• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Wheat breeding in the hometown of Chinese Spring

    2018-03-04 18:22:12*
    The Crop Journal 2018年1期

    *

    Triticeae Research Institute,Chengdu Campus of Sichuan Agricultural University,Wenjiang,611130,Sichuan,China

    1.Introduction

    Bread wheat(Triticum aestivum)is an allopolypoid species derived from two widely separated(in time)crosses:the first,which occurred about 0.5 million years ago,generated the AB tetraploid wild emmer(T.dicoccoides),and the second,occurring about 10,000 years ago,combined a domesticated form of emmer with the diploid goat grass D genome donor Aegilops tauschii to form the extant ABD hexaploid[1–3].Despite its relatively recent origin,bread wheat is now one of the world's most important cereals,providing>20%of the calorific energy consumed by humans(http://www.fao.org/faostat).It arrived in north-western China from central Asia about 4500 years ago[4],and from there gradually spread across much of the country[5–7].

    Chinese Spring(CS)is thought to be a Sichuan landrace.The wide application of this variety and its derived genetic stocks has greatly advanced wheat genetics,including the recent achievement of chromosome-by-chromosome genome sequencing of bread wheat.Sichuan province,located in southwestern China,experiences relatively low photosynthetic radiation,as well as high levels of humidity and temperature at the terminal growth stages of the wheat crop.Wheat landraces from Sichuan are collectively known as the Sichuan white wheat complex group,and they are characterized by the formation of multifloret spikelets and rounded glumes[8],and show a high level of crossability with cereal rye[9,10].The application of directed improvement through breeding and selection in Sichuan has a history of over 70 years;the introduction of exotic germplasm has resulted in a declining contribution of Sichuan white to current commercial varieties. This review aims to highlight major features of the genetic improvements made to Sichuan wheat.While much of this improvement relates to the replacement of alleles in the wheat genome proper,there has also been a substantial impact of non-wheat germ plasm,in the form of the two Robertsonian translocations,1BL.1RS[11,12]and 6AL.6VS[13,14].The intention is not to attempt a comprehensive review of the history of wheat breeding in Sichuan but rather to highlight the genomic changes that occurred in the shift from local land races to modern varieties.

    2.The variety CS

    2.1.CS was a selection from a Sichuan white landrace

    CS is familiar to the international wheat genetics community as it was used to derive a comprehensive set of aneuploids representing all chromosomes and a range of derived cytogenetic stocks and intervarietal substitution lines.Yen et al.[8]were unable to distinguish CS from the Sichuan white landrace Cheng-du-guang-tou(CDGT)inamorphology-,physiology-,and cytogenetics-based comparison.The inferred close genetic relatedness between CS and CDGT was borne out by a genetic similarity analysis based on RFLP profiling[15].The implication was that the geographical origin of CS was the region surrounding the city of Chengdu.

    2.2.The contribution of CS to wheat cytogenetics

    According to Sears et al.[16]CS(initially referred to as‘Chinese White')was taken from China to the UK by a missionary.Its ready crossability with cereal rye,reported by Backhouse[17],distinguished it from most European germplasm.The discovery of monosomic and trisomic plants among the offspring of two haploid progeny of a CS×cereal rye cross was the basis of the extensive series of aneuploids developed in a CS background[18].This led naturally to the choice of CS as the target for induced mutagenesis,focusing inter alia on the genes that prevented homoeologous chromosome paring[19].Over the years,the CS-based aneuploidy sets were widely exploited for analyzing the mode of inheritance of both qualitative and quantitative traits and for transferring genes into wheat from its distant relatives.The CS aneuploids have retained their relevance to the present time in that they have been instrumental in the ongoing effort to acquire a chromosome-by-chromosome genome sequence of bread wheat(https://wheat-urgi.versailles.inra.fr/).Once established,the CS genome sequence will represent a scaffold around which the sequences of other wheat varieties can be conveniently acquired[20].

    2.3.CSprovidedthemeanstodevelopchromosome engineering

    The use of CS and its aneuploid and mutant derivatives for the purpose of alien introgression has,over the years,resulted in the development of a substantial number of pre-breeding lines.The impact on wheat improvement of most of these materials has been low,in part because the genetic background of CS is not well adapted outside its area of origin in Sichuan.In the local environment,CS harbors a number of breeder-relevant traits,including tolerance to moisture and nutritional stress,a high potential for tillering,the production of as many as six florets per spikelet,of 21–24 spikelets per ear on the leading tiller and a high level of floret fertility[21].It also,however,suffers from a number of defects,namely its late maturity,small grain size,tendency to lodge and formation of geniculate culms(the latter results in a nonuniform height of ears at maturity,Fig.1).Removing these defects by conventional breeding has not been straight-forward.

    3.The landrace CDGT

    3.1.The use of CDGT in wheat improvement in Sichuan

    CDGT has been the most heavily used landrace in the breeding of current Sichuan varieties.It features in the pedigree of 29 commercially released varieties[7].One of these varieties is Wuyi-mai(CDGT/Ardito//Fawn/Florence),released in 1951,which was used as a parent in the breeding of 27 commercially released varieties[7,22].A theoretical 25%of the Wuyi-mai genome was inherited from CDGT(Fig.2).The pedigree of Fan 6,a variety released in 1969,suggests that it has retained~10%of the CDGT genome(Fig.2).The development of Fan 6 has been recognized as a milestone for wheat breeding in Sichuan and surrounding provinces[23].Some 29 commercially released varieties include Fan 6 in their pedigree[22,24].According to Yen[25],the successful breeding of Fan 6 was achieved by combining “convergence crossing”with selection for dominant traits.Its pedigree comprises eight crosses,based on seven parents,made between 1960 and 1964[26].Each of the seven parents was selected on the basis of harboring a specific target trait(s).The crossing scheme resembles the recently described“multiparent advanced generation inter-cross”(MAGIC)design[27].The major problem encountered in the scheme is the choice of selection criteria for the hybrid intermediaries.The approach taken was to base selection purely on the expression of dominant traits,which resulted in the stacking of over ten traits in a relatively short period of selection in rather small populations[25].

    Due to hexaploidy the majority of common wheat genes are present in triplicate(one per homeolog).Although seldom 100% identical with respectto codingsequence,these homeoalleles typically share>97%homology with one another[28],with the result that a recessive allele at one(or even two)of the homeoloci is typically masked by the presence of a dominant allele present at one(or both)of the other homeoloci[29].The consequence is that recessive alleles become fixed at a relatively low frequency,so that the outcome of breeding is primarily the selection of dominant gain-of-function alleles[30].

