體物質(zhì);微生物蛋白(MCP)是小腸蛋白質(zhì)的重要組成部分,與過瘤胃蛋白質(zhì)(rumen undegraded protein,RUP)和內(nèi)源蛋白質(zhì)(endogenous crude protein,ECP)共同構(gòu)成奶牛機(jī)體代謝蛋白質(zhì)(metabolizable protein,MP)來源。奶牛圍產(chǎn)期瘤胃微生物區(qū)系發(fā)生變化,瘤胃功能有所下降。Pitta等[38]比較研究了初產(chǎn)和經(jīng)產(chǎn)奶牛圍產(chǎn)期瘤胃微生物組的動態(tài)變化,發(fā)現(xiàn)在所有菌群中,擬桿菌屬(Bacteroidetes)和厚壁菌門(Firmicutes)的豐度最高,奶牛分娩前后Bacteroidetes與Firmicutes的比例由6∶1增加到12∶1,這可能與奶牛機(jī)體代謝生理和飼糧轉(zhuǎn)換等有關(guān)。隨泌乳啟動,奶牛由干奶飼糧(高粗飼糧)轉(zhuǎn)入泌乳飼糧(高精飼糧),瘤胃牛鏈球菌(Streptococcusbovis)和乳酸桿菌(Lactobacillus)等乳酸生成菌的數(shù)量顯著增加,而反芻獸新月形單胞菌(Selenomonasruminantium)和埃氏巨型球菌(Megasphaeraelsdenii)的數(shù)量則顯著減少[39],這可能導(dǎo)致:1)丙酸產(chǎn)量減少,肝臟糖異生底物不足,大量生糖氨基酸用于糖異生,造成氨基酸“浪費(fèi)”,加劇能量和蛋白質(zhì)的負(fù)平衡;2)乳酸生成量增加,降低瘤胃內(nèi)pH,誘發(fā)酸中毒,損傷瘤胃上皮,并降低MCP合成量;3)瘤胃能量和蛋白質(zhì)利用轉(zhuǎn)化和輸出效率下降,進(jìn)而刺激機(jī)體脂肪和蛋白質(zhì)動員,加劇肝臟代謝負(fù)擔(dān),并增加酮病和脂肪肝等疾病的發(fā)生風(fēng)險;4)乳腺泌乳的能量和底物不足,降低奶牛產(chǎn)后泌乳性能。因此,保障奶牛圍產(chǎn)期(尤其是圍產(chǎn)后期)瘤胃健康和能量高效產(chǎn)出,對維持奶牛機(jī)體健康和產(chǎn)后泌乳性能具有重要意義。
實現(xiàn)瘤胃和小腸碳水化合物營養(yǎng)的最適分配,在保障瘤胃健康的前提下,提高瘤胃養(yǎng)分高效轉(zhuǎn)化和利用效率,是奶牛圍產(chǎn)期瘤胃代謝調(diào)控的重要技術(shù)思路,CBI體系為實現(xiàn)這一目標(biāo)提供了技術(shù)參考。關(guān)于CBI的研究進(jìn)展和實踐應(yīng)用,可參考本課題組的部分研究結(jié)果[36-37,40-46]。瘤胃內(nèi)環(huán)境和營養(yǎng)代謝的可調(diào)控性已毋庸置疑,且相關(guān)調(diào)控措施較多(圖1)。與其他生理階段相比,奶牛圍產(chǎn)期瘤胃代謝調(diào)控的研究明顯偏少。王曉旭[47]利用體外復(fù)合培養(yǎng)技術(shù)研究發(fā)現(xiàn),釀酒酵母(Saccharomycescerevisiae)+產(chǎn)朊假絲酵母(Candidautilis)+伯頓畢赤酵母(Burtonpichiapastoris)這一組合利用乳酸生成丙酸的能力最強(qiáng),并可促進(jìn)Selenomonasruminantium和Megasphaeraelsdenii生成丙酸;采用復(fù)合微生態(tài)制劑分別飼喂圍產(chǎn)期健康和酮病奶牛后發(fā)現(xiàn)其可調(diào)控瘤胃微生物區(qū)系,提高瘤胃短鏈脂肪酸(SCFA)和血液葡萄糖濃度,降低血液BHBA濃度,提高血液葡萄糖濃度,且對奶牛無負(fù)面影響。
進(jìn)入小腸的營養(yǎng)物質(zhì),在一系列消化酶的作用下降解為小分子物質(zhì),通過自由擴(kuò)散或相關(guān)轉(zhuǎn)運(yùn)載體的協(xié)助被吸收,經(jīng)血液循環(huán)和代謝轉(zhuǎn)化被機(jī)體各組織利用。胰腺可分泌多種消化酶,如α-淀粉酶、胰蛋白酶和胰脂肪酶,在小腸多種營養(yǎng)物質(zhì)的消化過程中發(fā)揮重要作用。奶牛飼糧淀粉在小腸消化吸收的供能效率顯著高于瘤胃,但過瘤胃淀粉(rumen escape starch,RES)的小腸消化率不超過70%,其限制性因素之一是胰腺α-淀粉酶分泌不足[48-51]。
