• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Mapping stripe rust resistance genes by BSR-Seq:YrMM58 and YrHY1 on chromosome 2AS in Chinese wheat lines Mengmai 58 and Huaiyang 1 are Yr17

    2018-03-04 18:22:16ZhiyongLiu
    The Crop Journal 2018年1期

    *,Zhiyong Liu,*

    aCollege of Agronomy and Biotechnology,China Agricultural University,Beijing 100193,China

    bState Key Laboratory of Plant Cell and Chromosome Engineering,Institute of Genetics and Developmental Biology,Chinese Academy of Sciences,Beijing 100101,China

    cCollege of Life Science,Sichuan Agricultural University,Ya'an 625014,Sichuan,China

    dCollege of Horticulture,China Agricultural University,Beijing 100193,China

    eWheat Research Institute,Henan Academy of Agriculture Sciences,Zhengzhou 450002,Henan,China

    1.Introduction

    Common wheat is a major food crop and wheat production is continually challenged by several diseases,including stripe rust,stem rust,leaf rust,powdery mildew,and Fusarium head blight.Stripe rust,caused by Puccinia striiformis f.sp.tritici(PST),is one of the most severe of those diseases worldwide[1].Breeding stripe rust resistant cultivars by deployment of effective stripe rust resistance genes is the main strategy for control[2,3].More than 70 stripe rust resistance genes have been formally named and some of them have been widely used in breeding[4–6].However,new virulent pathogen races are a constant threat once resistance genes are deployed[7].For example,Yr9 on the 1RS.1BL translocation became ineffective following emergence of the virulent race CYR29 in the late 1990s[8],and the Yr24/Yr26/YrCH42 was recently overcome by race CYR34(V26)[9].Therefore discovery of effective stripe rust resistance genes and identification of closely linked markers to enable marker assisted selection are essential for continued resistance.

    Bulked segregant analysis (BSA) can rapidly identify molecular markers linked to traits of interest[10].Many genetic markers such as restriction fragment length polymorphisms(RFLPs),amplified fragment length polymorphisms(AFLPs),simple sequence repeats(SSRs),and sequence-tagged sites(STSs)linked to disease resistance genes have been used in BSA.However,all of these types of markers have limitations when working with large and highly repetitive plant genomes such as hexaploid wheat due to inadequate density and high levels of duplication.RNA-Seq is an extensively used next-generation sequencing(NGS)technology that not only detects differentially expressed transcripts but also numerous genomic variations in expressed exons,and is relatively inexpensive[11].With development of high-throughput sequencing technologies and protocols,BSR-Seq,an approach combining BSA and RNA-Seq has emerged as a new mapping strategy that offers the promise of rapid discovery of novel genes and genetic markers linked to target genes[12–14].This approach combines the advantages of high-throughput and cost-effectiveness in analysing large genomes.It can also be used to acquire gene expression data.Examples demonstrating the power of BSR-Seq include cloning of the maize glossy13 gene[12,15],mapping of stripe rust resistance gene Yr15 in hexaploid wheat[14],and mapping of high grain protein content gene GPC-B1[13]in tetraploid wheat.

    Comparative genomics analyses using genome sequences of Brachypodium,rice and sorghum and the physical map of Aegilops tauschii provide an effective method for gene mapping in wheat.The stripe rust resistance gene Yr18 was mapped in a<0.50 cM genetic interval using rice and Brachypodium genome sequences[16]and Yr36 was located to a 0.14 cM genetic interval between markers Xucw113 and Xucw111 using the rice collinear region sequences[17].These results thus facilitated map-based cloning and identification of the protein product of an ABC transporter(Yr18/Lr34/Pm38)[18]and a kinase-START(Yr36)protein[17].Using a similar approach,the stripe rust resistance gene Yr26 was located in a genomic interval orthologous to genomic regions Bradi3g28410 to Bradi3g29600 in Brachypodium and Os10g0470700 to Os10g0489800 in rice[19].Since the Ae.tauschii genome has a higher level of micro-collinearity with the wheat A and B subgenomes than any of Brachypodium,rice,and sorghum,Lu et al.[20]mapped the spot blotch resistance gene Sb3 on wheat chromosome 3BS to a 2.15 cM genetic interval using Ae.tauschii chromosome 3DS SNP marker sequences[21].

    Mengmai 58 and Huangyang 1 are recently bred wheat lines from the Huang-Huai River Valleys Winter Wheat Zone that are highly resistant to prevailing PST races CYR32,CYR33,and CYR34(V26).In this paper,we report the rapid mapping of stripe rust resistance genes YrMM58 and YrHY1 in bread wheat lines Mengmai 58 and Huaiyang 1 using BSR-Seq and comparative genomic analysis.

    2.Materials and methods

    2.1.Plant materials

    Stripe rust resistant wheat lines Mengmai 58 and Huaiyang 1 obtained from the Huang-Huai River Valleys Winter Wheat Zone were crossed with the highly susceptible wheat variety Nongda 399 and F2:3populations were used for genetic analysis.Mengmai 58 is a selection from Zhoumai 22 and Huaiyang 1 is a derivative of cross 951-99/Aikang 58.Wheat cultivar Jagger was used as a control possessing Yr17[5].

    Jagger,Mengmai 58,Huaiyang 1,Nongda 399,and 30 F1plants and more than 200 F2:3progenies from each cross,were evaluated for adult plant stage stripe rust resistance at Sichuan Agricultural University,Ya'an,Sichuan during the 2014–2015 growing season.PST race CYR34(V26)was used for inoculation.To ensure optimal disease responses the susceptible cultivars Nongda 399 and Taichung 29 were planted after every 20 rows as spreaders.About 30 seeds were planted in 1.5 m rows spaced 20 cm apart.

    Disease severities(DS)estimating the areas of sporulation on upper leaves were scored across the range of 0–100%[22].Infection types(ITs)were also recorded using a 0–9 scale previously described[23],where ITs 0–3,4–6,and 7–9 were considered to be resistant,intermediate resistant and susceptible,respectively.IT and DS were scored twice at 4-to 5-day intervals when DS on Nongda 399 and Taichung 29 reached approximately 90%–100%.