    3.2.The continuing utilization of exotic parents post-Fan 6

    Fan 6 proved to be a very productive parent in breeding programs based in the south western part of China:along with its derivatives,this variety has dominated wheat production in Sichuan since the late 1970s[24].The variety Mianyang 11,which features Fan 6 in its pedigree,was released in 1976,becoming locally the most widely grown variety;it covered about 1.5 Mha in 1984[23].An analysis of commercially grown varieties released in Sichuan between the years 1984 to 2016 has shown that the grain yield achieved by varieties released from 1984 to 1990(around 4.7 t ha?1)was similar to that achieved by varieties released between 1991 and 2000,even though the more recently bred materials produced larger grains(Fig.3).A later trial using a subset of the varietal set was able to confirm this conclusion[23].A reason for the yield stasis between 1984 and 2000 may be the intensive use of Fan 6 as a crossing parent.However,during the 16 years since 2001,grain yield has increased.A set of 48 varieties released from 2011 to 2016 out-yielded the 1984–1990 set by around 20%,mainly as a result of larger grain size.This increase has resulted from the use of exotic parents,and in particular,synthetic hexaploid wheats.

    Fig.1–The evolution of plant architecture from landrace to modern variety.A,Chinese Spring;B,a typical modern variety.

    Fig.2–The breeding strategy used to derive the variety Fan 6.The seven parents comprised the landrace Cheng-du-guang-tou(CDGT,red)and six exotic wheat lines(shown in green).Three of the latter were bred elsewhere in China(Zhonnong 28B,Zhonnong 483,Wuyi-mai),two in Italy(IBO 1828,Funo)and one in India(NP 824).The pedigree of Zhongnong 483 is Jiang-dong-men×Florence(the latter is an Australian variety),while that of Wuyi-mai is CDGT/Ardito(Italy)//Fawn(Australia)/Florence(Australia).Based on its known pedigree,10%of the genetic background of Fan 6 was inherited from CDGT.

    4.Synthetic hexaploid wheats

    4.1.Synthetic hexaploid wheats as parents in Sichuan breeding programs

    Synthetic hexaploid wheats are created by the whole genome doubling of hybrids between tetraploid wheat(usually T.durum)and Ae. tauschii, there bysome what duplicating the origin of bread wheat whose wheat parent was T.dicoccum[1,2](Fig.4).Chromosome doubling of the ABD hybrid is conventionally effected by colchine treatment,but is often more conveniently achieved by(as was the case in nature)spontaneous meiotic restitution[31,32].The genetic base of bread wheat is thought to be rather narrow because the species evolved from a limited number of natural founder amphiploids,thereby excluding much of the genetic variation harbored by its progenitor species.Most synthetic hexaploids are fully crossable with bread wheat varieties,so that a relatively small number of de novo amphiploids can serve as a bridge to release novel genes into hexaploid germplasm.There is no major constraint to recombination between homologs in hybrids between a synthetic hexaploid and current wheat cultivars.>1000 synthetic hexaploids have been generated at CIMMYT in Mexico,mostly from crosses between either T.durum or T.dicoccum and Ae.tauschii[33,34].Some locally produced synthetic hexaploids based on colchicine treatment were created during the 1990s[35,36],but the scale of effort was increased in later years once it was recognized that spontaneous chromosome doubling was a reasonably common event in tetraploid Triticum × Ae.tauschii hybrids[37–40].

    4.2.Utilization of CIMMYT-derived synthetic hexaploid wheats in Sichuan

    Two CIMMYT synthetic hexaploid selections,namely Syn769(T.durum Decoy 1/Ae.tauschii 188)and Syn786(T.durum Cereta/Ae.tauschii 783)were used to good effect in Sichuan wheat breeding programs[41].Thevarieties Chuanmai 38,Chuanmai 42 and Chuanmai 43,released in 2003,2003,and 2004,respectively,each included Syn769 in its pedigree,while Chuanmai 47(released in 2005)was bred from a cross involving Syn786.Of these four varieties,Chuanmai 42 has proven to be the best performer with respect to yield,achieving a record return of>6 t ha?1in a regional trial[41].The variety has also become recognized as an outstanding crossing parent,with 12 commercially released varieties having been bred from it[42].The similarly high yielding varieties Chuanmai 104 and Shumai 969 form notably large grains and tiller profusely.Varieties bred from synthetic hexaploids typically display high seedling vigor and are associated with a high level of canopy photosynthesis[43].

    4.3.Utilization of Sichuan-derived synthetic hexaploid wheats in Sichuan

    Fig.3–Trends in yield and related traits in wheat released in Sichuan since 1984.One hundred and ninety eight varieties were clustered according to year of release,including 23 from 1984 to 1990,34 from 1991 to 2000,93 from 2001 to 2010,and 48 from 2011 to 2016.Data obtained from Sichuan provincial regional trials.

    Synthetic hexaploids based on crosses with traditional tetraploid wheats(called Lánmài in Chinese)are attracting a growing level of interest[44].Lánmài plants form highly glaucous stems, leaves and ears, giving them a blue appearance(Fig.4,left).The synthetic hexaploid line SHW-L1(T.turgidum AS2255×Ae.tauschii AS60)is a prominent example(Fig.4).The multi-spikelet characteristic of AS2255 was inherited by the variety Shumai 969(SHW-L1/Chuanmai 32//Chuanyu 16/3/Chuanmai 42),released in 2013.Despite its early maturity,Shumai 969 is a high yielding variety.An additional feature is that its flour produces strong dough,which is unusual for Sichuan-grown wheats.The Shumai 580 and Shumai 830 varieties bred from SHW-L1 are both excellent yielders and are expected to be released in 2017.

    The positive contribution of synthetic hexaploid wheat to grain yield has been repeatedly demonstrated,most prominently by CIMMYT research,but also in Sichuan.As yet,the full potential of this gene pool is unknown,as its sampling has only just begun–there is no doubt that it will feature strongly as a donor of novel variation well into the foreseeable future.As yet,the identity of the genes responsible for the advances in yield achieved using synthetic hexaploid wheats is obscure.In addition to variation at the DNA sequence level that exists between synthetic hexaploids and standard bread wheat genotypes,the process of allopolyploidization used to create a synthetic is known to generate de novo variation in the form of epigenetic changes and mutations resulting from the remobilization of quiescent transposable elements[45–47].Altered patterns of gene expression induced by these phenomena can have major effects on trait expression[48,49].