圍繞此關(guān)鍵科學(xué)問題,本課題組以奶山羊和青年奶牛為試驗對象,結(jié)合胰腺組織孵育和原代細(xì)胞培養(yǎng)技術(shù),系統(tǒng)研究了亮氨酸(Leu)、苯丙氨酸(Phe)等功能性氨基酸對反芻動物胰腺消化酶表達(dá)和分泌的影響及信號傳導(dǎo)網(wǎng)絡(luò)[35,37]。于紅霞[49]研究發(fā)現(xiàn),十二指腸灌注3或6 g Leu可提高奶山羊胰腺α-淀粉酶分泌量,且不依賴于胰島素;進(jìn)一步研究發(fā)現(xiàn),Phe亦可調(diào)控奶山羊胰腺外分泌功能,增強(qiáng)小腸消化酶活性,進(jìn)而提高淀粉和其他營養(yǎng)素的消化率,Leu和Phe主要通過激素和哺乳動物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)信號通路調(diào)控奶山羊胰腺蛋白質(zhì)合成[51-53]。在此基礎(chǔ)上,我們聯(lián)用荷斯坦青年牛多插管灌注、胰腺組織孵育和胰腺腺泡細(xì)胞原代培養(yǎng)等技術(shù),初步闡明Phe、Leu、異亮氨酸(Ile)和纈氨酸(Val)調(diào)控胰腺酶表達(dá)和分泌的機(jī)制,并構(gòu)建了調(diào)控網(wǎng)絡(luò)[48,54-56],目前正在探究奶牛胰腺對功能性氨基酸的特異性感知和響應(yīng)網(wǎng)絡(luò)。
集成CBI體系和奶畜胰腺外分泌功能的綜合調(diào)控技術(shù),可保障瘤胃健康和高效發(fā)酵,提高小腸RES和其他營養(yǎng)素的消化率,我們初步建立了一種優(yōu)化反芻家畜飼糧營養(yǎng)素總體利用率的技術(shù)思路,該體系對小腸營養(yǎng)物質(zhì)吸收層次的影響仍需深究。奶牛圍產(chǎn)期高強(qiáng)度的脂肪代謝導(dǎo)致機(jī)體自由基蓄積,易誘發(fā)氧化應(yīng)激,因此通過在飼糧中添加脂肪緩解NEB并不適當(dāng);在保證飼糧營養(yǎng)均衡和小腸氨基酸平衡的前提下,通過飼料加工工藝或其他措施適當(dāng)增加RES和RUP含量,并輔以適量過瘤胃氨基酸(如Leu、Phe),或可成為緩解奶牛圍產(chǎn)期NEB和蛋白質(zhì)負(fù)平衡(negative protein balance,NPB)的新途徑。當(dāng)然,上述功能性氨基酸能否調(diào)控圍產(chǎn)期奶牛的胰腺外分泌功能,尚需研究支持。
肝臟是奶牛的能量代謝樞紐和多種重要蛋白質(zhì)的合成場所,如白蛋白和VLDL。奶牛機(jī)體的葡萄糖約70%源于肝糖異生,葡萄糖和脂類在肝細(xì)胞氧化產(chǎn)生的大量ATP是奶牛維持生長、繁殖、泌乳和其他生命活動的重要能量來源。因此,保障肝臟健康,提高其能量代謝和營養(yǎng)輸出效率,是奶牛圍產(chǎn)期營養(yǎng)調(diào)控研究的重點領(lǐng)域之一。
奶牛圍產(chǎn)期肝臟健康和代謝面臨如下主要問題[5,57-58]:1)脂質(zhì)完全氧化能力有限,VLDL合成不足,肝臟TG蓄積,造成肝細(xì)胞脂肪浸潤或脂肪肝;2)脂質(zhì)代謝異常旺盛,自由基的產(chǎn)生超出其清除能力,肝細(xì)胞遭受氧化應(yīng)激,造成氧化損傷;3)生糖前體物不足,且肝細(xì)胞生糖能力下降,造成機(jī)體MG負(fù)平衡;4)在神經(jīng)內(nèi)分泌和多種因素的綜合調(diào)控下,肝細(xì)胞合成相關(guān)代謝酶和活性物質(zhì)的能力下降;5)肝細(xì)胞炎癥反應(yīng),一些急性期蛋白(如腫瘤壞死因子α)抑制肝細(xì)胞功能。造成上述問題的根本原因是奶牛圍產(chǎn)期主要營養(yǎng)素的負(fù)平衡,尤其是能量和蛋白質(zhì)。因此,調(diào)控肝臟健康可通過2條途徑實現(xiàn):1)促進(jìn)奶牛營養(yǎng)攝入,提高飼糧營養(yǎng)的總體利用率,緩解NEB和NPB,間接促進(jìn)肝臟健康;2)調(diào)控肝臟能量和脂質(zhì)代謝的核心通路,減少肝臟脂質(zhì)沉積,降低肝細(xì)胞氧化應(yīng)激和炎癥反應(yīng),增強(qiáng)肝臟功能[10,59]。
