• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Mapping stripe rust resistance genes by BSR-Seq:YrMM58 and YrHY1 on chromosome 2AS in Chinese wheat lines Mengmai 58 and Huaiyang 1 are Yr17

    2018-03-04 18:22:16ZhiyongLiu
    The Crop Journal 2018年1期

    *,Zhiyong Liu,*

    aCollege of Agronomy and Biotechnology,China Agricultural University,Beijing 100193,China

    bState Key Laboratory of Plant Cell and Chromosome Engineering,Institute of Genetics and Developmental Biology,Chinese Academy of Sciences,Beijing 100101,China

    cCollege of Life Science,Sichuan Agricultural University,Ya'an 625014,Sichuan,China

    dCollege of Horticulture,China Agricultural University,Beijing 100193,China

    eWheat Research Institute,Henan Academy of Agriculture Sciences,Zhengzhou 450002,Henan,China

    1.Introduction

    Common wheat is a major food crop and wheat production is continually challenged by several diseases,including stripe rust,stem rust,leaf rust,powdery mildew,and Fusarium head blight.Stripe rust,caused by Puccinia striiformis f.sp.tritici(PST),is one of the most severe of those diseases worldwide[1].Breeding stripe rust resistant cultivars by deployment of effective stripe rust resistance genes is the main strategy for control[2,3].More than 70 stripe rust resistance genes have been formally named and some of them have been widely used in breeding[4–6].However,new virulent pathogen races are a constant threat once resistance genes are deployed[7].For example,Yr9 on the 1RS.1BL translocation became ineffective following emergence of the virulent race CYR29 in the late 1990s[8],and the Yr24/Yr26/YrCH42 was recently overcome by race CYR34(V26)[9].Therefore discovery of effective stripe rust resistance genes and identification of closely linked markers to enable marker assisted selection are essential for continued resistance.

    Bulked segregant analysis (BSA) can rapidly identify molecular markers linked to traits of interest[10].Many genetic markers such as restriction fragment length polymorphisms(RFLPs),amplified fragment length polymorphisms(AFLPs),simple sequence repeats(SSRs),and sequence-tagged sites(STSs)linked to disease resistance genes have been used in BSA.However,all of these types of markers have limitations when working with large and highly repetitive plant genomes such as hexaploid wheat due to inadequate density and high levels of duplication.RNA-Seq is an extensively used next-generation sequencing(NGS)technology that not only detects differentially expressed transcripts but also numerous genomic variations in expressed exons,and is relatively inexpensive[11].With development of high-throughput sequencing technologies and protocols,BSR-Seq,an approach combining BSA and RNA-Seq has emerged as a new mapping strategy that offers the promise of rapid discovery of novel genes and genetic markers linked to target genes[12–14].This approach combines the advantages of high-throughput and cost-effectiveness in analysing large genomes.It can also be used to acquire gene expression data.Examples demonstrating the power of BSR-Seq include cloning of the maize glossy13 gene[12,15],mapping of stripe rust resistance gene Yr15 in hexaploid wheat[14],and mapping of high grain protein content gene GPC-B1[13]in tetraploid wheat.

    Comparative genomics analyses using genome sequences of Brachypodium,rice and sorghum and the physical map of Aegilops tauschii provide an effective method for gene mapping in wheat.The stripe rust resistance gene Yr18 was mapped in a<0.50 cM genetic interval using rice and Brachypodium genome sequences[16]and Yr36 was located to a 0.14 cM genetic interval between markers Xucw113 and Xucw111 using the rice collinear region sequences[17].These results thus facilitated map-based cloning and identification of the protein product of an ABC transporter(Yr18/Lr34/Pm38)[18]and a kinase-START(Yr36)protein[17].Using a similar approach,the stripe rust resistance gene Yr26 was located in a genomic interval orthologous to genomic regions Bradi3g28410 to Bradi3g29600 in Brachypodium and Os10g0470700 to Os10g0489800 in rice[19].Since the Ae.tauschii genome has a higher level of micro-collinearity with the wheat A and B subgenomes than any of Brachypodium,rice,and sorghum,Lu et al.[20]mapped the spot blotch resistance gene Sb3 on wheat chromosome 3BS to a 2.15 cM genetic interval using Ae.tauschii chromosome 3DS SNP marker sequences[21].

    Mengmai 58 and Huangyang 1 are recently bred wheat lines from the Huang-Huai River Valleys Winter Wheat Zone that are highly resistant to prevailing PST races CYR32,CYR33,and CYR34(V26).In this paper,we report the rapid mapping of stripe rust resistance genes YrMM58 and YrHY1 in bread wheat lines Mengmai 58 and Huaiyang 1 using BSR-Seq and comparative genomic analysis.

    2.Materials and methods

    2.1.Plant materials

    Stripe rust resistant wheat lines Mengmai 58 and Huaiyang 1 obtained from the Huang-Huai River Valleys Winter Wheat Zone were crossed with the highly susceptible wheat variety Nongda 399 and F2:3populations were used for genetic analysis.Mengmai 58 is a selection from Zhoumai 22 and Huaiyang 1 is a derivative of cross 951-99/Aikang 58.Wheat cultivar Jagger was used as a control possessing Yr17[5].

    Jagger,Mengmai 58,Huaiyang 1,Nongda 399,and 30 F1plants and more than 200 F2:3progenies from each cross,were evaluated for adult plant stage stripe rust resistance at Sichuan Agricultural University,Ya'an,Sichuan during the 2014–2015 growing season.PST race CYR34(V26)was used for inoculation.To ensure optimal disease responses the susceptible cultivars Nongda 399 and Taichung 29 were planted after every 20 rows as spreaders.About 30 seeds were planted in 1.5 m rows spaced 20 cm apart.

    Disease severities(DS)estimating the areas of sporulation on upper leaves were scored across the range of 0–100%[22].Infection types(ITs)were also recorded using a 0–9 scale previously described[23],where ITs 0–3,4–6,and 7–9 were considered to be resistant,intermediate resistant and susceptible,respectively.IT and DS were scored twice at 4-to 5-day intervals when DS on Nongda 399 and Taichung 29 reached approximately 90%–100%.