    Fig.4–The parents of the synthetic wheat line SHW-L1.A,T.turgidum AS2255;B,Ae.tauschii AS60;C,SHW-L1.

    5.Conclusions and future perspectives

    5.1.Improvements to CS-derived prebreeding materials

    Since CS and CDGT are quite closely related to one another,the successful use of CDGT for wheat improvement in Sichuan implies that CS-based materials could relatively easily be improved as well.As demonstrated by the variety Fan 6,it will probably require the replacement of most(in the case of Fan 6,~90%)of the CS genome by alleles from elite lines to convert CS-based materials into commercial varieties.The process of allele replacement could be greatly accelerated through the use of genome-wide markers to perform background selection.The expectation is that a number of the CS-based pre-breeding materials will find their way into wheat breeding programs in this way.

    5.2.Re-capturing lost genetic variation from Sichuan landrace materials

    The effect of decades of breeding effort to improve Sichuan landrace materials has been to replace most of the CDGT alleles with exotic ones.As yet,it has not been established whether the landrace alleles that were retained are dispersed across the genome or whether they are concentrated in a small number of chromosomal regions.This question can now be relatively straightforwardly addressed through either large-scale single nucleotide polymorphism genotyping and/or genome-wide resequencing.The outcome of such analyses would be highly informative for designing optimal breeding strategies directed at the further improvement of Sichuan wheat.

    The time is probably now ripe to consider revisiting landrace materials with a view to recovering some of the~90% of their genetic variation that was lost through conventional breeding.It is known,for example,that landrace materials,including CS,harbor durable resistance gene Lr34/Yr18 that protects against the damaging diseases leaf rust and stripe rust[50],whereas the resistances bred into modern varieties are typically overcome by the causative pathogens within a few years.Furthermore,landrace materials typically display a high level of resistance to preharvest sprouting[51],a character that is not a feature of many modern varieties,because it has never been strongly selected in breeding programs.To the best of our knowledge landrace germplasm from Sichuan has been scarcely accessed by breeders since the release of Fan 6.While in the past,many breeders have been reluctant to consider non-elite materials as crossing parents for fear of linkage drag,genomics technologies can in principle effectively and efficiently overcome this problem.

    5.3.Introgressing genes from the secondary gene pool

    Fig.5–Strategy used to transfer Yr36 from the tetraploid to the hexaploid level.

    Linkage drag remains a disincentive to using synthetic hexaploid wheats as breeding parents.However,as the pace quickens in relation to the identification of functionally important genes,directed transfer is becoming easier.A prominent role can be expected for marker assisted selection here,since it can be used in a backcrossing/top-crossing context both to achieve foreground selection to maintain a given target gene(s)and background selection to accelerate the process of replacing unwanted donor alleles by alleles from elite parents.While many agronomically important traits(notably yield and end-use quality)are not simply inherited,modern marker technologies are increasingly capable of handling multiple targets simultaneously in a cost-and time-effective manner.Working with synthetic wheats,we have been exploiting over 30 donors to introduce genes promoting disease resistance and stress tolerance,altering plant architecture,enhancing crop growth and improving end-use quality.The transfer of Yr36,a gene conferring resistance to stripe rust[52],to wheat in Sichuan is illustrated in Fig.5.

    1)Identification of tetraploid wheat PI415152 as a carrier of Yr36 based on the Yr36-specific marker with 911 bp[53];

    2)formation of the synthetic hexaploid wheat Syn-SAU-69 through a wide cross between PI415152 and Ae.tauschii,followed by spontaneous whole genome doubling;

    3)improvement of the resulting synthetic hexaploid wheat by crossing with local lines;

    4)fixation of Yr36 by self-pollination;

    5)selection of the elite bread wheat line Shumai 1701.

    Acknowledgments

    The authors are thankful to Dr. Robert Koebner from SmartEnglish in the UK for revising the manuscript.This work was supported by the National Key Research and Development Program(2016YFD0102000),the National Natural Science Foundation of China(31671689,31601300,31671682),the Sichuan Provincial Agricultural Department Innovative Research Team(wheat-10),and the Sichuan Province Science&Technology Department Crops Breeding Project(2016NYZ0030).

    R E F E R E N C E S

    [1]H.Kihara,Discovery of the DD-analyser,one of the ancestors of Triticum vulgare,Agric.Hortic.19(1944)889–890.

    [2]E.McFadden,E.Sears,The artificial synthesis of Triticum spleta,Rec.Genet.Soc.Am.13(1944)26–27.

    [3]S.X.Huang,A.Sirikhachornkit,X.J.Su,J.Faris,B.Gill,R.Haselkorn,P.Gornicki,Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat,Proc.Natl.Acad.Sci.U.S.A.99(2002)8133–8138.

    [4]Y.Z.Zhang,The ancient crops in Xinjiang,Agric,Archaeol.(1)3(1983)122–126(in Chinese).

    [5]X.S.Zeng,On the expansion of wheat in ancient China,J.Chin.Dietary Cult.1(2005)99–133(in Chinese with English abstract).

    [6]A.Betts,P.W.Jia,J.Dodson,The origins of wheat in China and potential pathways for its introduction:a review,Quat.Int.348(2014)158–168.

    [7]S.B.Jin,Wheat varieties and their pedigrees in China,China Agriculture Press,Beijing,China,1983(in Chinese).

    [8]C.Yen,M.C.Luo,J.L.Yang,The origin of the Tibetan weedrace of hexaploid wheat,Chinese Spring,Chengdu-guang-tou and other landraces of the white wheat complex from China,in:T.E.Miller,R.M.D.Koebner(Eds.),Proceedings of the 7th International Wheat Genetics Symposium,July 13–19,1988,Inst.Plant Science Research,Cambridge Laboratory,Trumpington,Cambridge,UK 1988,pp.175–179.

    [9]M.C.Luo,C.Yen,J.L.Yang,Crossability percentages of bread wheat landraces from Sichuan Province,China with rye,Euphytica 61(1992)1–7.

    [10]Y.L.Zheng,M.C.Luo,C.Yen,J.L.Yang,Chromosome location of a new crossability gene in common wheat,Wheat Inf.Serv.75(1992)36–40.

    [11]D.Mettin,W.Bluthner,G.Schlegel,Additional evidence on spontaneous 1B/1R wheat-rye substitutions and translocations,in:E.R.Sears,L.M.S.Sears(Eds.),Proceedings of the Fourth International Wheat Genetics Symposium,August 6–11,1973,College of Agriculture,University of Missouri,Agricultural Experiment Station 1973,pp.179–184.