    2.2.BSR-Seq

    Leaf tissues from 20 homozygous resistant and 20 homozygous susceptible F2:3families from Nongda 399/Mengmai 58,and 40 homozygous resistant and 40 homozygous susceptible F2:3families from Nongda 399/Huaiyang 1,respectively,were collected from seedlings for preparation of resistant and susceptible RNA bulks.The RNA samples were sequenced on anIllumina HiSeq4000platform.Sequence quality was controlled using software Trimmomatic v0.32[24].RNA reads of the resistant and susceptible bulks were aligned to the draft assembly(IWGSC)of the wheat genome survey sequence(http://www.wheatgenome.org/)usingsoftware STAR v2.4.0j[25].SNP and Indels were called using software GATK v3.2-2 with its module “Haplotype Caller”applied[26].

    2.3.DNA isolation

    Genomic DNA was extracted from seedling leaf tissue from each F2:3family of the two crosses using the CTAB method[27].Based on infection type and disease severity data,20 homozygous resistant and 20 homozygous susceptible F2:3lines in each cross were used to construct resistant and susceptible DNA bulks for SNP marker validation.

    2.4.PCR amplification and electrophoresis

    PCR was performed in a Thermal Cycler(Bio-Rad)in 20 μL total volumes as follows:denaturation for 5 minat 94°C,followed by 35 cycles of 40 s at 94 °C,40 s at 60 °C,1 min at 72 °C and a final extension for 7 min at 72°C.The PCR products were sequenced either by the Sanger method to validate true polymorphisms or separated by electrophoresis on 8%non-denaturing polyacrylamide gels(39 acrylamide/1 bisacrylamide,w/w)to detect differences in band size using silver staining.

    2.5.SNP and STS markers development

    Single nucleotide polymorphisms(SNPs)associated with stripe rust resistance identified by BSR-Seq analysis were selected for marker development and validation.The flanking sequences of candidate SNPs were used as templates for PCR primer design using Primer3web(http://primer3.ut.ee/).

    Ae.tauschii extended SNP marker sequences homologous to the stripe rust resistant genetic region were used as queries for BLAST search of Chinese Spring contigs generated by the International Wheat Genome Sequencing Consortium(IWGSC,http://www.wheatgenome.org/)and 454 shotgun sequences[28].The sequences were used as templates to design sequence-tagged site (STS)primer pairs with Primer3web.

    The designed SNP and STS primers were screened for polymorphisms between the parental lines,as well as the resistant and susceptible DNA bulks.Polymorphic STS markers were used to genotype the segregating populations.

    2.6.Statistical analysis and genetic linkage map construction

    Chi-squared(χ2)tests were used to evaluate goodness-of-fit of observed and expected segregation ratios.The polymorphic SNP and STS markers were used to construct a genetic linkage map with the Map Draw 2.1 software[29].

    3.Results

    3.1.Genetic analyses of stripe rust resistances in Mengmai 58 and Huaiyang 1

    Jagger(Yr17),Mengmai 58,Huaiyang 1,and the F1plants were highly resistant(IT 0),whereas Nongda 399 and Taichung 29 were highly susceptible(IT 9)(Table 1).The data indicated that resistance in both crosses was conferred by single dominant genes,which were designated YrMM58 and YrHY1.

    3.2.BSR-Seq analysis

    The BSR-Seq approach was applied to map the stripe rust resistance genes YrMM58 and YrHY1.One hundred and fifty bp length mode RNA-Seq bulks of MM58R,MM58S,HY1R,and HY1S produced 40,488,082,40,562,867,52,941,318,and 40,869,720 raw reads pairs,respectively.Less than 1%of the raw reads pairs were filtered for each bulk after quality control.During read mapping,we found that 81%,72%,84%,and 85%of the filtered read pairs were uniquely mapped for bulks MM58R,MM58S,HY1R,and HY1S,respectively.Subsequent SNP calling identified 128,502 high-quality variants(SNPs and Indels)between bulks MM58R and MM58S,and 131,825 between bulks HY1R and HY1S.Finally,at the cut off of allele frequency difference(AFD)>0.8 and Fisher's Exact Test P-value<1e?10,19 SNPs were found to be associated with the YrMM58 resistance,and 24 SNPs were associated with YrHY1 resistance (Fig. 1). Twelve of the YrMM58-associated SNPs and 14 of the YrHY1-associated SNPs were located in 14.0 Mb and 15.9 Mb distal regions of chromosome 2AS,suggesting that YrMM58 and YrHY1 were located in that region.

    3.3.Candidate SNP validation and genetic mapping

    The YrMM58-and YrHY1-associated SNPs on 2AS were validated for polymorphisms between the parental lines as well as contrasting resistant and susceptible DNA bulks.Two SNP markers,WGGB191 and WGGB196 showed clear polymorphisms between the parental lines as well as the resistant and susceptible DNA bulks(Fig.2).SNP markers showing linkage with the rust resistance in 20 resistant and 20 susceptible F2:3families were then genotyped in the entire Nongda 399/Mengmai 58 and Nongda 399/Huangyang 1 F2:3families usingSanger sequencing to construct genetic linkage maps of stripe rust genes YrMM58 and YrHY1(Fig.3).Both YrMM58 and YrHY1 were located on the distal end of chromosome arm 2AS.

    Table 1–Stripe rust responses to PST race CYR34 of parents,F1and F2:3lines from crosses Nongda 399/Mengmai 58 and Nongda 399/Huaiyang 1.

    Fig.1–Distribution of candidate SNPs within wheat chromosomes.

    3.4.Comparative genomics analysis with Ae.tauschii and STS marker development

    The contig sequences of SNP markers WGGB191 and WGGB196 were used to search the Ae.tauschii SNP marker extended sequences database.WGGB191 and WGGB196 are orthologous to Ae.tauschii SNP markers AT2D1146 and AT2D1108,respectively.From the distal end of the chromosome to AT2D1108,there are 36 SNP markers(AT2D974 to AT2D1108)in the terminal region of Ae.tauschii chromosome arm 2DS.Low level synteny was observed for the corresponding genomic regions between Ae.tauschii and Brachypodium,rice and sorghum(Table 2).Therefore,only the Ae.tauschii sequence information was used for further comparative genomic analysis and marker development.