    2.2.BSR-Seq

    Leaf tissues from 20 homozygous resistant and 20 homozygous susceptible F2:3families from Nongda 399/Mengmai 58,and 40 homozygous resistant and 40 homozygous susceptible F2:3families from Nongda 399/Huaiyang 1,respectively,were collected from seedlings for preparation of resistant and susceptible RNA bulks.The RNA samples were sequenced on anIllumina HiSeq4000platform.Sequence quality was controlled using software Trimmomatic v0.32[24].RNA reads of the resistant and susceptible bulks were aligned to the draft assembly(IWGSC)of the wheat genome survey sequence(http://www.wheatgenome.org/)usingsoftware STAR v2.4.0j[25].SNP and Indels were called using software GATK v3.2-2 with its module “Haplotype Caller”applied[26].

    2.3.DNA isolation

    Genomic DNA was extracted from seedling leaf tissue from each F2:3family of the two crosses using the CTAB method[27].Based on infection type and disease severity data,20 homozygous resistant and 20 homozygous susceptible F2:3lines in each cross were used to construct resistant and susceptible DNA bulks for SNP marker validation.

    2.4.PCR amplification and electrophoresis

    PCR was performed in a Thermal Cycler(Bio-Rad)in 20 μL total volumes as follows:denaturation for 5 minat 94°C,followed by 35 cycles of 40 s at 94 °C,40 s at 60 °C,1 min at 72 °C and a final extension for 7 min at 72°C.The PCR products were sequenced either by the Sanger method to validate true polymorphisms or separated by electrophoresis on 8%non-denaturing polyacrylamide gels(39 acrylamide/1 bisacrylamide,w/w)to detect differences in band size using silver staining.

    2.5.SNP and STS markers development

    Single nucleotide polymorphisms(SNPs)associated with stripe rust resistance identified by BSR-Seq analysis were selected for marker development and validation.The flanking sequences of candidate SNPs were used as templates for PCR primer design using Primer3web(http://primer3.ut.ee/).

    Ae.tauschii extended SNP marker sequences homologous to the stripe rust resistant genetic region were used as queries for BLAST search of Chinese Spring contigs generated by the International Wheat Genome Sequencing Consortium(IWGSC,http://www.wheatgenome.org/)and 454 shotgun sequences[28].The sequences were used as templates to design sequence-tagged site (STS)primer pairs with Primer3web.

    The designed SNP and STS primers were screened for polymorphisms between the parental lines,as well as the resistant and susceptible DNA bulks.Polymorphic STS markers were used to genotype the segregating populations.

    2.6.Statistical analysis and genetic linkage map construction

    Chi-squared(χ2)tests were used to evaluate goodness-of-fit of observed and expected segregation ratios.The polymorphic SNP and STS markers were used to construct a genetic linkage map with the Map Draw 2.1 software[29].

    3.Results

    3.1.Genetic analyses of stripe rust resistances in Mengmai 58 and Huaiyang 1

    Jagger(Yr17),Mengmai 58,Huaiyang 1,and the F1plants were highly resistant(IT 0),whereas Nongda 399 and Taichung 29 were highly susceptible(IT 9)(Table 1).The data indicated that resistance in both crosses was conferred by single dominant genes,which were designated YrMM58 and YrHY1.

    3.2.BSR-Seq analysis

    The BSR-Seq approach was applied to map the stripe rust resistance genes YrMM58 and YrHY1.One hundred and fifty bp length mode RNA-Seq bulks of MM58R,MM58S,HY1R,and HY1S produced 40,488,082,40,562,867,52,941,318,and 40,869,720 raw reads pairs,respectively.Less than 1%of the raw reads pairs were filtered for each bulk after quality control.During read mapping,we found that 81%,72%,84%,and 85%of the filtered read pairs were uniquely mapped for bulks MM58R,MM58S,HY1R,and HY1S,respectively.Subsequent SNP calling identified 128,502 high-quality variants(SNPs and Indels)between bulks MM58R and MM58S,and 131,825 between bulks HY1R and HY1S.Finally,at the cut off of allele frequency difference(AFD)>0.8 and Fisher's Exact Test P-value<1e?10,19 SNPs were found to be associated with the YrMM58 resistance,and 24 SNPs were associated with YrHY1 resistance (Fig. 1). Twelve of the YrMM58-associated SNPs and 14 of the YrHY1-associated SNPs were located in 14.0 Mb and 15.9 Mb distal regions of chromosome 2AS,suggesting that YrMM58 and YrHY1 were located in that region.

    3.3.Candidate SNP validation and genetic mapping

    The YrMM58-and YrHY1-associated SNPs on 2AS were validated for polymorphisms between the parental lines as well as contrasting resistant and susceptible DNA bulks.Two SNP markers,WGGB191 and WGGB196 showed clear polymorphisms between the parental lines as well as the resistant and susceptible DNA bulks(Fig.2).SNP markers showing linkage with the rust resistance in 20 resistant and 20 susceptible F2:3families were then genotyped in the entire Nongda 399/Mengmai 58 and Nongda 399/Huangyang 1 F2:3families usingSanger sequencing to construct genetic linkage maps of stripe rust genes YrMM58 and YrHY1(Fig.3).Both YrMM58 and YrHY1 were located on the distal end of chromosome arm 2AS.

    Table 1–Stripe rust responses to PST race CYR34 of parents,F1and F2:3lines from crosses Nongda 399/Mengmai 58 and Nongda 399/Huaiyang 1.

    Fig.1–Distribution of candidate SNPs within wheat chromosomes.

    3.4.Comparative genomics analysis with Ae.tauschii and STS marker development

    The contig sequences of SNP markers WGGB191 and WGGB196 were used to search the Ae.tauschii SNP marker extended sequences database.WGGB191 and WGGB196 are orthologous to Ae.tauschii SNP markers AT2D1146 and AT2D1108,respectively.From the distal end of the chromosome to AT2D1108,there are 36 SNP markers(AT2D974 to AT2D1108)in the terminal region of Ae.tauschii chromosome arm 2DS.Low level synteny was observed for the corresponding genomic regions between Ae.tauschii and Brachypodium,rice and sorghum(Table 2).Therefore,only the Ae.tauschii sequence information was used for further comparative genomic analysis and marker development.

    The Ae.tauschii SNP marker(AT2D974 to AT2D1108)extended sequences were used to search the Chinese Spring IWGSC chromosome 2AS sequences (https://www.wheatgenome.org/)and Chinese Spring CS42 TGAC v1 WGS sequence assembly (https://wheatis.tgac.ac.uk/grassrootsportal/blast)to develop STS markers linked to the stripe rust resistance genes.Ten new polymorphic STS markers were developed and genotyped in the two F2:3populations to construct genetic linkage maps of YrMM58 and YrHY1(Table 3).Finally,YrMM58 and YrHY1 were located to the terminal region of wheat chromosome arm 2AS and were respectively 7.7 cM and 3.8 cM distal to STS marker WGGB148(Fig.3).