    [12]F.J.Zeller,1B/1R wheat–rye chromosome substitutions and translocations,in:E.R.Sears,L.M.S.Sears(Eds.),Proceedings of the Fourth International Wheat Genetics Symposium,August 6–11,1973,College of Agriculture,University of Missouri,Agricultural Experiment Station 1973,pp.209–221.

    [13]P.D.Chen,L.L.Qi,B.Zhou,S.Z.Zhang,D.J.Liu,Development and molecular cytogenetic analysis of wheat-Haynaldia villosa 6VS/6AL translocation lines specifying resistance to powdery mildew,Theor.Appl.Genet.91(1995)1125–1128.

    [14]A.Z.Cao,L.P.Xing,X.Y.Wang,X.M.Yang,W.Wang,Y.L.Sun,C.Qian,J.L.Ni,Y.P.Chen,D.J.Liu,X.E.Wang,P.D.Chen,Serine/threonine kinase gene Stpk-V,a key member of powdery mildew resistance gene Pm21,confers powdery mildew resistance in wheat,Proc.Natl.Acad.Sci.U.S.A.108(2011)7727–7732.

    [15]R.W.Ward,Z.L.Yang,H.S.Kim,C.Yen,Comparative analyses of RFLP diversity in landraces of Triticum aestivum and collections of T.tauschii from China and Southwest Asia,Theor.Appl.Genet.96(1998)312–318.

    [16]E.R.Sears,T.E.Miller,The history of Chinese Spring wheat,Cereal Res.Commu.(1985)261–263.

    [17]W.O.Backhouse,Note on the inheritance of crossability,J.Genet.6(1916)91–94.

    [18]E.R.Sears,Cytogenetic studies with polyploid species of wheat.I.Chromosomal aberrations in the progeny of a haploid of Triticum vulgare,Genetics 24(1939)509–523.

    [19]E.R.Sears,Genetic control of chromosome pairing in wheat,Annu.Rev.Genet.10(1976)31–51.

    [20]M.Liu,J.Stiller,K.Holu?ová,J.Vrána,D.C.Liu,J.Dole?el,C.J.Liu,Chromosome-specific sequencing reveals an extensive dispensable genome component in wheat,Sci.Rep.6(2016)36398.

    [21]D.C.Liu,Y.L.Zheng,X.J.Lan,Utilization of wheat landrace Chinese Spring in breeding,Sci.Agric.Sin.36(2003)1383–1389(in Chinese with English abstract).

    [22]Q.S.Zhuang,Chinese Wheat Improvement and Pedigree Analysis,China Agriculture Press,Beijing,2002(in Chinese).

    [23]Y.Zhou,H.Z.Zhu,S.B.Cai,Z.H.He,X.K.Zhang,X.C.Xia,G.S.Zhang,Genetic improvement of grain yield and associated traits in the southern China winter wheat region:1949 to 2000,Euphytica 157(2007)465–473.

    [24]Y.D.Zhou,A survey of the Fan-6 and its sisters,excellent wheat germplasms for high yield and resistance to stripe rust,J.Sichuan Agric.Univ.10(1992)682–688(in Chinese with English abstract).

    [25]C.Yen,History and prospect of study on wheat breeding of fifty years in Sichuan,J.Sichuan Agric.Univ.17(1999)108–113(in Chinese).

    [26]C.Yen,Summary of wheat cross breeding in the past 20 years,Sichuan Agric.Sci.Technol.4(1973)4–20(in Chinese).

    [27]B.E.Huang,A.W.George,K.L.Forrest,A.Kilian,M.J.Hayden,M.K.Morell,C.R.Cavanagh,Amultiparent advanced generation intercross population for genetic analysis in wheat,Plant Biotechnol.J.10(2012)826–839.

    [28]C.Uauy,Wheat genomics comes of age,Curr.Opin.Plant Biol.36(2017)142–148.

    [29]P.Borrill,N.Adamski,C.Uauy,Genomics as the key to unlocking the polyploid potential of wheat,New Phytol.208(2015)1008–1022.

    [30]K.V.Krasileva,H.A.Vasquez-Gross,T.Howell,P.Bailey,F.Paraiso,L.Clissold,J.Simmonds,R.H.Ramirez-Gonzalez,X.D.Wang,P.Borrill,C.Fosker,S.Ayling,A.L.Phillips,C.Uauy,J.Dubcovsky,Uncovering hidden variation in polyploid wheat,Proc.Natl.Acad.Sci.U.S.A.114(2017)E913–E921.

    [31]M.Hao,J.T.Luo,D.Y.Zeng,L.Zhang,S.Z.Ning,Z.W.Yuan,Z.H.Yan,H.G.Zhang,Y.L.Zheng,C.Feuillet,F.Choulet,Y.Yen,L.Q.Zhang,D.C.Liu,QTug.sau-3B is a major quantitative trait locus for wheat hexaploidization,G3-Genes Genomes Genet.4(2014)1943–1953.

    [32]D.C.Liu,H.G.Zhang,L.Q.Zhang,Z.W.Yuan,M.Hao,Y.L.Zheng,Distant hybridization:a tool for interspecific manipulation of chromosomes,in:A.Pratap,J.Kumar(Eds.),Alien Gene Transfer in Crop Plants,Vol.1,Springer,New York 2014,pp.25–42.

    [33]A.Mujeeb-Kazi,V.Rosas,S.Roldan,Conservation of the genetic variation of Triticum tauschii Coss.Schmalh.Aegilops squarrosa auct.non L.in synthetic hexaploid wheats T.turgidum L.s.lat.×T.tauschii;2n=6x=42,AABBDD and its potential utilization for wheat improvement,Genet.Resour.Crop.Evol.43(1996)129–134.

    [34]S.Dreisigacker,M.Kishii,J.Lage,M.Warburton,Use of synthetic hexaploid wheat to increase diversity for CIMMYT bread wheat improvement,Crop Pasture Sci.59(2008)413–420.

    [35]X.J.Lan,D.C.Liu,Z.R.Wang,Inheritance in synthetic hexaploid wheat‘RSP'of sprouting tolerance derived from Aegilops tauschii Cosson,Euphytica 95(1997)321–323.

    [36]L.Q.Zhang,D.C.Liu,Z.H.Yan,X.J.Lan,Y.L.Zheng,Y.H.Zhou,Rapid changes of microsatellite flanking sequence in the allopolyploidization of new synthesized hexaploid wheat,Sci.China C Life Sci.47(2004)553–561.