研究表明,腺苷一磷酸激活的蛋白激酶(adenosine 5’-monophosphate-activated protein kinase,AMPK)是細(xì)胞能量代謝的開關(guān),在肝細(xì)胞能量和脂質(zhì)代謝中發(fā)揮核心作用[17]。AMPK是一種高度保守的絲氨酸(Ser)/蘇氨酸(Thr)蛋白激酶,由1個催化亞基α和2個調(diào)節(jié)亞基(β和γ)組成,受AMP/ATP、上游激酶[如肝臟激酶B1(liver kinase B1,LKB1)]和激素(如瘦素)等因素的調(diào)控[60-62]。當(dāng)肝細(xì)胞AMPK被激活時,其下游活性蛋白的Ser或Thr殘基被磷酸化,進(jìn)而提高或降低其表達(dá),抑制肝臟脂類合成,促進(jìn)脂類和碳水化合物的氧化供能(圖2)。有研究證明,瘦素和脂聯(lián)素均可激活下丘腦AMPK,提高嚙齒類動物的采食量[63-65],而注射腦腸肽可激活大鼠下丘腦AMPK,不利于采食[66-67],但瘦素和腦腸肽能否通過激活和抑制下丘腦AMPK調(diào)控奶牛圍產(chǎn)期干物質(zhì)采食量(dry matter intake,DMI)尚未見報道。AMPK在奶牛上的相關(guān)研究多集中于乳腺和脂肪組織的能量及脂質(zhì)代謝[68-70],肝臟AMPK的研究較少。Deng等[71]研究發(fā)現(xiàn),BHBA可激活奶牛原代肝細(xì)胞AMPK,促進(jìn)脂質(zhì)氧化,抑制脂質(zhì)合成。據(jù)此推斷,AMPK在奶牛肝臟碳水化合物和脂質(zhì)代謝中發(fā)揮重要作用,其網(wǎng)絡(luò)有待解析,且現(xiàn)有營養(yǎng)調(diào)控措施是否通過AMPK發(fā)揮效應(yīng)亦不明確。
Brain:大腦;hypothalamus:下丘腦;Food intake:食物攝入;Heart:心臟;Fatty acid oxidation:脂肪酸氧化;Glucose uptake:葡萄糖攝??;Glycolysis:糖酵解;Adipose tissue:脂肪組織;Fatty acid synthesis:脂肪酸合成;Lipolysis:脂解;Liver:肝臟;Cholesterol synthesis:膽固醇合成;Pancreatic β cell:胰腺β細(xì)胞;Insulin secretion:胰島素分泌;Skeletal muscle:肌肉組織;Fatty acid uptake, oxidation:脂肪酸攝取、氧化;Mitochondrial biogenesis:線粒體生物轉(zhuǎn)化;Exercise:運(yùn)動;Leptin:瘦素;Adiponectin:脂聯(lián)素;AMP:腺苷一磷酸 adenosine monophosphate;ATP:腺苷三磷酸 adenosine triphosphate;SNS:交感神經(jīng)系統(tǒng) sympathetic nervous system;AMPK:腺苷一磷酸激活的蛋白激酶 adenosine 5’-monophosphate-activated protein kinase。
圖2AMPK在碳水化合物和脂質(zhì)代謝中的作用
Fig.2 The role of AMPK in carbohydrate and lipid metabolism[17]
因此,明晰AMPK在奶牛圍產(chǎn)期下丘腦采食調(diào)控和肝臟糖脂代謝中的作用及機(jī)制,篩選可激活肝臟AMPK并調(diào)節(jié)相關(guān)激素分泌的飼料添加劑和(或)活性物質(zhì),促進(jìn)肝臟營養(yǎng)代謝和轉(zhuǎn)化,理論上可有效緩解奶牛圍產(chǎn)期營養(yǎng)素負(fù)平衡,保障胎兒和母體健康,提高產(chǎn)后泌乳性能。
奶牛圍產(chǎn)期營養(yǎng)素負(fù)平衡嚴(yán)重威脅其整個泌乳周期的健康和高效生產(chǎn),而對DMI的調(diào)控相對較難,因此,保障瘤胃健康和營養(yǎng)高效轉(zhuǎn)化,適當(dāng)增加RES的供應(yīng)量,同時促進(jìn)胰腺α-淀粉酶的合成和分泌,并調(diào)控肝臟健康和營養(yǎng)代謝,是奶牛圍產(chǎn)期營養(yǎng)調(diào)控的重要技術(shù)途徑。
[1] ZEBELI Q,GHAREEB K,HUMER E,et al.Nutrition,rumen health and inflammation in the transition period and their role on overall health and fertility in dairy cows[J].Research in Veterinary Science,2015,103:126-136.