    Fig.2–Sanger sequencing profiles of SNP markers WGGB191 and WGGB196 in homozygous resistant(R),homozygous susceptible(S),and heterozygous F2:3families(H).

    Fig.3–Comparative genetic linkage maps of YrMM58,YrHY1,and other stripe rust genes on chromosome 2AS.(a)Genetic linkage map of YrMM58;(b)genetic linkage map of YrHY1;(c)Ae.tauschii 2DS SNP linkage map corresponding to the YrMM58 and YrHY1 genetic region;(d)integrated genetic linkage map of stripe rust resistance genes Yr17,Yr69,YrR61,Yr56,and YrSph on wheat chromosome 2AS.

    4.Discussion

    Genetic analyses indicated that a single dominant gene was responsible for the stripe rust resistances in wheat lines Mengmai 58 and Huaiyang 1.In combination with BSR-Seq and comparative genomics analysis,both stripe rust resistance genes YrMM58 and YrHY1 were mapped to the distal end of wheat chromosome 2AS.Five STS markers,WGGB148,WGGB152,WGGB159,WGB171,and WGGB176,closely linked to YrMM58 and YrHY1 generated the same amplification patterns in Mengmai 58,Huangyang 1,and Jagger(Fig.4).However,two STS markers,WGGB179 and WGGB186,further away from YrMM58 and YrHY1 than the above five markers showed different amplification patterns between Mengmai 58,Huangyang 1 and Jagger(Fig.4).We also tested Yr17-linked SSR markers Xgwm636 and Xgwm359[30],and SSR markersXbarc124,Xbarc212,Xgwm512,andXgwm372locatedon chromosome arm 2AS on Mengmai 58,Huangyang 1 and Jagger.The same amplification patterns were obtained for all SSRs in the three genotypes.These results suggested that Mengmai 58,Huangyang 1,and Jagger might contain the same sequences from WGGGB176 to the distal end of chromosome 2AS.Since VPM 1 and its derivatives have been widely used in wheat breeding programs in China in recent years,and VPM 1 carries Yr17 in a wheat-Aegilops ventricosa translocation[31],stripe rust resistance genes YrMM58 and YrHY1 are most likely Yr17.

    Table 2–Comparative genomics analysis among Ae.tauschii extended SNP marker sequences,Brachypodium,rice,sorghum genome sequences and new STS markers.

    Table 3–SNP and STS markers developed for mapping YrMM58 and YrHY1.

    The 12 SNP and STS markers in the YrMM58 and YrHY1 genetic linkage maps on wheat chromosome 2AS showed the same order as their 11 corresponding orthologous SNP markers on Ae.tauschii chromosome 2DS,indicating a high level micro-collinearity between the two subgenomes(Fig.3).WGGB148,the STS marker most closely linked to YrMM58 and YrHY1,was developed from a Chinese Spring chromosome 2AS contig orthologous to a SNP marker AT2D974 extended sequence.However,the genetic distances between WGGB148 and stripe rust resistance genes YrMM58 and YrHY1,as well as the physical end position of AT2D974 on the Ae.tauschii chromosome 2DS physical map[21]reveals that the VPM 1 segment(Yr17)in wheat is probably an extension to the corresponding Ae.tauschii 2DS.This is in agreement with the VPM 1 chromosome segment translocation derived from Ae.ventricosa.

    The efficiency and power of BSR-Seq was recently demonstrated in mapping plant genes.This technology provides not only the chromosome position of a target gene but also many associated SNPs for marker development[14].In the present study about 60%of the stripe rust resistance-associated SNPs were located in a 14.0–15.9 Mb distal region of chromosome 2AS(Fig.1).Two SNP markers WGGB191 and WGGB196 linked to YrMM58 and YrHY1 were then developed using the associated SNPs.

    We used comparative genomics analysis of Ae.tauschii to develop 10 new STS markers to construct high-density genetic maps of YrMM58 and YrHY1.Our results also showed a consistent gene order between corresponding genetic regions of wheat chromosome 2AS and Ae.tauschii chromosome 2DS,suggesting a high level of micro-collinearity between the two subgenomes.Similar results were also reported when mapping powdery mildew resistance gene MlHLT[32]and spot blotch resistance gene Sb3[20].Thus,comparative genomics analysis using the high-density SNP Ae.tauschii linkage map and genomic sequences[21,33]may be more effective than using Brachypodium,rice and sorghum genomic resources to develop markers for high-density genetic linkage map construction in wheat.Prospectively,the most recently released IWGSC Chinese Spring WGS assemblies (http://www.wheatgenome.org/)will be increasingly informative for fine mapping and map-based cloning in wheat.

    5.Conclusions

    Combining BSR-Seq with comparative genomics analyses,stripe rust genes in wheat lines Mengmai 58 and Huaiyang 1 were precisely and rapidly mapped on the distal end of chromosome 2AS.The markers developed in the current research provide useful information for marker-assisted selection of stripe rust resistance genes YrMM58 and YrHY1 which proved to be Yr17.

    Fig.4–PCR amplification patterns of STS markers in Mengmai 58,Huaiyang 1,Nongda 399,and Jagger(Yr17).

    This work was financially supported by the National Key Research and Development Program of China(2016YFD0101802).

    [1]C.R.Wellings,Global status of stripe rust:a review of historical and current threats,Euphytica 179(2011)129–141.

    [2]X.M.Chen,Epidemiology and control of stripe rust[Puccinia striiformis f.sp.tritici]on wheat,Can.J.Plant Pathol.27(2005)314–337.

    [3]Z.J.Pu,G.Y.Chen,Y.M.Wei,W.Y.Yang,Z.H.Yan,Y.L.Zheng,Identification and molecular tagging of a stripe rust resistance gene in wheat line P81,Plant Breed.129(2010)53–57.

    [4]R.A.McIntosh,Y.Yamazaki,J.Dubcovsky,J.Rogers,C.Morris,R.Appels,X.C.Xia,Catalogue of gene symbols for wheat,Proc.12th Int.Wheat Genet.Symp.Yokohama,Japan,2013.

    [5]R.A.McIntosh,J.Dubcovsky,J.Rogers,C.Morris,R.Appels,X.C.Xia,Catalogue of gene symbols for wheat:2013–2014 supplement,Komugi-wheat Genetic Resources Database,http://shigen.nig.ac.jp/wheat/komugi/genes/macgene/supplement 2013.pdf 2014.