    The Ae.tauschii SNP marker(AT2D974 to AT2D1108)extended sequences were used to search the Chinese Spring IWGSC chromosome 2AS sequences (https://www.wheatgenome.org/)and Chinese Spring CS42 TGAC v1 WGS sequence assembly (https://wheatis.tgac.ac.uk/grassrootsportal/blast)to develop STS markers linked to the stripe rust resistance genes.Ten new polymorphic STS markers were developed and genotyped in the two F2:3populations to construct genetic linkage maps of YrMM58 and YrHY1(Table 3).Finally,YrMM58 and YrHY1 were located to the terminal region of wheat chromosome arm 2AS and were respectively 7.7 cM and 3.8 cM distal to STS marker WGGB148(Fig.3).

    Fig.2–Sanger sequencing profiles of SNP markers WGGB191 and WGGB196 in homozygous resistant(R),homozygous susceptible(S),and heterozygous F2:3families(H).

    Fig.3–Comparative genetic linkage maps of YrMM58,YrHY1,and other stripe rust genes on chromosome 2AS.(a)Genetic linkage map of YrMM58;(b)genetic linkage map of YrHY1;(c)Ae.tauschii 2DS SNP linkage map corresponding to the YrMM58 and YrHY1 genetic region;(d)integrated genetic linkage map of stripe rust resistance genes Yr17,Yr69,YrR61,Yr56,and YrSph on wheat chromosome 2AS.

    4.Discussion

    Genetic analyses indicated that a single dominant gene was responsible for the stripe rust resistances in wheat lines Mengmai 58 and Huaiyang 1.In combination with BSR-Seq and comparative genomics analysis,both stripe rust resistance genes YrMM58 and YrHY1 were mapped to the distal end of wheat chromosome 2AS.Five STS markers,WGGB148,WGGB152,WGGB159,WGB171,and WGGB176,closely linked to YrMM58 and YrHY1 generated the same amplification patterns in Mengmai 58,Huangyang 1,and Jagger(Fig.4).However,two STS markers,WGGB179 and WGGB186,further away from YrMM58 and YrHY1 than the above five markers showed different amplification patterns between Mengmai 58,Huangyang 1 and Jagger(Fig.4).We also tested Yr17-linked SSR markers Xgwm636 and Xgwm359[30],and SSR markersXbarc124,Xbarc212,Xgwm512,andXgwm372locatedon chromosome arm 2AS on Mengmai 58,Huangyang 1 and Jagger.The same amplification patterns were obtained for all SSRs in the three genotypes.These results suggested that Mengmai 58,Huangyang 1,and Jagger might contain the same sequences from WGGGB176 to the distal end of chromosome 2AS.Since VPM 1 and its derivatives have been widely used in wheat breeding programs in China in recent years,and VPM 1 carries Yr17 in a wheat-Aegilops ventricosa translocation[31],stripe rust resistance genes YrMM58 and YrHY1 are most likely Yr17.

    Table 2–Comparative genomics analysis among Ae.tauschii extended SNP marker sequences,Brachypodium,rice,sorghum genome sequences and new STS markers.

    Table 3–SNP and STS markers developed for mapping YrMM58 and YrHY1.

    The 12 SNP and STS markers in the YrMM58 and YrHY1 genetic linkage maps on wheat chromosome 2AS showed the same order as their 11 corresponding orthologous SNP markers on Ae.tauschii chromosome 2DS,indicating a high level micro-collinearity between the two subgenomes(Fig.3).WGGB148,the STS marker most closely linked to YrMM58 and YrHY1,was developed from a Chinese Spring chromosome 2AS contig orthologous to a SNP marker AT2D974 extended sequence.However,the genetic distances between WGGB148 and stripe rust resistance genes YrMM58 and YrHY1,as well as the physical end position of AT2D974 on the Ae.tauschii chromosome 2DS physical map[21]reveals that the VPM 1 segment(Yr17)in wheat is probably an extension to the corresponding Ae.tauschii 2DS.This is in agreement with the VPM 1 chromosome segment translocation derived from Ae.ventricosa.

    The efficiency and power of BSR-Seq was recently demonstrated in mapping plant genes.This technology provides not only the chromosome position of a target gene but also many associated SNPs for marker development[14].In the present study about 60%of the stripe rust resistance-associated SNPs were located in a 14.0–15.9 Mb distal region of chromosome 2AS(Fig.1).Two SNP markers WGGB191 and WGGB196 linked to YrMM58 and YrHY1 were then developed using the associated SNPs.

    We used comparative genomics analysis of Ae.tauschii to develop 10 new STS markers to construct high-density genetic maps of YrMM58 and YrHY1.Our results also showed a consistent gene order between corresponding genetic regions of wheat chromosome 2AS and Ae.tauschii chromosome 2DS,suggesting a high level of micro-collinearity between the two subgenomes.Similar results were also reported when mapping powdery mildew resistance gene MlHLT[32]and spot blotch resistance gene Sb3[20].Thus,comparative genomics analysis using the high-density SNP Ae.tauschii linkage map and genomic sequences[21,33]may be more effective than using Brachypodium,rice and sorghum genomic resources to develop markers for high-density genetic linkage map construction in wheat.Prospectively,the most recently released IWGSC Chinese Spring WGS assemblies (http://www.wheatgenome.org/)will be increasingly informative for fine mapping and map-based cloning in wheat.

    5.Conclusions

    Combining BSR-Seq with comparative genomics analyses,stripe rust genes in wheat lines Mengmai 58 and Huaiyang 1 were precisely and rapidly mapped on the distal end of chromosome 2AS.The markers developed in the current research provide useful information for marker-assisted selection of stripe rust resistance genes YrMM58 and YrHY1 which proved to be Yr17.

    Fig.4–PCR amplification patterns of STS markers in Mengmai 58,Huaiyang 1,Nongda 399,and Jagger(Yr17).

    This work was financially supported by the National Key Research and Development Program of China(2016YFD0101802).

    [1]C.R.Wellings,Global status of stripe rust:a review of historical and current threats,Euphytica 179(2011)129–141.

    [2]X.M.Chen,Epidemiology and control of stripe rust[Puccinia striiformis f.sp.tritici]on wheat,Can.J.Plant Pathol.27(2005)314–337.

    [3]Z.J.Pu,G.Y.Chen,Y.M.Wei,W.Y.Yang,Z.H.Yan,Y.L.Zheng,Identification and molecular tagging of a stripe rust resistance gene in wheat line P81,Plant Breed.129(2010)53–57.

    [4]R.A.McIntosh,Y.Yamazaki,J.Dubcovsky,J.Rogers,C.Morris,R.Appels,X.C.Xia,Catalogue of gene symbols for wheat,Proc.12th Int.Wheat Genet.Symp.Yokohama,Japan,2013.