[2] GRUMMER R R.Nutritional and management strategies for the prevention of fatty liver in dairy cattle[J].The Veterinary Journal,2008,176(1):10-20.
[3] LOOR J J,EVERTS R E,BIONAZ M,et al.Nutrition-induced ketosis alters metabolic and signaling gene networks in liver of periparturient dairy cows[J].Physiological Genomics,2007,32(1):105-116.
[4] SORDILLO L M,MAVANGIRA V.The nexus between nutrient metabolism,oxidative stress and inflammation in transition cows[J].Animal Production Science,2014,54(9):1204-1214.
[5] SORDILLO L M.Nutritional strategies to optimize dairy cattle immunity[J].Journal of Dairy Science,2016,99(6):4967-4982.
[6] ESPOSITO G,IRONS P C,WEBB E C,et al.Interactions between negative energy balance,metabolic diseases,uterine health and immune response in transition dairy cows[J].Animal Reproduction Science,2014,144(3/4):60-71.
[7] LEBLANC S.Monitoring metabolic health of dairy cattle in the transition period[J].Journal of Reproduction and Development,2010,56(S):S29-S35.
[8] MULLIGAN F J,DOHERTY M L.Production diseases of the transition cow[J].The Veterinary Journal,2008,176(1):3-9.
[9] SUN F,CAO Y,CAI C,et al.Regulation of nutritional metabolism in transition dairy cows:energy homeostasis and health in response to post-ruminal choline and methionine[J].PLoS ONE,2016,11(8):e0160659.
[10] 孫菲菲,曹陽春,李生祥,等.膽堿對奶牛圍產(chǎn)期代謝的調(diào)控[J].動物營養(yǎng)學(xué)報,2014,26(1):26-33.
[11] GOSELINK R M A,VAN BAAL J,WIDJAJA H C A,et al.Effect of rumen-protected choline supplementation on liver and adipose gene expression during the transition period in dairy cattle[J].Journal of Dairy Science,2013,96(2):1102-1116.
[12] ZARRIN M,GROSSEN-R?STI L,BRUCKMAIER R M,et al.Elevation of blood β-hydroxybutyrate concentration affects glucose metabolism in dairy cows before and after parturition[J].Journal of Dairy Science,2017,100(3):2323-2333.