    [6]R.A.McIntosh,J.Dubcovsky,J.Rogers,C.Morris,X.C.Xia,Catalogue of gene symbols for wheat:2017 supplement,Komugi-wheat Genetic Resources Database,http://shigen.nig.ac.jp/wheat/komugi/genes/macgene/supplement2017.pdf 2017.

    [7]H.S.Bariana,N.Parry,I.R.Barclay,R.Loughman,R.J.McLean,M.Shankar,R.E.Wilson,N.J.Willey,M.Francki,Identification and characterization of stripe rust resistance gene Yr34 in common wheat,Theor.Appl.Genet.112(2006)1143–1148.

    [8]W.Q.Chen,L.R.Wu,T.G.Liu,S.C.Xu,Race dynamics,diversity,and virulence evolution in Puccinia striiformis f.sp.tritici,the causal agent of wheat stripe rust in China from 2003 to 2007,Plant Dis.93(2009)1093–1101.

    [9]D.J.Han,Q.L.Wang,X.M.Chen,Q.D.Zeng,J.H.Wu,W.B.Xue,G.M.Zhan,L.L.Huang,Z.S.Kang,Emerging Yr26-virulent races of Puccinia striiformis f.tritici are threatening wheat production in the Sichuan Basin,China,Plant Dis.99(2015)754–760.

    [10]R.W.Michelmore,I.Paran,R.V.Kesseli,Identification of markers linked to disease-resistance genes by bulked segregant analysis:a rapid method to detect markers in specific genomic regions by using segregating populations,Proc.Natl.Acad.Sci.U.S.A.88(1991)9828–9832.

    [11]I.Chepelev,G.Wei,Q.Tang,K.Zhao,Detection of single nucleotide variations in expressed exons of the human genome using RNA-Seq,Nucleic Acids Res.37(2009),e106..

    [12]S.Z.Liu,C.T.Yeh,H.M.Tang,D.Nettleton,P.S.Schnable,Gene mapping via bulked segregant RNA-Seq(BSR-Seq),PLoS One 7(2012),e36406..

    [13]S.Pearce,F.Tabbita,D.Cantu,V.Buffalo,R.Avni,H.Vazquez-Gross,R.Zhao,C.J.Conley,A.Distelfeld,J.Dubcovksy,Regulation of Zn and Fe transporters by the GPC1 gene during early wheat monocarpic senescence,BMC Plant Biol.14(2014)368.

    [14]R.H.Ramirez Gonzalez,V.Segovia,N.Bird,P.Fenwick,S.Holdgate,S.Berry,P.Jack,M.Caccamo,C.Uauy,RNA-Seq bulked segregant analysis enables the identification of highresolution genetic markers for breeding in hexaploid wheat,Plant Biotechnol.J.13(2015)613–624.

    [15]L.Li,D.L.Li,S.Z.Liu,X.L.Ma,C.R.Dietrich,H.C.Hu,G.S.Zhang,Z.Y.Liu,J.Zheng,G.Y.Wang,P.S.Schnable,The maize glossy13 gene,cloned via BSR-Seq and Seq-Walking encodes a putative ABC transporter required for the normal accumulation of epicuticular waxes,PLoS One 8(2013),e82333..

    [16]W.Spielmeyer,R.P.Singh,H.McFadden,C.R.Wellings,J.Huerta-Espino,X.Kong,R.Appels,E.S.Lagudah,Fine scale genetic and physical mapping using interstitial deletion mutants of Lr34/Yr18:a disease resistance locus effective against multiple pathogens in wheat,Theor.Appl.Genet.116(2008)481–490.

    [17]D.L.Fu,C.Uauy,A.Distelfeld,A.Blechl,L.Epstein,X.M.Chen,H.Sela,T.Fahima,J.Dubcovsky,A kinase-START gene confers temperature-dependent resistance to wheat stripe rust,Science 323(2009)1357–1360.

    [18]S.G.Krattinger,E.S.Lagudah,W.Spielmeyer,R.P.Singh,J.Huerta-Espino,H.McFadden,E.Bossolini,L.L.Selter,B.Keller,A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat,Science 323(2009)1360–1363.

    [19]X.J.Zhang,D.J.Han,Q.D.Zeng,Y.H.Duan,F.P.Yuan,J.D.Shi,Q.L.Wang,J.H.Wu,L.L.Huang,Z.S.Kang,Fine mapping of wheat stripe rust resistance gene Yr26 based on collinearity of wheat with Brachypodium distachyon and rice,PLoS One 8(2013),e57885..

    [20]P.Lu,Y.Liang,D.L.Li,Z.Z.Wang,W.B.Li,G.X.Wang,Y.Wang,S.H.Zhou,Q.H.Wu,J.Z.Xie,D.Y.Zhang,Y.X.Chen,M.M.Li,Y.Zhang,Q.X.Sun,C.G.Han,Z.Y.Liu,Fine genetic mapping of spot blotch resistance gene Sb3 in wheat(Triticum aestivum),Theor.Appl.Genet.129(2016)577–589.

    [21]M.C.Luo,Y.Q.Gu,F.M.You,K.R.Deal,Y.Q.Ma,Y.Q.Hu,N.X.Huo,Y.Wang,J.R.Wang,S.Y.Chen,C.M.Jorgensen,Y.Zhang,P.E.McGuire,S.Pasternak,J.C.Stein,D.Ware,M.Kramer,W.R.McCombie,S.F.Kianian,M.M.Martis,K.F.X.Mayer,S.K.Sehgal,W.L.Li,B.S.Gill,M.W.Bevan,H.Simkova,J.Dolezel,W.N.Song,G.R.Lazo,O.D.Anderson,J.Dvorak,A 4-gigabase physical map unlocks the structure and evolution of the complex genome of Aegilops tauschii,the wheat D-genome progenitor,Proc.Natl.Acad.Sci.U.S.A.110(2013)7940–7945.

    [22]X.M.Chen,R.F.Line,Gene action in wheat cultivars for durable,high-temperature,adult-plant resistance and interaction with race-specific,seedling resistance to Puccinia striiformis,Phytopathology 85(1995)567–572.

    [23]R.F.Line,A.Qayoum,Virulence,aggressiveness,evolution and distribution of races of Puccinia striiformis(the cause of stripe rust of wheat)in North America,1968–87,Agriculture Research Service,United States Department of Agriculture,Tech.Bull.1788(1992).