    [5]R.A.McIntosh,J.Dubcovsky,J.Rogers,C.Morris,R.Appels,X.C.Xia,Catalogue of gene symbols for wheat:2013–2014 supplement,Komugi-wheat Genetic Resources Database,http://shigen.nig.ac.jp/wheat/komugi/genes/macgene/supplement 2013.pdf 2014.

    [6]R.A.McIntosh,J.Dubcovsky,J.Rogers,C.Morris,X.C.Xia,Catalogue of gene symbols for wheat:2017 supplement,Komugi-wheat Genetic Resources Database,http://shigen.nig.ac.jp/wheat/komugi/genes/macgene/supplement2017.pdf 2017.

    [7]H.S.Bariana,N.Parry,I.R.Barclay,R.Loughman,R.J.McLean,M.Shankar,R.E.Wilson,N.J.Willey,M.Francki,Identification and characterization of stripe rust resistance gene Yr34 in common wheat,Theor.Appl.Genet.112(2006)1143–1148.

    [8]W.Q.Chen,L.R.Wu,T.G.Liu,S.C.Xu,Race dynamics,diversity,and virulence evolution in Puccinia striiformis f.sp.tritici,the causal agent of wheat stripe rust in China from 2003 to 2007,Plant Dis.93(2009)1093–1101.

    [9]D.J.Han,Q.L.Wang,X.M.Chen,Q.D.Zeng,J.H.Wu,W.B.Xue,G.M.Zhan,L.L.Huang,Z.S.Kang,Emerging Yr26-virulent races of Puccinia striiformis f.tritici are threatening wheat production in the Sichuan Basin,China,Plant Dis.99(2015)754–760.

    [10]R.W.Michelmore,I.Paran,R.V.Kesseli,Identification of markers linked to disease-resistance genes by bulked segregant analysis:a rapid method to detect markers in specific genomic regions by using segregating populations,Proc.Natl.Acad.Sci.U.S.A.88(1991)9828–9832.

    [11]I.Chepelev,G.Wei,Q.Tang,K.Zhao,Detection of single nucleotide variations in expressed exons of the human genome using RNA-Seq,Nucleic Acids Res.37(2009),e106..

    [12]S.Z.Liu,C.T.Yeh,H.M.Tang,D.Nettleton,P.S.Schnable,Gene mapping via bulked segregant RNA-Seq(BSR-Seq),PLoS One 7(2012),e36406..

    [13]S.Pearce,F.Tabbita,D.Cantu,V.Buffalo,R.Avni,H.Vazquez-Gross,R.Zhao,C.J.Conley,A.Distelfeld,J.Dubcovksy,Regulation of Zn and Fe transporters by the GPC1 gene during early wheat monocarpic senescence,BMC Plant Biol.14(2014)368.

    [14]R.H.Ramirez Gonzalez,V.Segovia,N.Bird,P.Fenwick,S.Holdgate,S.Berry,P.Jack,M.Caccamo,C.Uauy,RNA-Seq bulked segregant analysis enables the identification of highresolution genetic markers for breeding in hexaploid wheat,Plant Biotechnol.J.13(2015)613–624.

    [15]L.Li,D.L.Li,S.Z.Liu,X.L.Ma,C.R.Dietrich,H.C.Hu,G.S.Zhang,Z.Y.Liu,J.Zheng,G.Y.Wang,P.S.Schnable,The maize glossy13 gene,cloned via BSR-Seq and Seq-Walking encodes a putative ABC transporter required for the normal accumulation of epicuticular waxes,PLoS One 8(2013),e82333..

    [16]W.Spielmeyer,R.P.Singh,H.McFadden,C.R.Wellings,J.Huerta-Espino,X.Kong,R.Appels,E.S.Lagudah,Fine scale genetic and physical mapping using interstitial deletion mutants of Lr34/Yr18:a disease resistance locus effective against multiple pathogens in wheat,Theor.Appl.Genet.116(2008)481–490.

    [17]D.L.Fu,C.Uauy,A.Distelfeld,A.Blechl,L.Epstein,X.M.Chen,H.Sela,T.Fahima,J.Dubcovsky,A kinase-START gene confers temperature-dependent resistance to wheat stripe rust,Science 323(2009)1357–1360.

    [18]S.G.Krattinger,E.S.Lagudah,W.Spielmeyer,R.P.Singh,J.Huerta-Espino,H.McFadden,E.Bossolini,L.L.Selter,B.Keller,A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat,Science 323(2009)1360–1363.

    [19]X.J.Zhang,D.J.Han,Q.D.Zeng,Y.H.Duan,F.P.Yuan,J.D.Shi,Q.L.Wang,J.H.Wu,L.L.Huang,Z.S.Kang,Fine mapping of wheat stripe rust resistance gene Yr26 based on collinearity of wheat with Brachypodium distachyon and rice,PLoS One 8(2013),e57885..

    [20]P.Lu,Y.Liang,D.L.Li,Z.Z.Wang,W.B.Li,G.X.Wang,Y.Wang,S.H.Zhou,Q.H.Wu,J.Z.Xie,D.Y.Zhang,Y.X.Chen,M.M.Li,Y.Zhang,Q.X.Sun,C.G.Han,Z.Y.Liu,Fine genetic mapping of spot blotch resistance gene Sb3 in wheat(Triticum aestivum),Theor.Appl.Genet.129(2016)577–589.

    [21]M.C.Luo,Y.Q.Gu,F.M.You,K.R.Deal,Y.Q.Ma,Y.Q.Hu,N.X.Huo,Y.Wang,J.R.Wang,S.Y.Chen,C.M.Jorgensen,Y.Zhang,P.E.McGuire,S.Pasternak,J.C.Stein,D.Ware,M.Kramer,W.R.McCombie,S.F.Kianian,M.M.Martis,K.F.X.Mayer,S.K.Sehgal,W.L.Li,B.S.Gill,M.W.Bevan,H.Simkova,J.Dolezel,W.N.Song,G.R.Lazo,O.D.Anderson,J.Dvorak,A 4-gigabase physical map unlocks the structure and evolution of the complex genome of Aegilops tauschii,the wheat D-genome progenitor,Proc.Natl.Acad.Sci.U.S.A.110(2013)7940–7945.