[13] ABDELLI A,RABOISSON D,KAIDI R,et al.Elevated non-esterified fatty acid and β-hydroxybutyrate in transition dairy cows and their association with reproductive performance and disorders:A meta-analysis[J].Theriogenology,2017,93:99-104.
[14] GERSPACH C,IMHASLY S,GUBLER M,et al.Altered plasma lipidome profile of dairy cows with fatty liver disease[J].Research in Veterinary Science,2017,110:47-59.
[16] ZOM R L G,VAN BAAL J,GOSELINK R M A,et al.Effect of rumen-protected choline on performance,blood metabolites,and hepatic triacylglycerols of periparturient dairy cattle[J].Journal of Dairy Science,2011,94(8):4016-4027.
[17] LEHNINGER A L,NELSON D L,COX M M.Lehninger principles of biochemistry[M].6th ed.New York,NY:W.H.Freeman and Company,2005.
[18] 張加力.重組載脂蛋白B100對奶牛脂肪代謝的調(diào)控作用[D].博士學(xué)位論文.長春:吉林大學(xué),2012.
[19] BERNABUCCI U,RONCHI B,BASIRICL,et al.Abundance of mRNA of apolipoprotein B100,apolipoprotein E,and microsomal triglyceride transfer protein in liver from periparturient dairy cows[J].Journal of Dairy Science,2004,87(9):2881-2888.
[21] LI X W,GUAN Y,LI Y,et al.Effects of insulin-like growth factor-1 on the assembly and secretion of very low-density lipoproteins in cow hepatocytesinvitro[J].General and Comparative Endocrinology,2016,226:82-87.
[22] LIU L,LI X W,LI Y,et al.Effects of nonesterified fatty acids on the synthesis and assembly of very low density lipoprotein in bovine hepatocytesinvitro[J].Journal of Dairy Science,2014,97(3):1328-1335.
[23] SHAHSAVARI A,D’OCCHIO M,AL JASSIM R.The role of rumen-protected choline in hepatic function and performance of transition dairy cows[J].The British Journal of Nutrition,2016,116(1):35-44.
[24] 王建,孫鵬,卜登攀,等.圍產(chǎn)期奶牛免疫抑制發(fā)生原因及其緩解的營養(yǎng)對策[J].動物營養(yǎng)學(xué)報,2014,26(12):3579-3586.
[25] WHITE H M,CARVALHO E R,KOSER S L,et al.Shortcommunication:regulation of hepatic gluconeogenic enzymes by dietary glycerol in transition dairy cows[J].Journal of Dairy Science,2016,99(1):812-817.
[26] 劉大森,姜明明.圍產(chǎn)期奶牛健康指標(biāo)體系和營養(yǎng)代謝研究進(jìn)展[J].飼料工業(yè),2015,36(8):1-4.
[27] LEAN I J,VAN SAUN R,DEGARIS P J.Energy and protein nutrition management of transition dairy cows[J].Veterinary Clinics of North America:Food Animal Practice,2013,29(2):337-366.
[28] DENG Q,ODHIAMBO J F,FAROOQ U,et al.Intravaginal probiotics modulated metabolic status and improved milk production and composition of transition dairy cows[J].Journal of Animal Science,2016,94(2):760-770.
[29] AMETAJ B N,ZHANG G S,DERVISHI E,et al.Targeted metabolomics reveals multiple metabolite alterations in the urine of transition dairy cows preceding the incidence of lameness[J].Journal of Animal Science,2016,94:72-73.
[30] CALAMARI L,FERRARI A,MINUTI A,et al.Assessment of the main plasma parameters included in a metabolic profile of dairy cow based on fourier transform mid-infrared spectroscopy:preliminary results[J].BMC Veterinary Research,2016,12(1):4.
[31] ROCHE J R,BELL A W,OVERTON T R,et al.Nutritional management of the transition cow in the 21st century-a paradigm shift in thinking[J].Animal Production Science,2013,53(9):1000-1023.
[32] BERTONI G,TREVISI E.Use of the liver activity index and other metabolic variables in the assessment of metabolic health in dairy herds[J].Veterinary Clinics of North America:Food Animal Practice,2013,29(2):413-431.
[33] INGVARTSEN K L,MOYES K.Nutrition,immune function and health of dairy cattle[J].Animal,2013,7(S1):112-122.