    [24]A.M.Bolger,M.Lohse,B.Usadel,Trimmomatic:a flexible trimmer for Illumina sequence data,Bioinformatics 30(2014)2114–2120.

    [25]A.Dobin,C.A.Davis,F.Schlesinger,J.Drenkow,C.Zaleski,S.Jha,P.Batut,M.Chaisson,T.R.Gingeras,STAR:ultrafast universal RNA-seq aligner,Bioinformatics 29(2013)15–21.

    [26]A.McKenna,M.Hanna,E.Banks,A.Sivachenko,K.Cibulskis,A.Kernytsky,K.Garimella,D.Altshuler,S.Gabriel,M.Daly,M.A.DePristo,The Genome Analysis Toolkit:a MapReduce framework for analyzing next-generation DNA sequencing data,Genome Res.20(2010)1297–1303.

    [27]M.A.Saghai-Maroof,K.M.Soliman,R.A.Jorgensen,R.W.Allard,Ribosomal DNA spacer-length polymorphisms in barley:Mendelian inheritance,chromosomal location,and population dynamics,Proc.Natl.Acad.Sci.U.S.A.81(1984)8014–8018.

    [28]R.Brenchley,M.Spannagl,M.Pfeifer,G.L.A.Barker,R.D'Amore,A.M.Allen,N.McKenzie,M.Kramer,A.Kerhornou,D.Bolser,S.Kay,D.Waite,M.Trick,I.Bancroft,Y.Gu,N.X.Huo,M.C.Luo,S.Sehgal,B.Gill,S.Kianian,O.Anderson,P.Kersey,J.Dvorak,W.R.McCombie,A.Hall,K.F.X.Mayer,K.J.Edwards,M.W.Bevan,N.Hall,Analysis of the bread wheat genome using whole-genome shotgun sequencing,Nature 491(2012)705–710.

    [29]R.H.Liu,J.L.Meng,MapDraw:a microsoft excel macro for drawing genetic linkage maps based on given genetic linkage data,Hereditas 25(2003)317–321.

    [30]J.Q.Jia,G.R.Li,C.Liu,M.P.Lei,Z.J.Yang,Characterization of wheat yellow rust resistance gene Yr17 using EST-SSR and rice syntenic region,Cereal Res.Commun.39(2011)88–99.

    [31]S.Seah,H.Bariana,J.Jahier,K.Sivasithamparam,E.S.Lagudah,The introgressed segment carrying rust resistance genes Yr17,Lr37 and Sr38 in wheat can be assayed by a cloned disease resistance gene-like sequence,Theor.Appl.Genet.102(2001)600–605.

    [32]Z.Z.Wang,H.W.Li,D.Y.Zhang,L.Guo,J.J.Chen,Y.X.Chen,Q.H.Wu,J.Z.Xie,Y.Zhang,Q.X.Sun,J.Dvorak,M.C.Luo,Z.Y.Liu,Genetic and physical mapping of powdery mildew resistance gene MlHLT in Chinese wheat landrace Hulutou,Theor.Appl.Genet.128(2015)365–373.

    [33]J.Z.Jia,S.C.Zhao,X.Y.Kong,Y.R.Li,G.Y.Zhao,W.M.He,R.Appels,M.Pfeifer,Y.Tao,X.Y.Zhang,R.L.Jing,C.Zhang,Y.Z.Ma,L.F.Gao,C.Gao,M.Spannagl,K.F.X.Mayer,D.Li,S.K.Pan,F.Y.Zheng,Q.Hu,X.C.Xia,J.W.Li,Q.S.Liang,J.Chen,T.Wicker,C.Y.Gou,H.H.Kuang,G.Y.He,Y.D.Luo,B.Keller,Q.J.Xia,P.Lu,J.Y.Wang,H.F.Zou,R.Z.Zhang,J.Y.Xu,J.L.Gao,C.Middleton,Z.W.Quan,G.M.Liu,J.Wang,International Wheat Genome Sequencing Consortium,H.M.Yang,X.Liu,Z.H.He,L.Mao,J.Wang,Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation,Nature 496(2013)91–95.