    [22]X.M.Chen,R.F.Line,Gene action in wheat cultivars for durable,high-temperature,adult-plant resistance and interaction with race-specific,seedling resistance to Puccinia striiformis,Phytopathology 85(1995)567–572.

    [23]R.F.Line,A.Qayoum,Virulence,aggressiveness,evolution and distribution of races of Puccinia striiformis(the cause of stripe rust of wheat)in North America,1968–87,Agriculture Research Service,United States Department of Agriculture,Tech.Bull.1788(1992).

    [24]A.M.Bolger,M.Lohse,B.Usadel,Trimmomatic:a flexible trimmer for Illumina sequence data,Bioinformatics 30(2014)2114–2120.

    [25]A.Dobin,C.A.Davis,F.Schlesinger,J.Drenkow,C.Zaleski,S.Jha,P.Batut,M.Chaisson,T.R.Gingeras,STAR:ultrafast universal RNA-seq aligner,Bioinformatics 29(2013)15–21.

    [26]A.McKenna,M.Hanna,E.Banks,A.Sivachenko,K.Cibulskis,A.Kernytsky,K.Garimella,D.Altshuler,S.Gabriel,M.Daly,M.A.DePristo,The Genome Analysis Toolkit:a MapReduce framework for analyzing next-generation DNA sequencing data,Genome Res.20(2010)1297–1303.

    [27]M.A.Saghai-Maroof,K.M.Soliman,R.A.Jorgensen,R.W.Allard,Ribosomal DNA spacer-length polymorphisms in barley:Mendelian inheritance,chromosomal location,and population dynamics,Proc.Natl.Acad.Sci.U.S.A.81(1984)8014–8018.

    [28]R.Brenchley,M.Spannagl,M.Pfeifer,G.L.A.Barker,R.D'Amore,A.M.Allen,N.McKenzie,M.Kramer,A.Kerhornou,D.Bolser,S.Kay,D.Waite,M.Trick,I.Bancroft,Y.Gu,N.X.Huo,M.C.Luo,S.Sehgal,B.Gill,S.Kianian,O.Anderson,P.Kersey,J.Dvorak,W.R.McCombie,A.Hall,K.F.X.Mayer,K.J.Edwards,M.W.Bevan,N.Hall,Analysis of the bread wheat genome using whole-genome shotgun sequencing,Nature 491(2012)705–710.

    [29]R.H.Liu,J.L.Meng,MapDraw:a microsoft excel macro for drawing genetic linkage maps based on given genetic linkage data,Hereditas 25(2003)317–321.

    [30]J.Q.Jia,G.R.Li,C.Liu,M.P.Lei,Z.J.Yang,Characterization of wheat yellow rust resistance gene Yr17 using EST-SSR and rice syntenic region,Cereal Res.Commun.39(2011)88–99.

    [31]S.Seah,H.Bariana,J.Jahier,K.Sivasithamparam,E.S.Lagudah,The introgressed segment carrying rust resistance genes Yr17,Lr37 and Sr38 in wheat can be assayed by a cloned disease resistance gene-like sequence,Theor.Appl.Genet.102(2001)600–605.

    [32]Z.Z.Wang,H.W.Li,D.Y.Zhang,L.Guo,J.J.Chen,Y.X.Chen,Q.H.Wu,J.Z.Xie,Y.Zhang,Q.X.Sun,J.Dvorak,M.C.Luo,Z.Y.Liu,Genetic and physical mapping of powdery mildew resistance gene MlHLT in Chinese wheat landrace Hulutou,Theor.Appl.Genet.128(2015)365–373.

    [33]J.Z.Jia,S.C.Zhao,X.Y.Kong,Y.R.Li,G.Y.Zhao,W.M.He,R.Appels,M.Pfeifer,Y.Tao,X.Y.Zhang,R.L.Jing,C.Zhang,Y.Z.Ma,L.F.Gao,C.Gao,M.Spannagl,K.F.X.Mayer,D.Li,S.K.Pan,F.Y.Zheng,Q.Hu,X.C.Xia,J.W.Li,Q.S.Liang,J.Chen,T.Wicker,C.Y.Gou,H.H.Kuang,G.Y.He,Y.D.Luo,B.Keller,Q.J.Xia,P.Lu,J.Y.Wang,H.F.Zou,R.Z.Zhang,J.Y.Xu,J.L.Gao,C.Middleton,Z.W.Quan,G.M.Liu,J.Wang,International Wheat Genome Sequencing Consortium,H.M.Yang,X.Liu,Z.H.He,L.Mao,J.Wang,Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation,Nature 496(2013)91–95.