[34] RETAMAL P M.Nutritional management of the prepartum dairy cow[M]//RISCO C A,RETAMAL P M.Dairy production medicine.Hoboken:John Wiley & Sons,Inc,2011:7-17.
[35] 姚軍虎,曹陽春,蔡傳江.奶畜能量代謝調(diào)控機(jī)理與措施[J].飼料工業(yè),2015,36(17):1-7.
[36] 姚軍虎,李飛,李發(fā)弟,等.反芻動物有效纖維評價體系及需要量[J].動物營養(yǎng)學(xué)報,2014,26(10):3168-3174.
[37] 姚軍虎.反芻動物碳水化合物高效利用的綜合調(diào)控[J].飼料工業(yè),2013,34(17):1-12.
[38] PITTA D W,KUMAR S,VECCHIARELLI B,et al.Temporal dynamics in the ruminal microbiome of dairy cows during the transition period.Journal of Animal Science,2014,92(9):4014-4022.
[39] WANG X X,LI X B,ZHAO C X,et al.Correlation between composition of the bacterial community and concentration of volatile fatty acids in the rumen during the transition period and ketosis in dairy cows[J].Applied and Environmental Microbiology,2012,78(7):2386-2392.
[40] 徐明.反芻動物瘤胃健康和碳水化合物能量利用效率的營養(yǎng)調(diào)控[D].博士學(xué)位論文.楊凌:西北農(nóng)林科技大學(xué),2007.
[41] 杜莎.日糧碳水化合物平衡指數(shù)對山羊消化道酶活性和養(yǎng)分瘤胃降解率的影響[D].碩士學(xué)位論文.楊凌:西北農(nóng)林科技大學(xué),2008.
[42] 趙向輝.日糧peNDF水平對山羊咀嚼活動、瘤胃發(fā)酵和養(yǎng)分消化率的影響[D].碩士學(xué)位論文.楊凌:西北農(nóng)林科技大學(xué),2009.
[43] 趙向輝.日糧非纖維性碳水化合物對人工瘤胃發(fā)酵、微生物合成和纖維分解菌菌群的影響[D].博士學(xué)位論文.楊凌:西北農(nóng)林科技大學(xué),2012.
[44] 高洋.黑麥草NDF組成及粒度對山羊采食行為、瘤胃發(fā)酵和瘤胃養(yǎng)分降解動力學(xué)的影響[D].碩士學(xué)位論文.楊凌:西北農(nóng)林科技大學(xué),2011.
[45] 李飛.奶山羊亞急性瘤胃酸中毒模型構(gòu)建與奶牛日糧CBI的優(yōu)化[D].博士學(xué)位論文.楊凌:西北農(nóng)林科技大學(xué),2014.
[46] 劉南南.日糧碳水化合物平衡指數(shù)和延胡索酸對山羊瘤胃發(fā)酵、微生物區(qū)系和甲烷產(chǎn)生的影響[D].碩士學(xué)位論文.楊凌:西北農(nóng)林科技大學(xué),2014.
[47] 王曉旭.圍產(chǎn)期奶牛瘤胃微生物區(qū)系的變化及微生態(tài)制劑的調(diào)控作用[D].博士學(xué)位論文.長春:吉林大學(xué),2012.
[48] 劉燁.十二指腸灌注亮氨酸對奶牛胰腺外分泌功能及血液指標(biāo)的影響[D].碩士學(xué)位論文.楊凌:西北農(nóng)林科技大學(xué),2013.
[49] 于紅霞.十二指腸灌注亮氨酸對奶山羊胰腺外分泌功能的影響[D].碩士學(xué)位論文.楊凌:西北農(nóng)林科技大學(xué),2011.
[50] 于志鵬.苯丙氨酸和亮氨酸對山羊胰腺發(fā)育和外分泌功能的調(diào)控研究[D].博士學(xué)位論文.楊凌:西北農(nóng)林科技大學(xué),2013.
[51] YU Z P,XU M,YAO J H,et al.Regulation of pancreatic exocrine secretion in goats:differential effects of short-and long-term duodenal phenylalanine treatment[J].Journal of Animal Physiology and Animal Nutrition,2013,97(3):431-438.
[52] YU Z P,XU M,LIU K,et al.Leucine markedly regulates pancreatic exocrine secretion in goats[J].Journal of Animal Physiology and Animal Nutrition,2014,98(1):169-177.