    [37]L.Q.Zhang,Y.Yen,Y.L.Zheng,D.C.Liu,Meiotic restriction in emmer wheat is controlled by one or more nuclear genes that continue to function in derived lines,Sex.Plant Reprod.20(2007)159–166.

    [38]L.Q.Zhang,D.C.Liu,Y.L.Zheng,Z.H.Yan,S.F.Dai,Y.F.Li,Q.Jiang,Y.Q.Ye,Y.Yen,Frequent occurrence of unreduced gametes in Triticum turgidum–Aegilops tauschii hybrids,Euphytica 172(2010)285–294.

    [39]M.Hao,J.X.Chen,L.Q.Zhang,J.T.Luo,Z.W.Yuan,Z.H.Yan,B.Zhang,W.J.Chen,Y.M.Wei,H.G.Zhang,Y.L.Zheng,D.C.Liu,The genetic study utility of a hexaploid wheat DH population with non-recombinant A-and B-genomes,SpringerPlus 2(2013)131.

    [40]J.T.Luo,M.Hao,L.Zhang,J.X.Chen,L.Q.Zhang,Z.W.Yuan,Z.H.Yan,Y.L.Zheng,H.G.Zhang,Y.Yen,D.C.Liu,Microsatellite mutation rate during allohexaploidization of newly resynthesized wheat,Int.J.Mol.Sci.13(2012)12533–12543.

    [41]W.Y.Yang,D.C.Liu,J.Li,L.Q.Zhang,H.T.Wei,X.R.Hu,Y.L.Zheng,Z.H.He,Y.C.Zou,Synthetic hexaploid wheat and its utilization for wheat genetic improvement in China,J.Genet.Genomics 36(2009)539–546.

    [42]J.Li,H.S.Wan,W.Y.Yang,Synthetic hexaploid wheat enhances variation and adaptive evolution of bread wheat in breeding processes,J.Syst.Evol.52(2014)735–742.

    [43]Y.L.Tang,C.S.Li,X.L.Wu,C.Wu,W.Y.Yang,G.Huang,X.L.Ma,Accumulation of dry matter,canopy structure and photosynthesis of synthetic hexaploid wheat-derived high yielding varieties grown in Sichuan basin,China,Sci.Agric.Sin.47(2014)844–855(in Chinese with English abstract).

    [44]D.C.Liu,M.Hao,A.L.Li,L.Q.Zhang,Y.L.Zheng,L.Mao,Allopolyploidy and interspecific hybridization for wheat improvement,in:A.S.Mason(Ed.),Polyploidy and Hybridization for Crop Improvement,CRC Press,Boca Raton,FL,USA 2016,pp.27–52.

    [45]K.Kashkush,M.Feldman,A.A.Levy,Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat,Nat.Genet.33(2003)102–106.

    [46]X.Guo,F.P.Han,Asymmetric epigenetic modification and elimination of rDNA sequences by polyploidization in wheat,Plant Cell 26(2014)4311–4327.

    [47]A.L.Li,S.F.Geng,L.Q.Zhang,D.C.Liu,L.Mao,Making the bread:insights from newly synthesized allohexaploid wheat,Mol.Plant 8(2015)847–859.

    [48]C.W.Yang,L.Zhao,H.K.Zhang,Z.Z.Yang,H.Wang,S.S.Wen,C.Y.Zhang,S.Rustgi,D.von Wettstein,B.Liu,Evolution of physiological responses to salt stress in hexaploid wheat,Proc.Natl.Acad.Sci.U.S.A.111(2014)11882–11887.

    [49]Y.Han,M.M.Xin,K.Huang,Y.Y.Xu,Z.S.Liu,Z.R.Hu,Y.Y.Yao,H.R.Peng,Z.F.Ni,Q.X.Sun,Altered expression of TaRSL4 gene by genome interplay shapes root hair length in allopolyploid wheat,New Phytol.209(2016)721–732.

    [50]W.X.Yang,F.P.Yang,D.Liang,Z.H.He,X.W.Shang,X.C.Xia,Molecular characterization of slow-rusting genes Lr34/Yr18 in Chinese wheat cultivars,Acta Agron.Sin.34(2008)1109–1113(in Chinese with English abstract).

    [51]J.R.Wang,Y.X.Liu,Y.Wang,Z.H.Chen,S.Dai,W.G.Cao,G.Fedak,X.J.Lan,Y.M.Wei,D.C.Liu,Y.L.Zheng,Genetic variation of Vp1 in Sichuan wheat accessions and its association with pre-harvest sprouting response,Genes Genom.33(2011)139.

    [52]D.L.Fu,C.Uauy,A.Distelfeld,A.Blechl,L.Epstein,X.M.Chen,H.Sela,T.Fahima,J.Dubcovsky,A kinase-START gene confers temperature-dependent resistance to wheat stripe rust,Science 323(2009)1357–1360.

    [53]C.L.Yuan,H.Jiang,H.G.Wang,K.Li,H.Tang,X.B.Li,D.L.Fu,Distribution,frequency and variation of stripe rust resistance loci Yr10,Lr34/Yr18 and Yr36 in Chinese wheat cultivars,J.Genet.Genomics 39(2012)587–592.

