• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Wheat genome editing expedited by efficient transformation techniques: Progress and perspectives

    2018-03-04 18:22:44*
    The Crop Journal 2018年1期

    *

    Institute of Crop Science,Chinese Academy of Agricultural Sciences,Beijing 100081,China

    1.Introduction

    The challenge of feeding a global population of 9 billion by the middle of this century is enormous[1].Common wheat as a staple food crop will play a major role in meeting this challenge.Wheat has lagged behind other major cereal crops in development of genetic engineering and biotechnology because of its huge genome,high number of repetitive DNA sequences,hexaploid composition,and low regeneration following genetic transformation[2].No transgenic wheat has been commercialized and new wheat varieties are mainly developed by conventional breeding techniques that are costly and time-consuming[3].The key reasons for this is lack of a high quality reference genome sequence and difficulty in transforming wheat.

    Plant transformation with exotic genes using vectors like Agrobacterium has been the first step in introducing genes of interest to plant cells that must be regenerated into plants that produce normal seeds.Common wheat as a hexaploid plant is one of the most difficult crops to be transformed.Recently,a new technique called Pure Wheat that significantly improves transformation efficiency was invented by the Japan Tobacco Company[4].This technique brings the hope of genetically manipulating wheat in a more efficient and diverse manner.It also enables application of new genome editing technologies that are applicable to wheat.

    Genome editing as a recently developed technology enables precise manipulation of specific genomic sequences,and will possibly supersede traditional random mutagenesis methods in plant breeding. In general genome editing technologies involve three types of sequence-specific nucleases(SSNs),namely zinc-finger nucleases(ZFNs),transcription activator-like effector nucleases(TALENs),and clustered regularly interspaced short palindromic repeat-associated endonucleases(CRISPR/Cas).Such technologies have versatile functions including targeted gene knock-out and knock-in,gene replacement and activation,and DNA repair[5–8],and will be widely applied in crop breeding.This is likely to be led by the application of CRISPR/Cas9 with the help of plant regeneration-related genes such as Baby boom(Bbm)and Wuschel(Wus2)in co-transformation[9].

    In this review,we provide a brief summary of current transformation techniques and recent breakthroughs in genetic engineering of wheat.We then review recent progress in plant genome editing and its application in wheat.Finally,we speculate future trends in wheat genetic engineering with the availability of a high quality genome sequence, a significantly improved transformation protocol,and a tool for genome editing in generating elite wheat varieties that will contribute to achievement of world food security.

    2.Wheat transformation-possible after much effort

    2.1.Transformation of wheat by biolistic particles

    The first transgenic wheat plants were obtained by biolistic particle bombardment in 1992[10].The Bar gene as a selective marker was successfully transferred to wheat by high velocity microprojectile bombardment.This was the beginning of the era of wheat transformation.A number of genes were transformed into wheat using this approach(Table1),including functional genes such as TaPIMP1[20],Yr10[22],TcLr19PR1[23],TaNAC2[26],and TaCPK[27].Genetically enhanced wheat lines that have better resistance to biotic and abiotic stresses are still being tested.However,use of biolistic particles is notorious for its low transformation efficiency.

    2.2.Wheat transformation by Agrobacterium

    Agrobacterium species used for wheat transformation include A.tumefaciens and A.rhizogenes.They use a transfer DNA(T-DNA)that naturally integrates into plant genomes after infection.Agrobacterium mediated transformation has specific advantages compared to biolistic particles,including low copy number integration,a more economic and simpler procedure,and clear integration of sequences without the vector backbone.Although it is widely used by wheat scientists(Table 2),the efficiency of Agrobacterium mediated wheat transformation using immature embryos remained extremely low until recently,when the PureWheat technique was developed by the Japan Tobacco Company.This revolutionary technique involved cultivar Fielder as a host with various modifications in transformation protocols.The efficiency of this method has reached as high as 50%[4].The technique was confirmed in Australia using wheat cultivars Westonia and Gladius[40].With additional modifications the present authors'laboratory has transformed more than 15 Chinese genotypes,including elite varieties Jimai 22,Shiluan 02-1,Yangmai 16,Jimai 5265,Zhoumai 18,and Lunxuan 987,with high Agrobacterium infection efficiency and less genotype dependence(Fig.1)[39].