    在线亚洲精品国产二区图片欧美| 日韩av免费高清视频| 欧美xxⅹ黑人| 亚洲精品美女久久久久99蜜臀 | 国产乱人偷精品视频| 精品卡一卡二卡四卡免费| 黑人高潮一二区| av在线观看视频网站免费| 精品国产露脸久久av麻豆| 久热这里只有精品99| 婷婷色av中文字幕| 午夜91福利影院| 大码成人一级视频| 久久久久久久久久久久大奶| 国产精品.久久久| a级片在线免费高清观看视频| 国产精品久久久av美女十八| 久久久久久人妻| 久久久久久人妻| 妹子高潮喷水视频| 99久国产av精品国产电影| 日日爽夜夜爽网站| 免费大片18禁| 美女内射精品一级片tv| 在线观看国产h片| 国产精品成人在线| 国产高清不卡午夜福利| 日韩电影二区| 久久久久久久大尺度免费视频| 好男人视频免费观看在线| 搡老乐熟女国产| 少妇的丰满在线观看| 波多野结衣一区麻豆| 大话2 男鬼变身卡| 国产在线视频一区二区| 亚洲丝袜综合中文字幕| 国产一级毛片在线| 国产精品久久久久久精品电影小说| 99九九在线精品视频| 老司机亚洲免费影院| 亚洲欧美清纯卡通| 美女国产视频在线观看| av免费在线看不卡| 国产综合精华液| 国产精品久久久久久精品电影小说| 丁香六月天网| 欧美日本中文国产一区发布| av.在线天堂| 男人操女人黄网站| 九色成人免费人妻av| 美女福利国产在线| 欧美3d第一页| 考比视频在线观看| 天天操日日干夜夜撸| 亚洲欧美一区二区三区黑人 | 九九在线视频观看精品| 精品人妻偷拍中文字幕| 亚洲欧美一区二区三区黑人 | 欧美日韩视频精品一区| 九草在线视频观看| 午夜福利视频在线观看免费| 欧美3d第一页| av不卡在线播放| 成人无遮挡网站| 久久精品久久精品一区二区三区| 免费久久久久久久精品成人欧美视频 | 日韩制服丝袜自拍偷拍| 在线免费观看不下载黄p国产| 一区二区三区四区激情视频| 大片电影免费在线观看免费| 一级a做视频免费观看| 久久这里只有精品19| 91aial.com中文字幕在线观看| 亚洲一码二码三码区别大吗| 久久久国产精品麻豆| 国产精品.久久久| 国产成人一区二区在线| 亚洲三级黄色毛片| 丁香六月天网| 高清视频免费观看一区二区| 亚洲成人av在线免费| 日韩av在线免费看完整版不卡| 日韩中字成人| 九色成人免费人妻av| 亚洲精品乱久久久久久| 国产精品无大码| 国产免费一级a男人的天堂| 香蕉丝袜av| 日韩,欧美,国产一区二区三区| 午夜免费观看性视频| 成年av动漫网址| 欧美3d第一页| a级毛片黄视频| 久久精品国产a三级三级三级| 欧美人与性动交α欧美软件 | 伊人久久国产一区二区| 99热6这里只有精品| 热99国产精品久久久久久7| 免费观看无遮挡的男女| 制服人妻中文乱码| 一边亲一边摸免费视频| 中国三级夫妇交换| 亚洲美女视频黄频| 中文字幕人妻熟女乱码| 黄片无遮挡物在线观看| 亚洲激情五月婷婷啪啪| 久久女婷五月综合色啪小说| 免费看光身美女| 亚洲人成77777在线视频| 久久久久久久久久成人| 国产成人一区二区在线| 国产欧美亚洲国产| 99re6热这里在线精品视频| 午夜福利乱码中文字幕| 精品人妻熟女毛片av久久网站| 久久久久精品人妻al黑| 一区二区日韩欧美中文字幕 | 久久久欧美国产精品| 久久国产精品男人的天堂亚洲 | 中文欧美无线码| 国产精品 国内视频| 免费女性裸体啪啪无遮挡网站| 成人毛片60女人毛片免费| av网站免费在线观看视频| 交换朋友夫妻互换小说| 精品福利永久在线观看| a级毛片在线看网站| 国产精品国产三级专区第一集| 国产精品国产三级专区第一集| 久久久亚洲精品成人影院| 中文字幕人妻丝袜制服| 久久人妻熟女aⅴ| 肉色欧美久久久久久久蜜桃| 成人免费观看视频高清| 国产在线免费精品| av有码第一页| 夫妻性生交免费视频一级片| 中文字幕另类日韩欧美亚洲嫩草| 中文字幕另类日韩欧美亚洲嫩草| 国产av码专区亚洲av| 亚洲成人av在线免费| 国产成人精品久久久久久| 欧美精品人与动牲交sv欧美| 国产极品天堂在线| 国产国语露脸激情在线看| 国产精品人妻久久久影院| 国产一区亚洲一区在线观看| 色哟哟·www| 国产精品女同一区二区软件| 久久99热这里只频精品6学生| 啦啦啦中文免费视频观看日本| 咕卡用的链子| 99久久综合免费| 精品一区二区三区视频在线| 久久久精品区二区三区| 久久人人97超碰香蕉20202| 亚洲欧美色中文字幕在线| 赤兔流量卡办理| 欧美激情国产日韩精品一区| 女人久久www免费人成看片| 国产免费现黄频在线看| 99国产综合亚洲精品| 你懂的网址亚洲精品在线观看| 成人亚洲欧美一区二区av| 欧美日韩一区二区视频在线观看视频在线| 成人亚洲欧美一区二区av| 国产免费一级a男人的天堂| 只有这里有精品99| av片东京热男人的天堂| 欧美国产精品一级二级三级| 9色porny在线观看| 色视频在线一区二区三区| 91在线精品国自产拍蜜月| 亚洲欧美清纯卡通| 久久人人爽人人片av| 中文字幕免费在线视频6| 国产一区有黄有色的免费视频| 日韩一区二区视频免费看| 欧美变态另类bdsm刘玥| 在线精品无人区一区二区三| 色94色欧美一区二区| 国产福利在线免费观看视频| 大香蕉久久成人网| 桃花免费在线播放| 国产片内射在线| 久久青草综合色| 大片免费播放器 马上看| www日本在线高清视频| 日韩一区二区三区影片| 天天躁夜夜躁狠狠躁躁| 国产高清三级在线| 少妇的逼水好多| 欧美精品av麻豆av| 国产精品欧美亚洲77777| 成人影院久久| 精品少妇内射三级| 久久精品夜色国产| 黄色 视频免费看| tube8黄色片| 蜜桃在线观看..