    青草久久国产| 国产一区二区三区在线臀色熟女| 日本精品一区二区三区蜜桃| 亚洲成人免费电影在线观看| 超碰成人久久| 欧美精品啪啪一区二区三区| 黄片播放在线免费| 久久伊人香网站| 国产极品粉嫩免费观看在线| 极品教师在线免费播放| 国产成人精品在线电影| АⅤ资源中文在线天堂| 成在线人永久免费视频| 国产一区二区激情短视频| 免费高清视频大片| 国产av精品麻豆| 两个人视频免费观看高清| 如日韩欧美国产精品一区二区三区| 很黄的视频免费| 日韩欧美在线二视频| 一级毛片精品| 欧美日韩瑟瑟在线播放| 黄网站色视频无遮挡免费观看| 黄网站色视频无遮挡免费观看| 国产精品影院久久| 国产av一区二区精品久久| 中文字幕人妻丝袜一区二区| 淫秽高清视频在线观看| 一区福利在线观看| 精品人妻在线不人妻| 黄片小视频在线播放| 一级a爱片免费观看的视频| 欧美在线黄色| 日韩成人在线观看一区二区三区| 亚洲精品一区av在线观看| 午夜精品国产一区二区电影| 老熟妇仑乱视频hdxx| 身体一侧抽搐| 嫩草影视91久久| 欧美精品亚洲一区二区| 波多野结衣巨乳人妻| 久久伊人香网站| 成年女人毛片免费观看观看9| 18禁黄网站禁片午夜丰满| 母亲3免费完整高清在线观看| 欧美激情高清一区二区三区| 久久久久久久午夜电影| 国产精品自产拍在线观看55亚洲| cao死你这个sao货| 性色av乱码一区二区三区2| 亚洲欧美一区二区三区黑人| 免费在线观看黄色视频的| 国产单亲对白刺激| 亚洲欧美日韩高清在线视频| 99久久99久久久精品蜜桃| 国语自产精品视频在线第100页| 亚洲自偷自拍图片 自拍| 国语自产精品视频在线第100页| 日本黄色视频三级网站网址| 国产一区二区三区视频了| 国产欧美日韩一区二区三区在线| 免费看a级黄色片| 变态另类成人亚洲欧美熟女 | 精品一区二区三区视频在线观看免费| 国产精品98久久久久久宅男小说| 又黄又粗又硬又大视频| 亚洲 欧美 日韩 在线 免费| 国产三级在线视频| 国产三级在线视频| 两个人免费观看高清视频| 国产精品二区激情视频| 人成视频在线观看免费观看| 久久久精品国产亚洲av高清涩受| 大码成人一级视频| 国产精品 欧美亚洲| 亚洲av电影不卡..在线观看| 日本vs欧美在线观看视频| 极品人妻少妇av视频| 两人在一起打扑克的视频| 午夜久久久久精精品| 制服诱惑二区| 香蕉丝袜av| 一级,二级,三级黄色视频| 久久久国产欧美日韩av| 亚洲欧美激情在线| 成人av一区二区三区在线看| 麻豆久久精品国产亚洲av| 黄色 视频免费看| 亚洲av五月六月丁香网| 精品不卡国产一区二区三区| 97碰自拍视频| 国产av一区二区精品久久| 人人妻人人爽人人添夜夜欢视频| 国产精品一区二区三区四区久久 | 久久久国产成人精品二区| 91麻豆av在线| 亚洲成a人片在线一区二区| 无人区码免费观看不卡| 香蕉国产在线看| 亚洲人成电影观看| 国产区一区二久久| 两人在一起打扑克的视频| 别揉我奶头~嗯~啊~动态视频| 中文字幕人妻熟女乱码| 亚洲成a人片在线一区二区| 精品国产乱码久久久久久男人| 久久亚洲精品不卡| av免费在线观看网站| 手机成人av网站| 国产亚洲av高清不卡| ponron亚洲| 美女免费视频网站| 欧美老熟妇乱子伦牲交| 两个人免费观看高清视频| 岛国视频午夜一区免费看| 免费观看人在逋| 制服丝袜大香蕉在线| 桃红色精品国产亚洲av| 欧美乱妇无乱码| 美女大奶头视频| 亚洲国产精品999在线| 亚洲国产精品sss在线观看| 婷婷精品国产亚洲av在线| 久久欧美精品欧美久久欧美| 亚洲视频免费观看视频| 一个人免费在线观看的高清视频| 国产成人精品在线电影| 两个人视频免费观看高清| 久久精品成人免费网站| 国产熟女午夜一区二区三区| a级毛片在线看网站| 好男人在线观看高清免费视频 | 午夜福利一区二区在线看| 男人舔女人下体高潮全视频| 久久国产乱子伦精品免费另类| 又紧又爽又黄一区二区| av中文乱码字幕在线| 欧美黄色片欧美黄色片| 亚洲精品美女久久久久99蜜臀| 国产av精品麻豆| 丝袜人妻中文字幕| 国内精品久久久久久久电影| 国产成人av激情在线播放| 国产精品免费视频内射| 国产三级在线视频| 女性生殖器流出的白浆| 91av网站免费观看| 叶爱在线成人免费视频播放| 久久人妻熟女aⅴ| 亚洲精华国产精华精| 国产精品久久久久久人妻精品电影| 男人的好看免费观看在线视频 | 国产成人免费无遮挡视频| 国产激情欧美一区二区| 9热在线视频观看99| 此物有八面人人有两片| 国产精品久久久人人做人人爽| 国内毛片毛片毛片毛片毛片| 色精品久久人妻99蜜桃| 美女 人体艺术 gogo| 热re99久久国产66热| 精品国产超薄肉色丝袜足j| 久久中文看片网| www.www免费av| 久久伊人香网站| 又黄又爽又免费观看的视频| 亚洲成人精品中文字幕电影| 久久天堂一区二区三区四区| 久久久久久大精品| av视频在线观看入口| 精品无人区乱码1区二区| 日韩大尺度精品在线看网址 | 欧美老熟妇乱子伦牲交| 制服丝袜大香蕉在线| 99香蕉大伊视频| 极品人妻少妇av视频| 午夜免费鲁丝| 国产精品99久久99久久久不卡| 国产精品综合久久久久久久免费 | 久久中文字幕人妻熟女| 国产高清有码在线观看视频 | 可以免费在线观看a视频的电影网站| 精品久久久久久成人av| 脱女人内裤的视频| 久久久久久人人人人人| 一级a爱片免费观看的视频| 淫秽高清视频在线观看| 免费在线观看完整版高清| 国产成人精品在线电影| 老鸭窝网址在线观看| 高清黄色对白视频在线免费看| 国产欧美日韩一区二区精品| 黄色片一级片一级黄色片| www.