    From our experience and that of others,a number of factors need to be considered in order to achieve high transformation efficiency.Firstly,the infection efficiency should be high.Wheat genotypes differ in susceptibility to Agrobacterium infection.Secondly,the wheat genotype should have high regeneration ability,as exemplified by Bobwhite,Fielder,Kenong 199,and Yangmai 158[4,26,31,41].Thirdly,the plants from which immature embryos are collected should bein good growth status.High temperatures in particular have adverse effect on transformation success rates[42,43].Based on our experience,mild temperatures,strong light,and good cultivation management are beneficial for high transformation efficiency[39].Transformation efficiency can be increased using the morphogenic regulator genes BABY BOOM(Bbm)and WUSCHEL2(Wus2)that have been successfully tested in maize[9].However,over-expression of Wus2 may lead to callus necrosis as well as aberrant callus phenotypes.The morphogenic regulator genes have to be excised during regeneration.

    Table 1––Examples of wheat transformation achieved by biolistic particles.

    3.Development of genome editing systems in wheat

    3.1.The advance of plant genome editing technologies

    In the past few years genome editing technologies have arisen as promising tools for crop improvement,including wheat.The earlier versions are represented by the CRISPR/Cas9 system that largely replaces the older versions such as ZFNs and TALENs due to its simplicity and economy(Table 3).The CRISPR/Cas9 system has two simple components;the Cas9 protein and the single guide RNA(sgRNA)that guides the nuclease Cas9 to target sites in a sequence-specific manner where DNA double-strand breaks(DSBs)are generated.DSBs are repaired by one of the two main competing DNA repair pathways:error-prone non-homologous end joining(NHEJ)that results in small random insertions and/or deletions(indels)at the cleavage site,or homologous recombination(HR)that leads to precise genome modification[5–8].NHEJ can be utilized to generate random changes and mutations in target sites where HR can carry out targeted knock-in,gene replacement,and DNA correction.The design of multiple sgRNAs to target multiple sequences allows multiplex high-efficiency genome engineering[44,45].These applications are extremely useful in genetic manipulation for crop improvement.

    In addition to conventional functions of genome editing,such as gene insertion,gene replacement and regulation of gene expression[46–51],a catalytically inactive or ‘dead'Cas9(dCas9)that bears mutations in both the RuvC D10A and HNH H840A domains and is nonfunctional as a nuclease can be combined with proteins having other functions[52].For example,transcriptional activation or repression domains can be fused with the dCas9 to regulate endogenous gene expression[53].Additional examples are fusion of dCas9 withchromatin-modifying enzymes such as inhibitors of histone deacetylases or DNA methyltransferases to achieve altered epigenomes and transcriptomes[54–58].Other examples include light-sensitive proteins fused with dCas9 that allows rapid and reversible targeted gene activation or repression by light[59–61].

    Table 2––Examples of wheat transformation mediated by Agrobacterium tumefaciens.

    3.2.New versions of CRISPR/Cas9 systems

    Since the discovery of the CRISPR/Cas9 system,a number of different versions have followed.Unlike Cas9 that is derived from Streptococcus pyogenes(SpCas9)and recognizes a relatively simple PAM(5′-NGG-3′),a new Cas9 protein from Neisseria meningitides(NmCas9)recognizes a more complex PAM(5′-NNNNGATT-3′)[62].The longer PAM reduces the accessible target range and hence potential off-target sites,leading to more precise genome editing[63].Cas9 proteins derived from other microorganisms such as Staphylococcus aureus(SaCas9)and Campylobacter jejuni(CjCas9)also have different PAMs,i.e.,5′-NNGRRT-3′and5′-NNNNRYAC-3′,respectively[64,65].CjCas9 is 984 aa in length and is the smallest Cas9 protein identified so far[65],which makes the development of expression cassettes for delivery into plant cells much easier.

    Besides Cas9 proteins,other nucleases with similar genome editing functions are reported,such as Cpf1,C2c1,and C2c2 proteins[66,67].Cpf1,for example,has a RuvC-like nuclease domain,but does not have any of the HNH nuclease domains that are commonly present in Cas9.Cpf1 is a single RNA-guided endonuclease lacking tracrRNA,and recognizes a T-rich PAM motif.In addition,it not only cleaves target DNA but also processes its own CRISPR RNA(crRNA)[66,68].Moreover,itgenerates staggered ends with four-or five-nucleotide overhangs,which are useful for increasing the insertion efficiency of a desired DNA fragment into the cleaved site using complementary DNA ends during HR.Application of Cpf1 might significantly enhance gene insertion efficiency at a precise genome location,a highly desirable attribute.The CRISPR-Cpf1 system has been widely tested in animals[67]as well as plants such as rice,Arabidopsis,soybean,and tobacco[69,70].