| 看十八女毛片水多多多| 香蕉丝袜av| 亚洲精品视频女| 只有这里有精品99| 国产精品秋霞免费鲁丝片| 国产精品人妻久久久影院| 国产亚洲欧美精品永久| 成人影院久久| 美女福利国产在线| 国产黄色视频一区二区在线观看| 妹子高潮喷水视频| 国产精品麻豆人妻色哟哟久久| 午夜免费男女啪啪视频观看| 午夜福利在线观看免费完整高清在| 满18在线观看网站| 一级片免费观看大全| 91aial.com中文字幕在线观看| 亚洲国产精品专区欧美| 国产国拍精品亚洲av在线观看| 校园人妻丝袜中文字幕| 亚洲四区av| a级毛片黄视频| 中文字幕亚洲精品专区| 欧美97在线视频| 亚洲国产精品999| 中文字幕人妻丝袜制服| 这个男人来自地球电影免费观看 | 久久人人爽av亚洲精品天堂| 美女福利国产在线| 免费日韩欧美在线观看| 久久精品久久久久久久性| 亚洲av在线观看美女高潮| 蜜桃在线观看..| 精品福利永久在线观看| 99热国产这里只有精品6| 欧美精品av麻豆av| 老司机亚洲免费影院| 亚洲国产欧美日韩在线播放| 久久婷婷青草| 国产男女超爽视频在线观看| 在线观看免费日韩欧美大片| 少妇的丰满在线观看| 久久国产亚洲av麻豆专区| 天堂俺去俺来也www色官网| 国产淫语在线视频| 99国产综合亚洲精品| 国产一区二区在线观看日韩| 丰满乱子伦码专区| 热99国产精品久久久久久7| 天天躁夜夜躁狠狠躁躁| 18+在线观看网站| 亚洲av日韩在线播放| 亚洲av.av天堂| 久久国产亚洲av麻豆专区| 一级黄片播放器| 国产精品久久久av美女十八| 大香蕉久久网| 免费人妻精品一区二区三区视频| 一边亲一边摸免费视频| videossex国产| 飞空精品影院首页| kizo精华| 男女下面插进去视频免费观看 | 一级黄片播放器| 成年女人在线观看亚洲视频| 国产精品.久久久| 欧美日韩成人在线一区二区| 中文精品一卡2卡3卡4更新| 啦啦啦视频在线资源免费观看| 欧美xxxx性猛交bbbb| 乱码一卡2卡4卡精品| www.av在线官网国产| 日产精品乱码卡一卡2卡三| 日韩中文字幕视频在线看片| 啦啦啦视频在线资源免费观看| 97人妻天天添夜夜摸| 丰满饥渴人妻一区二区三| 秋霞在线观看毛片| 亚洲欧美中文字幕日韩二区| 热re99久久国产66热| 校园人妻丝袜中文字幕| 伦理电影免费视频| 亚洲av.av天堂| 国产高清国产精品国产三级| 国产精品一区二区在线不卡| 午夜91福利影院| 18禁动态无遮挡网站| 久久久欧美国产精品| 国产高清不卡午夜福利| 哪个播放器可以免费观看大片| 国产国拍精品亚洲av在线观看| 国产在视频线精品| 纯流量卡能插随身wifi吗| 国产午夜精品一二区理论片| 永久网站在线| 精品一区二区免费观看| 欧美日韩视频高清一区二区三区二| 亚洲四区av| av线在线观看网站| 女性生殖器流出的白浆| 欧美成人精品欧美一级黄| 国产精品麻豆人妻色哟哟久久| 国产成人精品福利久久| 女人精品久久久久毛片| 99热全是精品| 成人亚洲精品一区在线观看| 少妇的逼好多水| 飞空精品影院首页| 久久av网站| 纵有疾风起免费观看全集完整版| 国产一区二区在线观看日韩| 成人漫画全彩无遮挡| 国产成人aa在线观看| 久久精品熟女亚洲av麻豆精品| 90打野战视频偷拍视频| 国产精品国产三级专区第一集| 一级片'在线观看视频| 婷婷色综合www| 九九爱精品视频在线观看| 在线精品无人区一区二区三| 一级,二级,三级黄色视频| www.熟女人妻精品国产 | 在线天堂中文资源库| 欧美日韩视频精品一区| 丰满迷人的少妇在线观看| 国产亚洲一区二区精品| 亚洲国产精品999| 蜜臀久久99精品久久宅男| 国产男女内射视频| 丝袜脚勾引网站| 国产又色又爽无遮挡免| 日韩精品有码人妻一区| 午夜免费鲁丝| 亚洲五月色婷婷综合| 精品一区二区三卡| 男的添女的下面高潮视频| 欧美精品国产亚洲| 久久国内精品自在自线图片| 精品亚洲成a人片在线观看| 99国产综合亚洲精品| 日韩大片免费观看网站| 婷婷色综合www| 久久久久久久亚洲中文字幕| 免费女性裸体啪啪无遮挡网站| 大码成人一级视频| 午夜老司机福利剧场| 亚洲伊人色综图| 亚洲成色77777| 日韩不卡一区二区三区视频在线| 国产免费视频播放在线视频| 精品99又大又爽又粗少妇毛片| 夫妻性生交免费视频一级片| 成人国产av品久久久| 国产精品人妻久久久影院| 中文字幕精品免费在线观看视频 | 美女主播在线视频| 欧美日韩视频高清一区二区三区二| 欧美日韩亚洲高清精品| 国产成人精品在线电影| 99久久中文字幕三级久久日本| 2021少妇久久久久久久久久久| 精品国产一区二区三区四区第35| a级毛片在线看网站| 欧美少妇被猛烈插入视频| 99热全是精品| 国产探花极品一区二区| 99热国产这里只有精品6| 18禁在线无遮挡免费观看视频| 国产乱人偷精品视频| 国产av码专区亚洲av| 日韩av免费高清视频| 少妇熟女欧美另类| 久久亚洲国产成人精品v| 午夜av观看不卡| 卡戴珊不雅视频在线播放| 丝瓜视频免费看黄片| 免费高清在线观看日韩| 爱豆传媒免费全集在线观看| 国产精品嫩草影院av在线观看| 赤兔流量卡办理| 黄片无遮挡物在线观看| 免费观看无遮挡的男女| 老女人水多毛片| 国产福利在线免费观看视频| 夫妻午夜视频| 亚洲成人一二三区av| 十八禁网站网址无遮挡| 免费在线观看黄色视频的| 国产1区2区3区精品| 国产色爽女视频免费观看| 肉色欧美久久久久久久蜜桃| 日韩中文字幕视频在线看片| 9热在线视频观看99| 热99久久久久精品小说推荐| 亚洲av国产av综合av卡| 国产综合精华液| 黑人巨大精品欧美一区二区蜜桃 | 狂野欧美激情性xxxx在线观看| 国产精品一二三区在线看| 另类亚洲欧美激情| 2022亚洲国产成人精品| 黄色怎么调成土黄色| 欧美日韩亚洲高清精品| 免费av不卡在线播放| 亚洲国产欧美在线一区| 99热全是精品| 尾随美女入室| 中文字幕人妻熟女乱码| 国产1区2区3区精品| 99久久人妻综合| 制服丝袜香蕉在线| 伦理电影免费视频| 国产无遮挡羞羞视频在线观看| 国产欧美亚洲国产| 