    九九爱精品视频在线观看| 免费播放大片免费观看视频在线观看| 免费观看a级毛片全部| 九九久久精品国产亚洲av麻豆| 久久久久久伊人网av| 亚洲av免费在线观看| 高清av免费在线| 丰满乱子伦码专区| 国产精品女同一区二区软件| 久久97久久精品| 亚洲va在线va天堂va国产| av女优亚洲男人天堂| 成人av在线播放网站| 免费黄色在线免费观看| 成年免费大片在线观看| 九九爱精品视频在线观看| 国产成人a区在线观看| 成人午夜精彩视频在线观看| 色5月婷婷丁香| 黄色日韩在线| 男的添女的下面高潮视频| 亚洲乱码一区二区免费版| 男人舔女人下体高潮全视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 非洲黑人性xxxx精品又粗又长| 麻豆成人午夜福利视频| 麻豆乱淫一区二区| 欧美日韩亚洲高清精品| 亚洲国产精品国产精品| 青春草视频在线免费观看| 日韩成人伦理影院| 国产白丝娇喘喷水9色精品| 免费观看av网站的网址| 国产永久视频网站| 亚洲精品,欧美精品| 最新中文字幕久久久久| xxx大片免费视频| 亚洲国产欧美人成| 国产黄色小视频在线观看| 欧美xxxx黑人xx丫x性爽| 午夜免费激情av| 最近2019中文字幕mv第一页| 少妇熟女欧美另类| 国产久久久一区二区三区| 精品99又大又爽又粗少妇毛片| 国产在视频线在精品| videos熟女内射| 欧美一级a爱片免费观看看| 看黄色毛片网站| 黄色配什么色好看| 欧美最新免费一区二区三区| av在线蜜桃| 人人妻人人澡欧美一区二区| 在线观看一区二区三区| 久久99热这里只有精品18| 久久精品夜夜夜夜夜久久蜜豆| 国产av在哪里看| 日韩欧美精品v在线| 一级毛片黄色毛片免费观看视频| 精品国产一区二区三区久久久樱花 | 欧美 日韩 精品 国产| 免费黄频网站在线观看国产| 欧美高清成人免费视频www| 国产精品1区2区在线观看.| 成人毛片a级毛片在线播放| 国产精品福利在线免费观看| 日韩大片免费观看网站| 嫩草影院精品99| 久久午夜福利片| 一级黄片播放器| 天堂影院成人在线观看| 亚洲性久久影院| 精品不卡国产一区二区三区| 亚洲精品自拍成人| 少妇被粗大猛烈的视频| 久久久久久国产a免费观看| 少妇裸体淫交视频免费看高清| 最后的刺客免费高清国语| 午夜激情福利司机影院| 久久久久久久久久久丰满| 久久精品国产鲁丝片午夜精品| 啦啦啦韩国在线观看视频| 一个人看视频在线观看www免费| 亚洲成色77777| 午夜日本视频在线| 搡女人真爽免费视频火全软件| 亚洲内射少妇av| 亚洲国产精品成人综合色| 久久久久精品性色| 狠狠精品人妻久久久久久综合| 国产色婷婷99| 日韩,欧美,国产一区二区三区| 午夜福利在线观看免费完整高清在| av播播在线观看一区| 最近最新中文字幕免费大全7| 免费大片18禁| 在现免费观看毛片| 成人亚洲精品av一区二区| 亚洲三级黄色毛片| 99re6热这里在线精品视频| 午夜福利在线观看免费完整高清在| 2021天堂中文幕一二区在线观| 最近最新中文字幕免费大全7| 欧美一区二区亚洲| 99久久精品国产国产毛片| 亚洲成人一二三区av| 一级毛片aaaaaa免费看小| 麻豆成人av视频| 在线天堂最新版资源| av在线观看视频网站免费| 亚洲精品乱久久久久久| 青青草视频在线视频观看| 2021少妇久久久久久久久久久| 国产精品一二三区在线看| 国产精品麻豆人妻色哟哟久久 | 搡老乐熟女国产| 亚洲va在线va天堂va国产| 国产精品蜜桃在线观看| 国产伦精品一区二区三区四那| 成人亚洲精品一区在线观看 | 日韩 亚洲 欧美在线| 日日啪夜夜爽| 不卡视频在线观看欧美| 国产高潮美女av| 久久99热这里只有精品18| 免费大片18禁| 最近的中文字幕免费完整| 韩国av在线不卡| 国产精品伦人一区二区| 国产成人精品一,二区| 亚洲性久久影院| 熟妇人妻久久中文字幕3abv| 亚洲国产高清在线一区二区三| av国产免费在线观看| av一本久久久久| 国产精品熟女久久久久浪| 别揉我奶头 嗯啊视频| 亚洲,欧美,日韩| 男人舔奶头视频| 国产精品国产三级国产av玫瑰| 女人十人毛片免费观看3o分钟| 免费黄色在线免费观看| 久久久久久久亚洲中文字幕| 岛国毛片在线播放| 国产极品天堂在线| 亚洲av成人av| 欧美xxxx黑人xx丫x性爽| 久久久久久久大尺度免费视频| 免费看不卡的av| 亚洲精品aⅴ在线观看| 爱豆传媒免费全集在线观看| 综合色丁香网| 一区二区三区免费毛片| 蜜桃亚洲精品一区二区三区| 国产在线男女| 人妻夜夜爽99麻豆av| 久久精品国产自在天天线| 中国国产av一级| 国产片特级美女逼逼视频| 尤物成人国产欧美一区二区三区| 精品酒店卫生间| 日韩欧美精品v在线| 九色成人免费人妻av| 噜噜噜噜噜久久久久久91| 午夜福利在线观看吧| 极品教师在线视频| 亚洲国产日韩欧美精品在线观看| 国产高潮美女av| 免费不卡的大黄色大毛片视频在线观看 | 色视频www国产| 欧美97在线视频| 插逼视频在线观看| 日韩精品有码人妻一区| 国产精品女同一区二区软件| 亚洲精品成人av观看孕妇| 成人午夜精彩视频在线观看| av网站免费在线观看视频 | 男人和女人高潮做爰伦理| 欧美丝袜亚洲另类| 亚洲不卡免费看| 波多野结衣巨乳人妻| 国产女主播在线喷水免费视频网站 | 精品久久久久久久末码| 亚洲精品国产av蜜桃| 国产探花极品一区二区| freevideosex欧美| 丰满乱子伦码专区| 精品人妻熟女av久视频| 成年女人在线观看亚洲视频 | 2021天堂中文幕一二区在线观| 亚洲最大成人av| 99热6这里只有精品| 亚洲人成网站在线观看播放| 久久久久久久久久人人人人人人| 男的添女的下面高潮视频| 久久久久久久久久黄片| 国模一区二区三区四区视频| 色尼玛亚洲综合影院| 少妇熟女aⅴ在线视频| 亚洲乱码一区二区免费版| or卡值多少钱| 