熟女人妻精品国产| 黄色毛片三级朝国网站| 手机成人av网站| 不卡一级毛片| av欧美777| 久久久久久久精品吃奶| 一进一出抽搐动态| 一卡2卡三卡四卡精品乱码亚洲| 黄色a级毛片大全视频| 免费在线观看视频国产中文字幕亚洲| 亚洲专区中文字幕在线| 国产av一区二区精品久久| 天天添夜夜摸| 18美女黄网站色大片免费观看| 国产熟女午夜一区二区三区| 欧美大码av| 看黄色毛片网站| 亚洲三区欧美一区| 丁香欧美五月| 中文字幕另类日韩欧美亚洲嫩草| 午夜精品久久久久久毛片777| 天堂影院成人在线观看| 亚洲一区二区三区不卡视频| 亚洲 国产 在线| 午夜免费观看网址| 欧美激情高清一区二区三区| 真人一进一出gif抽搐免费| 一卡2卡三卡四卡精品乱码亚洲| 一级毛片精品| 国产精品99久久99久久久不卡| 黄色 视频免费看| 女人高潮潮喷娇喘18禁视频| 国产精品久久久久久精品电影 | 伊人久久大香线蕉亚洲五| 国产xxxxx性猛交| 国产成人精品在线电影| 禁无遮挡网站| 国产亚洲欧美精品永久| 国产精品野战在线观看| 精品国产亚洲在线| 色综合亚洲欧美另类图片| av网站免费在线观看视频| 亚洲av电影不卡..在线观看| 亚洲一区中文字幕在线| 日本 av在线| 久久天躁狠狠躁夜夜2o2o| 级片在线观看| 久久精品91蜜桃| 99热只有精品国产| 国产av又大| 国产成人免费无遮挡视频| 亚洲av成人不卡在线观看播放网| 亚洲九九香蕉| 欧美一级毛片孕妇| 手机成人av网站| 宅男免费午夜| 真人一进一出gif抽搐免费| 国产激情欧美一区二区| 婷婷精品国产亚洲av在线| 两个人视频免费观看高清| 亚洲精品国产一区二区精华液| 一二三四在线观看免费中文在| 视频区欧美日本亚洲| 国内久久婷婷六月综合欲色啪| 日韩欧美国产一区二区入口| 99精品久久久久人妻精品| 九色亚洲精品在线播放| 极品教师在线免费播放| 高潮久久久久久久久久久不卡| 一a级毛片在线观看| 国产国语露脸激情在线看| av免费在线观看网站| 黄色视频,在线免费观看| 91老司机精品| 亚洲成人国产一区在线观看| 中文字幕色久视频| 人人妻,人人澡人人爽秒播| 亚洲成av人片免费观看| 亚洲五月色婷婷综合| 制服丝袜大香蕉在线| 国产精品野战在线观看| 国产精品二区激情视频| 色尼玛亚洲综合影院| 国产av在哪里看| 男人操女人黄网站| 精品国产亚洲在线| 午夜免费激情av| 欧美精品啪啪一区二区三区| 少妇裸体淫交视频免费看高清 | 欧美日韩一级在线毛片| 亚洲人成网站在线播放欧美日韩| 亚洲国产欧美一区二区综合| 久久久久国产精品人妻aⅴ院| or卡值多少钱| 一级毛片高清免费大全| 在线天堂中文资源库| 丰满人妻熟妇乱又伦精品不卡| 成人三级黄色视频| 欧美色欧美亚洲另类二区 | 十分钟在线观看高清视频www| 12—13女人毛片做爰片一| 久久久久国内视频| 国产精品99久久99久久久不卡| 欧美激情高清一区二区三区| 黑人操中国人逼视频| 亚洲,欧美精品.| 久久香蕉激情| 久久精品国产综合久久久| 午夜福利18| 欧美老熟妇乱子伦牲交| 久久精品人人爽人人爽视色| 后天国语完整版免费观看| 欧美最黄视频在线播放免费| 黑人巨大精品欧美一区二区蜜桃| 成人亚洲精品一区在线观看| 老司机午夜福利在线观看视频| 脱女人内裤的视频| 久久久久久人人人人人| 一二三四社区在线视频社区8| 后天国语完整版免费观看| 欧美久久黑人一区二区| 国产欧美日韩一区二区三区在线| 91av网站免费观看| 正在播放国产对白刺激| 亚洲专区中文字幕在线| av网站免费在线观看视频| 法律面前人人平等表现在哪些方面| 高清黄色对白视频在线免费看| 中文字幕av电影在线播放| 亚洲国产精品sss在线观看| 亚洲五月天丁香| 日日夜夜操网爽| 欧美一区二区精品小视频在线| 久久久久久久午夜电影| 久久香蕉激情| 色婷婷久久久亚洲欧美| 国产高清视频在线播放一区| 亚洲国产精品成人综合色| 精品国产乱子伦一区二区三区| 亚洲国产欧美日韩在线播放| 少妇裸体淫交视频免费看高清 | 一边摸一边做爽爽视频免费| 国产亚洲欧美在线一区二区| 中文字幕色久视频| 又紧又爽又黄一区二区| 深夜精品福利| 一个人观看的视频www高清免费观看 | 天天躁夜夜躁狠狠躁躁| 亚洲av电影在线进入| 非洲黑人性xxxx精品又粗又长| 亚洲成国产人片在线观看| 久久久久久免费高清国产稀缺| 天天添夜夜摸| 中出人妻视频一区二区| 亚洲三区欧美一区| 国产一区二区三区在线臀色熟女| 69精品国产乱码久久久| 激情在线观看视频在线高清| 午夜福利免费观看在线| 久久伊人香网站| 天天躁夜夜躁狠狠躁躁| 一二三四社区在线视频社区8| 国产片内射在线| 国产在线观看jvid| 男人操女人黄网站| 少妇熟女aⅴ在线视频| 宅男免费午夜| 亚洲精华国产精华精| 一本综合久久免费| 国产91精品成人一区二区三区| 日本撒尿小便嘘嘘汇集6| 色婷婷久久久亚洲欧美| 乱人伦中国视频| 亚洲七黄色美女视频| 亚洲第一电影网av| 中文字幕精品免费在线观看视频| 欧美日本亚洲视频在线播放| 国产av又大| 美女国产高潮福利片在线看| av有码第一页| 99久久综合精品五月天人人| netflix在线观看网站| 人人妻人人爽人人添夜夜欢视频| 大香蕉久久成人网| 99久久99久久久精品蜜桃| 亚洲第一av免费看| 热99re8久久精品国产| 亚洲精品一卡2卡三卡4卡5卡| 91精品三级在线观看| 一进一出抽搐动态| 丁香六月欧美| 成人三级黄色视频| 啪啪无遮挡十八禁网站| 热re99久久国产66热| 88av欧美| 性少妇av在线| 动漫黄色视频在线观看| 日本免费a在线| 精品一区二区三区四区五区乱码| 777久久人妻少妇嫩草av网站| 成在线人永久免费视频| 欧美另类亚洲清纯唯美| 午夜影院日韩av| 狠狠狠狠99中文字幕| 国产精品野战在线观看| 国产精品久久久人人做人人爽| 桃色一区二区三区在线观看| 亚洲国产日韩欧美精品在线观看 | 激情视频va一区二区三区| 亚洲精品国产精品久久久不卡| 国产亚洲欧美精品永久| 色哟哟哟哟哟哟| 丝袜人妻中文字幕| 一边摸一边抽搐一进一出视频| 亚洲久久久国产精品| 国产精品 欧美亚洲| 村上凉子中文字幕在线| 久久天躁狠狠躁夜夜2o2o| 中文字幕高清在线视频| 