亚洲国产精品专区欧美| 老司机亚洲免费影院| 97超碰精品成人国产| 日本午夜av视频| 丰满少妇做爰视频| 精品国产一区二区三区四区第35| 日产精品乱码卡一卡2卡三| 看免费av毛片| 久久精品国产鲁丝片午夜精品| 99热6这里只有精品| 人成视频在线观看免费观看| 在线观看国产h片| 亚洲国产看品久久| 欧美亚洲 丝袜 人妻 在线| 久久99热这里只频精品6学生| 韩国精品一区二区三区 | 日日摸夜夜添夜夜爱| 乱码一卡2卡4卡精品| 大香蕉久久成人网| 婷婷色综合www| 十八禁网站网址无遮挡| 一级片'在线观看视频| 国产精品久久久久久精品古装| 国产有黄有色有爽视频| 成人18禁高潮啪啪吃奶动态图| 91成人精品电影| 91aial.com中文字幕在线观看| av国产久精品久网站免费入址| 在线观看一区二区三区激情| 两性夫妻黄色片 | 中文字幕亚洲精品专区| 久久人妻熟女aⅴ| 青春草亚洲视频在线观看| 新久久久久国产一级毛片| 午夜av观看不卡| 中文乱码字字幕精品一区二区三区| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 午夜免费男女啪啪视频观看| 最新中文字幕久久久久| 精品久久蜜臀av无| 日本av手机在线免费观看| 亚洲国产毛片av蜜桃av| 国产 一区精品| 国产片特级美女逼逼视频| 亚洲精品美女久久av网站| 又粗又硬又长又爽又黄的视频| 婷婷色av中文字幕| 寂寞人妻少妇视频99o| 久久国产亚洲av麻豆专区| 久久这里有精品视频免费| 日本vs欧美在线观看视频| 欧美xxxx性猛交bbbb| 免费av不卡在线播放| 久久久久人妻精品一区果冻| 在线观看人妻少妇| 国产精品一国产av| 在现免费观看毛片| 日韩熟女老妇一区二区性免费视频| 欧美少妇被猛烈插入视频| 91成人精品电影| 一区在线观看完整版| 国产 精品1| 午夜福利在线观看免费完整高清在| 久久97久久精品| 另类亚洲欧美激情| 国产一区亚洲一区在线观看| 如何舔出高潮| 母亲3免费完整高清在线观看 | 午夜av观看不卡| 久久久久网色| 人人妻人人澡人人爽人人夜夜| 国产精品一区二区在线不卡| 久久狼人影院| 色婷婷av一区二区三区视频| 麻豆精品久久久久久蜜桃| 制服丝袜香蕉在线| 好男人视频免费观看在线| 国产毛片在线视频| 国产男人的电影天堂91| 成年av动漫网址| 国产精品国产三级专区第一集| 五月天丁香电影| 波野结衣二区三区在线| 黄色怎么调成土黄色| av视频免费观看在线观看| 亚洲精品乱久久久久久| 在线亚洲精品国产二区图片欧美| 91午夜精品亚洲一区二区三区| 99久久精品国产国产毛片| 考比视频在线观看| 国产一区亚洲一区在线观看| 久久久久久人妻| 国产精品无大码| 国产日韩欧美视频二区| 99精国产麻豆久久婷婷| 视频中文字幕在线观看| 日韩电影二区| 一本—道久久a久久精品蜜桃钙片| 成年av动漫网址| 观看av在线不卡| 在线观看三级黄色| 国产在视频线精品| 99re6热这里在线精品视频| 中国三级夫妇交换| 国产深夜福利视频在线观看| 成人黄色视频免费在线看| 免费黄色在线免费观看| 天堂中文最新版在线下载| 久久韩国三级中文字幕| 国产成人一区二区在线| 91久久精品国产一区二区三区| 精品一区二区三卡| www.色视频.com| 免费看av在线观看网站| 国产极品天堂在线| 欧美精品亚洲一区二区| 天天操日日干夜夜撸| 国产精品嫩草影院av在线观看| 熟女电影av网| 日日摸夜夜添夜夜爱| 精品少妇黑人巨大在线播放| 制服人妻中文乱码| 亚洲丝袜综合中文字幕| 成人国语在线视频| 午夜精品国产一区二区电影| 制服诱惑二区| 国产日韩欧美视频二区| 精品熟女少妇av免费看| av卡一久久| 国产一区二区激情短视频 | 日韩欧美一区视频在线观看| 国产熟女午夜一区二区三区| 亚洲欧美日韩另类电影网站| 精品人妻偷拍中文字幕| 高清欧美精品videossex| 日韩熟女老妇一区二区性免费视频| 国产精品女同一区二区软件| 欧美变态另类bdsm刘玥| 大片电影免费在线观看免费| 久久久a久久爽久久v久久| 精品国产乱码久久久久久小说| 日韩一区二区三区影片| 亚洲激情五月婷婷啪啪| 最近2019中文字幕mv第一页| 在线看a的网站| 老司机亚洲免费影院| 中文字幕另类日韩欧美亚洲嫩草| 国精品久久久久久国模美| 久久久国产一区二区| 亚洲国产成人一精品久久久| 欧美人与性动交α欧美精品济南到 | 熟妇人妻不卡中文字幕| 国产熟女午夜一区二区三区| 啦啦啦啦在线视频资源| 2022亚洲国产成人精品| 最近2019中文字幕mv第一页| 天天躁夜夜躁狠狠久久av| 下体分泌物呈黄色| 精品福利永久在线观看| 下体分泌物呈黄色| 22中文网久久字幕| 欧美日韩av久久| 男女下面插进去视频免费观看 | 久久久久久久久久久免费av| 黄色毛片三级朝国网站| 黄色一级大片看看| 天堂8中文在线网| 人妻一区二区av| 国产综合精华液| 99国产精品免费福利视频| 亚洲av电影在线观看一区二区三区| 熟女av电影| 丰满迷人的少妇在线观看| 国产成人午夜福利电影在线观看| 97在线视频观看| 赤兔流量卡办理| 久久影院123| 精品人妻熟女毛片av久久网站| 黄片播放在线免费| 免费看光身美女| 国产成人免费无遮挡视频| 免费av不卡在线播放| 最后的刺客免费高清国语| 天堂中文最新版在线下载| 男人爽女人下面视频在线观看| 男的添女的下面高潮视频| 欧美xxxx性猛交bbbb| freevideosex欧美| 婷婷成人精品国产| 久久这里只有精品19| 涩涩av久久男人的天堂| 97在线视频观看| 人人妻人人爽人人添夜夜欢视频| 啦啦啦中文免费视频观看日本| 久久精品人人爽人人爽视色| 日韩欧美精品免费久久| 国产精品久久久久久久电影| 国产片特级美女逼逼视频| 成人毛片a级毛片在线播放| 九色亚洲精品在线播放| 国产精品无大码|