久久99热6这里只有精品| 久久久久久久久中文| ponron亚洲| 久久人人爽人人爽人人片va| 精品欧美国产一区二区三| 男女那种视频在线观看| 国产熟女欧美一区二区| 国产成人免费观看mmmm| 欧美xxxx黑人xx丫x性爽| av线在线观看网站| 国产精品一区二区在线观看99 | 国产免费视频播放在线视频 | 精品久久久久久久久亚洲| 偷拍熟女少妇极品色| 成年免费大片在线观看| 高清视频免费观看一区二区 | a级毛色黄片| 人人妻人人看人人澡| 亚洲精品视频女| 夫妻午夜视频| 能在线免费观看的黄片| 亚洲三级黄色毛片| 日本黄大片高清| 国产精品国产三级国产av玫瑰| 一本久久精品| 一级爰片在线观看| 你懂的网址亚洲精品在线观看| 国产成人91sexporn| 亚洲婷婷狠狠爱综合网| 欧美成人午夜免费资源| 国产黄片美女视频| 亚洲av男天堂| 亚洲av免费高清在线观看| 日韩视频在线欧美| av网站免费在线观看视频 | 免费看日本二区| 岛国毛片在线播放| 亚洲美女视频黄频| 能在线免费看毛片的网站| 丝袜喷水一区| 亚洲av日韩在线播放| 床上黄色一级片| 亚洲人与动物交配视频| 午夜免费男女啪啪视频观看| 国产精品福利在线免费观看| 欧美日韩视频高清一区二区三区二| 中文字幕亚洲精品专区| 成人亚洲精品一区在线观看 | 青春草亚洲视频在线观看| 国产乱来视频区| 日本熟妇午夜| 日韩中字成人| 日韩av在线大香蕉| 国产亚洲av片在线观看秒播厂 | 国产精品日韩av在线免费观看| 狂野欧美白嫩少妇大欣赏| 亚洲无线观看免费| 日韩中字成人| 性色avwww在线观看| 亚洲三级黄色毛片| 91午夜精品亚洲一区二区三区| 最近视频中文字幕2019在线8| 亚洲一区高清亚洲精品| 国产精品.久久久| 国产精品一及| 成人av在线播放网站| 日韩成人伦理影院| 26uuu在线亚洲综合色| 一级毛片我不卡| 国产探花在线观看一区二区| 亚洲精品日韩在线中文字幕| 国产精品爽爽va在线观看网站| 三级国产精品片| 亚洲,欧美,日韩| 91av网一区二区| 97热精品久久久久久| 天堂网av新在线| 蜜臀久久99精品久久宅男| 国产综合精华液| 精品久久久久久成人av| 免费av观看视频| 日韩中字成人| 午夜免费激情av| 一级爰片在线观看| 婷婷色麻豆天堂久久| 啦啦啦中文免费视频观看日本| 色尼玛亚洲综合影院| 1000部很黄的大片| 国产精品精品国产色婷婷| a级毛色黄片| 日日啪夜夜爽| 欧美精品一区二区大全| 我要看日韩黄色一级片| 成人二区视频| 熟女电影av网| 激情五月婷婷亚洲| 特大巨黑吊av在线直播| 精品不卡国产一区二区三区| 2018国产大陆天天弄谢| 美女高潮的动态| 国产白丝娇喘喷水9色精品| 国产精品国产三级国产av玫瑰| 久久久久精品性色| 人妻一区二区av| 日韩不卡一区二区三区视频在线| 亚洲va在线va天堂va国产| 国产伦精品一区二区三区四那| 街头女战士在线观看网站| 69av精品久久久久久| 老师上课跳d突然被开到最大视频| 日韩欧美 国产精品| av在线天堂中文字幕| 久久精品国产亚洲av天美| 大话2 男鬼变身卡| 亚洲av一区综合| 天堂俺去俺来也www色官网 | 日韩精品青青久久久久久| 青青草视频在线视频观看| 亚洲图色成人| 国产高潮美女av| 久久99热这里只频精品6学生| 中文字幕人妻熟人妻熟丝袜美| 我的老师免费观看完整版| 乱人视频在线观看| 中文字幕免费在线视频6| 亚洲国产高清在线一区二区三| 淫秽高清视频在线观看| 直男gayav资源| 中文天堂在线官网| 国产精品女同一区二区软件| 成人鲁丝片一二三区免费| 国产黄片美女视频| 久久精品综合一区二区三区| 美女高潮的动态| 日本免费在线观看一区| 男女国产视频网站| 亚洲av在线观看美女高潮| 天天躁夜夜躁狠狠久久av| 国产高清有码在线观看视频| 十八禁国产超污无遮挡网站| 汤姆久久久久久久影院中文字幕 | 久久精品国产鲁丝片午夜精品| 久久久久国产网址| 看非洲黑人一级黄片| 99久国产av精品国产电影| 亚洲天堂国产精品一区在线| 精品熟女少妇av免费看| 18禁在线播放成人免费| 九九爱精品视频在线观看| 亚洲欧美一区二区三区黑人 | 日韩强制内射视频| 午夜精品国产一区二区电影 | 欧美一级a爱片免费观看看| 亚洲欧美日韩无卡精品| 欧美日韩视频高清一区二区三区二| 别揉我奶头 嗯啊视频| 亚洲精品亚洲一区二区| 在线观看免费高清a一片| 一级毛片aaaaaa免费看小| 精品久久久久久久久亚洲| 男插女下体视频免费在线播放| 国产伦理片在线播放av一区| 日韩精品有码人妻一区| 国产片特级美女逼逼视频| 久久精品国产亚洲av涩爱| 免费电影在线观看免费观看| 欧美xxxx性猛交bbbb| .国产精品久久| 舔av片在线| 又爽又黄a免费视频| 只有这里有精品99| 一本一本综合久久| 久久鲁丝午夜福利片| 777米奇影视久久| 中文字幕亚洲精品专区| 成人毛片a级毛片在线播放| 国产精品久久久久久av不卡| 午夜免费观看性视频| 国内揄拍国产精品人妻在线| 99热6这里只有精品| 国产成人freesex在线| 色吧在线观看| 国产69精品久久久久777片| 全区人妻精品视频| 中文欧美无线码| 毛片一级片免费看久久久久| 十八禁国产超污无遮挡网站| 美女大奶头视频| 久久久久九九精品影院| 18+在线观看网站| 亚洲av成人精品一二三区| 免费在线观看成人毛片| 亚洲国产高清在线一区二区三| 久久99热这里只频精品6学生| 中文字幕免费在线视频6| 国产女主播在线喷水免费视频网站 | 在线 av 中文字幕| 免费看光身美女| 国产国拍精品亚洲av在线观看| 免费在线观看成人毛片| 全区人妻精品视频| 国产精品人妻久久久影院| 久久久久性生活片| 色网站视频免费| 免费大片18禁| 中文在线观看免费www的网站| 久久久亚洲精品成人影院| 91久久精品国产一区二区成人| 成人午夜精彩视频在线观看| 色综合亚洲欧美另类图片| 日韩 亚洲 欧美在线| 最近中文字幕2019免费版| 午夜亚洲福利在线播放| 国产一区有黄有色的免费视频 | 少妇的逼好多水| 亚洲图色成人| 只有这里有精品99| 在线 av 中文字幕| 亚洲色图av天堂| 亚洲av电影在线观看一区二区三区 | 麻豆成人午夜福利视频| 国产精品1区2区在线观看.