[53] YU Z P,XU M,WANG F,et al.Effect of duodenal infusion of leucine and phenylalanine on intestinal enzyme activities and starch digestibility in goats[J].Livestock Science,2014,162:134-140.
[54] 劉燁,劉凱,徐明,等.十二指腸灌注亮氨酸對奶牛胰腺淀粉酶分泌的影響[J].動物營養(yǎng)學(xué)報,2013,25(8):1785-1790.
[55] 劉凱.亮氨酸和異亮氨酸對奶畜胰腺外分泌功能的影響及調(diào)控機(jī)理研究[D].博士學(xué)位論文.楊凌:西北農(nóng)林科技大學(xué),2017.
[56] LIU K,LIU Y,LIU S M,et al.Relationships between leucine and the pancreatic exocrine function for improving starch digestibility in ruminants[J].Journal of Dairy Science,2015,98(4):2576-2582.
[57] 杜兵耀,馬晨,楊開倫,等.圍產(chǎn)期奶牛的生理特點及營養(yǎng)代謝特征研究進(jìn)展[J].乳業(yè)科學(xué)與技術(shù),2016,39(1):14-18.
[58] VAN SAUN R J,SNIFFEN C J.Transition cow nutrition and feeding management for disease prevention[J].Veterinary Clinics of North America:Food Animal Practice,2014,30(3):689-719.
[59] 孫菲菲,曹陽春,姚軍虎.奶牛圍產(chǎn)期葡萄糖營養(yǎng)平衡及其調(diào)控研究進(jìn)展[J].飼料工業(yè),2013,34(15):46-50.
[60] HARDIE D G,ROSS F A,HAWLEY S A.AMPK:a nutrient and energy sensor that maintains energy homeostasis[J].Nature Reviews Molecular Cell Biology,2012,13(4):251-262.
[61] STEINBERG G R,WATT M J,FEBBRAIO M A.Cytokine Regulation of AMPK signalling[J].Frontiers in Bioscience,2008,14:1902-1916.
[62] WANG Y,LIANG Y,VANHOUTTE P M.SIRT1 and AMPK in regulating mammalian senescence:a critical review and a working model[J].FEBS Letters,2011,585(7):986-994.
[63] KUBOTA N,YANO W,KUBOTA T,et al.Adiponectin stimulates AMP-activated protein kinase in the hypothalamus and increases food intake[J].Cell Metabolism,2007,6(1):55-68.
[64] MINOKOSHI Y,SHIUCHI T,LEE S,et al.Role of hypothalamic AMP-kinase in food intake regulation[J].Nutrition,2008,24(9):786-790.
[65] MINOKOSHI Y,ALQUIER T,FURUKAWA N,et al.AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus[J].Nature,2004,428(6982),569-574.
[66] KOLA B,HUBINA E,TUCCI S A,et al.Cannabinoids and ghrelin have both central and peripheral metabolic and cardiac effects via AMP-activated protein kinase[J].Journal of Biological Chemistry,2005,280(26):25196-25201.
[67] KOLA B,FARKAS I,CHRIST-CRAIN M,et al.The orexigenic effect of ghrelin is mediated through central activation of the endogenous cannabinoid system[J].PLoS One,2008,3(3):e1797.
[68] APPUHAMY J,NAYANANJALIE W,ENGLAND E,et al.Effects of AMP-activated protein kinase (AMPK) signaling and essential amino acids on mammalian target of rapamycin (mTOR) signaling and protein synthesis rates in mammary cells[J].Journal of Dairy Science,2014,97(1):419-429.
[69] LOCHER L,HUSSLER S,LAUBENTHAL L,et al.Effect of increasing body condition on key regulators of fat metabolism in subcutaneous adipose tissue depot and circulation of nonlactating dairy cows[J].Journal of Dairy Science,2015,98(2):1057-1068.
[70] MCFADDEN J W,CORL B A.Activation of AMP-activated protein kinase (AMPK) inhibits fatty acid synthesis in bovine mammary epithelial cells[J].Biochemical and Biophysical Research Communications,2009,390(3):388-393.
[71] DENG Q H,LIU G W,LIU L,et al.BHBA influences bovine hepatic lipid metabolism via AMPK signaling pathway[J].Journal of Cellular Biochemistry,2015,116(6):1070-1079.