老汉色av国产亚洲站长工具| 女人被狂操c到高潮| 变态另类成人亚洲欧美熟女 | 正在播放国产对白刺激| 成人三级黄色视频| 一区在线观看完整版| 天天一区二区日本电影三级 | 欧美日本视频| 欧美激情极品国产一区二区三区| 91麻豆av在线| 一边摸一边做爽爽视频免费| 亚洲九九香蕉| 99国产精品99久久久久| 深夜精品福利| 亚洲精品国产一区二区精华液| 亚洲成人久久性| 亚洲成av人片免费观看| 美女国产高潮福利片在线看| 丝袜美腿诱惑在线| 国内精品久久久久精免费| 国产私拍福利视频在线观看| 国产成人欧美在线观看| 一二三四在线观看免费中文在| 午夜亚洲福利在线播放| 日日摸夜夜添夜夜添小说| 一进一出抽搐gif免费好疼| 久久香蕉国产精品| 制服诱惑二区| 欧美日韩精品网址| 亚洲精品国产精品久久久不卡| 欧美久久黑人一区二区| 国产蜜桃级精品一区二区三区| www国产在线视频色| 亚洲自拍偷在线| 一进一出抽搐动态| 亚洲国产欧美日韩在线播放| 亚洲七黄色美女视频| 黄色毛片三级朝国网站| 亚洲久久久国产精品| 国产日韩一区二区三区精品不卡| 一级a爱片免费观看的视频| 亚洲免费av在线视频| 成人av一区二区三区在线看| 国产成人影院久久av| 又黄又粗又硬又大视频| 国产精品自产拍在线观看55亚洲| 欧美一级a爱片免费观看看 | 91在线观看av| 久久精品人人爽人人爽视色| 久久热在线av| 日韩欧美一区二区三区在线观看| 免费久久久久久久精品成人欧美视频| 亚洲专区中文字幕在线| 亚洲精品久久国产高清桃花| 色婷婷久久久亚洲欧美| 国产一区二区三区在线臀色熟女| 久久 成人 亚洲| 一二三四社区在线视频社区8| 亚洲男人的天堂狠狠| 美女免费视频网站| 国产97色在线日韩免费| 日本五十路高清| 免费在线观看黄色视频的| 变态另类成人亚洲欧美熟女 | 黑人巨大精品欧美一区二区mp4| 国产一区二区在线av高清观看| 一卡2卡三卡四卡精品乱码亚洲| 日本欧美视频一区| 色av中文字幕| 一a级毛片在线观看| 一卡2卡三卡四卡精品乱码亚洲| 亚洲国产看品久久| 婷婷丁香在线五月| 丁香欧美五月| 精品久久蜜臀av无| 人人妻人人澡欧美一区二区 | 涩涩av久久男人的天堂| 成人国语在线视频| 日韩精品青青久久久久久| 亚洲精品久久国产高清桃花| 色老头精品视频在线观看| 男女下面插进去视频免费观看| 亚洲va日本ⅴa欧美va伊人久久| 亚洲熟妇熟女久久| 久久国产亚洲av麻豆专区| 欧美激情 高清一区二区三区| 精品久久久久久久久久免费视频| 国产免费av片在线观看野外av| 国产精品 欧美亚洲| 国产免费av片在线观看野外av| 免费久久久久久久精品成人欧美视频| avwww免费| 婷婷丁香在线五月| 中文字幕人成人乱码亚洲影| 日韩一卡2卡3卡4卡2021年| 亚洲精品在线观看二区| 国产精品美女特级片免费视频播放器 | 亚洲 国产 在线| bbb黄色大片| www.自偷自拍.com| 欧美成狂野欧美在线观看| 亚洲欧美日韩另类电影网站| 一本久久中文字幕| 黄网站色视频无遮挡免费观看| 一区二区三区精品91| 999精品在线视频| 操出白浆在线播放| 97碰自拍视频| 好男人在线观看高清免费视频 | 中文字幕人成人乱码亚洲影| 亚洲欧美激情综合另类| 久久人人精品亚洲av| 在线av久久热| 巨乳人妻的诱惑在线观看| 亚洲avbb在线观看| 在线观看一区二区三区| 亚洲av电影不卡..在线观看| 色在线成人网| 无人区码免费观看不卡| 一区二区三区激情视频| 一级片免费观看大全| 欧美性长视频在线观看| 成人免费观看视频高清| 怎么达到女性高潮| 国产欧美日韩精品亚洲av| 中文字幕av电影在线播放| 亚洲狠狠婷婷综合久久图片| 波多野结衣巨乳人妻| 欧美日本中文国产一区发布| 波多野结衣巨乳人妻| 在线天堂中文资源库| 看免费av毛片| 啦啦啦 在线观看视频| 啦啦啦韩国在线观看视频| 精品乱码久久久久久99久播| 最近最新中文字幕大全电影3 | 国产av在哪里看| 在线av久久热| 国产xxxxx性猛交| 亚洲国产中文字幕在线视频| 男女做爰动态图高潮gif福利片 | 精品一区二区三区视频在线观看免费| a在线观看视频网站| 久久精品91蜜桃| 欧美色视频一区免费| 老熟妇仑乱视频hdxx| 久久这里只有精品19| 亚洲国产精品999在线| 午夜久久久在线观看| 欧美午夜高清在线| 正在播放国产对白刺激| 亚洲精品美女久久久久99蜜臀| 日韩国内少妇激情av| 久9热在线精品视频| 男女下面进入的视频免费午夜 | 免费在线观看视频国产中文字幕亚洲| a在线观看视频网站| 久久国产乱子伦精品免费另类| 欧美一级a爱片免费观看看 | 大陆偷拍与自拍| 亚洲三区欧美一区| 久久草成人影院| 啦啦啦 在线观看视频| 国产精品一区二区精品视频观看| 黄色片一级片一级黄色片| 国产精品久久久久久精品电影 | 欧美av亚洲av综合av国产av| 精品国内亚洲2022精品成人| 亚洲国产欧美一区二区综合| 女人高潮潮喷娇喘18禁视频| 亚洲在线自拍视频| cao死你这个sao货| 国产精品久久久久久亚洲av鲁大| 最新美女视频免费是黄的| 男女之事视频高清在线观看| 国产成人欧美| 熟女少妇亚洲综合色aaa.| 淫秽高清视频在线观看| 成人特级黄色片久久久久久久| 大码成人一级视频| 琪琪午夜伦伦电影理论片6080| 黑人巨大精品欧美一区二区mp4| 女人被狂操c到高潮| 啦啦啦 在线观看视频| 少妇 在线观看| 亚洲成a人片在线一区二区| 中文字幕人妻丝袜一区二区| 免费无遮挡裸体视频| 免费不卡黄色视频| 日韩欧美一区视频在线观看| 精品久久久久久久久久免费视频| 91成年电影在线观看| 美女国产高潮福利片在线看| 亚洲精品久久国产高清桃花| 亚洲成人久久性| 十分钟在线观看高清视频www| 在线观看一区二区三区| 久久午夜综合久久蜜桃| 国产一区二区激情短视频| 超碰成人久久| 黄片大片在线免费观看| 999久久久国产精品视频| 老司机午夜福利在线观看视频|