| 嫩草影院精品99| 天堂网av新在线| 久久久成人免费电影| 99热全是精品| 日韩人妻高清精品专区| 亚洲综合精品二区| 人妻制服诱惑在线中文字幕| 国产视频首页在线观看| 99热这里只有是精品50| 久久这里只有精品中国| 亚洲精品中文字幕在线视频 | 精品国产露脸久久av麻豆 | 日韩欧美国产在线观看| 男人舔女人下体高潮全视频| 国产精品一二三区在线看| 夜夜看夜夜爽夜夜摸| 91久久精品国产一区二区成人| 国产亚洲精品av在线| 床上黄色一级片| 十八禁国产超污无遮挡网站| 国内揄拍国产精品人妻在线| 亚洲精品中文字幕在线视频 | 亚洲欧美精品专区久久| 亚洲成人久久爱视频| 欧美日韩一区二区视频在线观看视频在线 | 午夜福利高清视频| 国产在视频线精品| 大香蕉久久网| 一个人免费在线观看电影| 可以在线观看毛片的网站| 在线免费观看的www视频| 亚洲精品乱码久久久v下载方式| 精品人妻视频免费看| 三级毛片av免费| 久久久久久九九精品二区国产| 2021少妇久久久久久久久久久| 色综合色国产| 亚洲国产精品sss在线观看| 熟女人妻精品中文字幕| 国产成人精品久久久久久| 一二三四中文在线观看免费高清| 亚洲,欧美,日韩| 我要看日韩黄色一级片| 久久久精品免费免费高清| 午夜激情久久久久久久| 又黄又爽又刺激的免费视频.| 亚洲伊人久久精品综合| 欧美成人精品欧美一级黄| 九九在线视频观看精品| 亚洲国产精品成人综合色| 亚洲欧美日韩东京热| 国产精品女同一区二区软件| 久久久欧美国产精品| 2018国产大陆天天弄谢| 在线观看人妻少妇| 国产精品av视频在线免费观看| 晚上一个人看的免费电影| 只有这里有精品99| 熟女人妻精品中文字幕| av在线蜜桃| 免费观看的影片在线观看| 最近中文字幕2019免费版| 日本免费a在线| 国产亚洲精品av在线| 一级毛片电影观看| 天堂av国产一区二区熟女人妻| 国产成人免费观看mmmm| 久久久久久久久久久丰满| 亚洲熟女精品中文字幕| 国产精品一区www在线观看| 九九在线视频观看精品| 嫩草影院入口| 国内精品一区二区在线观看| 久久综合国产亚洲精品| 日韩在线高清观看一区二区三区| 男女国产视频网站| 欧美变态另类bdsm刘玥| 国国产精品蜜臀av免费| videos熟女内射| 日本午夜av视频| 国产69精品久久久久777片| 日韩av不卡免费在线播放| 国产片特级美女逼逼视频| 天堂中文最新版在线下载 | 国国产精品蜜臀av免费| 国产欧美日韩精品一区二区| 精品午夜福利在线看| 日韩欧美国产在线观看| 久久久久久伊人网av| 精品久久久久久成人av| 美女主播在线视频| 男人狂女人下面高潮的视频| 91aial.com中文字幕在线观看| 国产69精品久久久久777片| 久久99精品国语久久久| 三级毛片av免费| 蜜臀久久99精品久久宅男| 久久99热6这里只有精品| 国产精品一区二区性色av| 成年人午夜在线观看视频 | 亚洲精品成人久久久久久| 国产69精品久久久久777片| 街头女战士在线观看网站| 女人被狂操c到高潮| 免费观看a级毛片全部| 18禁动态无遮挡网站| 国产 一区精品| 嘟嘟电影网在线观看| 国产一区二区在线观看日韩| 欧美日韩亚洲高清精品| 欧美日韩在线观看h| 91精品国产九色| 美女主播在线视频| 狠狠精品人妻久久久久久综合| 国产不卡一卡二| 久久久久久久国产电影| 婷婷六月久久综合丁香| 尤物成人国产欧美一区二区三区| 国产精品久久久久久精品电影| 高清在线视频一区二区三区| 九九久久精品国产亚洲av麻豆| 伊人久久国产一区二区| 看非洲黑人一级黄片| 久久久久久久久久久丰满| 色综合亚洲欧美另类图片| 精品人妻一区二区三区麻豆| 日韩三级伦理在线观看| 成年女人在线观看亚洲视频 | 国精品久久久久久国模美| 看十八女毛片水多多多| 亚洲欧美日韩卡通动漫| 在线a可以看的网站| 嫩草影院新地址| 黄色一级大片看看| 超碰av人人做人人爽久久| 免费看光身美女| 欧美zozozo另类| 人人妻人人澡人人爽人人夜夜 | 欧美潮喷喷水| 我要看日韩黄色一级片| 免费看光身美女| 丰满少妇做爰视频| 成年女人看的毛片在线观看| 亚洲精品日本国产第一区| 中文字幕av成人在线电影| 非洲黑人性xxxx精品又粗又长| freevideosex欧美| 麻豆av噜噜一区二区三区| 国内少妇人妻偷人精品xxx网站| 99热6这里只有精品| 91av网一区二区| av黄色大香蕉| 九色成人免费人妻av| 国产亚洲精品av在线| 欧美日韩视频高清一区二区三区二| 国产毛片a区久久久久| 最后的刺客免费高清国语| 国产免费一级a男人的天堂| 最近2019中文字幕mv第一页| 街头女战士在线观看网站| 精品久久久久久成人av| 在线免费观看的www视频| 成人午夜精彩视频在线观看| av在线天堂中文字幕| 黄色一级大片看看| 国产在视频线精品| 精品人妻偷拍中文字幕| 又爽又黄无遮挡网站| 免费播放大片免费观看视频在线观看| 老师上课跳d突然被开到最大视频| 午夜激情久久久久久久| 中文资源天堂在线| 午夜福利视频精品| 寂寞人妻少妇视频99o| 99热全是精品| 免费播放大片免费观看视频在线观看| 国产亚洲av片在线观看秒播厂 | 久久久色成人| 日产精品乱码卡一卡2卡三| 亚洲精品中文字幕在线视频 | 精品亚洲乱码少妇综合久久| 欧美一区二区亚洲| 国产精品综合久久久久久久免费| 极品少妇高潮喷水抽搐| 免费大片18禁| 边亲边吃奶的免费视频| 极品少妇高潮喷水抽搐| 91在线精品国自产拍蜜月| 男女边摸边吃奶| 十八禁国产超污无遮挡网站| 在线观看免费高清a一片| 国产三级在线视频|