    The second Cas9-likeprotein isC2c1,which isa dual-RNA-guided DNA endonuclease that generates a staggered break of target DNA with a six-to-eight nucleotide(nt)overhang at 5′ends.This endonuclease is reported to be highly sensitive to nucleotide mismatches to the target DNA[71].C2c2 is the latest developed technique that enables genome editing at the RNA level[72].C2c2 is an RNA-guided RNA-targeting effector.It contains two highly conserved R-X-H motifs that comprise the typical higher eukaryote and prokaryote nucleotide-binding HEPN domain,but lacks an identifiable DNase catalytic site[73].The RNA molecule in this system is cleaved outside of the base-paired region by the C2c2 complex.In addition,the C2c2 complex can also cleave other RNA molecules in trans in a sequence-nonspecific manner[74].

    3.3.Single-base editing—an ultra-precise technology

    Fig.1–GUS transient expression in immature embryos of various Chinese wheat varieties after five days of co-cultivation with Agrobacterium.

    A recently invented single base editing approach enables a direct,irreversible conversion of a single-nucleotide base to another base in a programmable manner[75].This method does not generate DSB cleavages or require a donor template,and does not induce an excess of stochastic insertions and deletions.In principle,dCas9 is fused to a cytidine deaminase enzyme that mediates the direct conversion of cytidine to uridine,thereby leading to the change of a C/G pair to a T/A pair.Base editing would convert cytidines within a range of approximately five nucleotides.Four kinds of cytidine deaminase enzymes(human AID,human APOBEC3G,rat APOBEC1,and lamprey CDA1)were detected for base editing efficiency and rat APOBEC1 showed the highest deaminase activity in human cells[75].Target-AID (target-activation induced cytidine deaminase)comprised of dCas9 fused to Petromyzon marinus cytidine deaminase(PmCDA1)has been used to generate point mutations in tomato(Solanum lycopersicum)[76]and rice[77].

    3.4.Genome editing in wheat

    Chinese scientists are leading the genome editing effort in wheat.The first successful case of using the CRISPR/Cas9 system was in wheat protoplasts where mutations of wheatdisease resistance gene TaMLO were generated with a mutagenesis frequency of 28.5%[78].Later,fertile transgenic wheat plants with edited genomes were produced by the older genome editing method TALENs[79].The disruption of all three TaMLO homoeologs generated plants with resistance to powdery mildew.Soon thereafter,transgenic wheat plants carrying mutations in the TaMLO-A1 allele were generated by Cas9 technology.Moreover,the GFP,His-tag and Myc-tag genes were successfully inserted into desired loci in wheat protoplasts.A detailed CRISPR/Cas-mediated mutagenesis protocol in wheat protoplasts was recently described for target sequence selection,construction,and verification of sequence-specific sgRNAs[80].

    Table 3–Comparisons of ZFNs,TALENs,and CRISPR on genome editing.

    Targeted genes TaGASR7,TaGW2,and TaLOX2 in hexaploid heat and TdGASR7 in tetraploid durum wheat that are associated with grain yield or disease resistance,were successfully edited by transient expression systems of TECCDNA and TECCRNA;in particular,homozygous mutants and transgene-free plants were obtained in the T0generation[81].Moreover,by delivering CRISPR/Cas9 ribonucleoproteins into immature wheat embryo cells,editing of genes TaGW2 and TaGASR7 was achieved in varieties Kenong 199 and YZ814 without transgene integration[82].A dCas9 fused with cytidine deaminase enzyme enabled direct and irreversible programmed conversion of one target DNA base into another,i.e.,‘base editing'was also reported in wheat[83].In this case,the coding sequence of blue fluorescent protein(BFP)was edited to produce green fluorescent protein(GFP)by changing the 66th codon CAC(histidine)to TAC(tyrosine)without double-strand breaks or application of a foreign DNA donor.A similar single base edition,a C to T substitution,was made for the TaLOX2 gene[83].We expect the leap in wheat transformation efficiency will lead to a functional genomics research era in wheat.

    4. Perspectives in developing genetically engineered wheat

    4.1.Increased transformation efficiency provides a jump start for genome editing

    Until recently it was difficult to imagine that wheat transformation efficiency could reach 50%in any genotype[4].The realization of highly efficient transformation and improvement in techniques that remove the obstacle of genotypic limitation provides a launching pad for functional studies and application of new technologies such as genome editing.Transformation will soon no longer be a bottleneck for genome editing in wheat.Despite this,further efforts are needed to progress genetic engineering to a level of developing elite varieties that meet world food requirements.

    Overcoming genotype dependence is a revolutionary breakthrough in plant transformation.This breakthrough first came in maize.Co-overexpression of morphogenic regulator genes Bbm and Wus2 by Agrobacterium-mediated transformation of immature embryos led to high transformation frequencies in several previously recalcitrant maize inbred lines[9].In addition,the combined use of Bbm and Wus2 enhanced transformation efficiency in sorghum,rice,and sugarcane.These kinds of genes can also be used in wheat to solve the bottleneck of genotype dependence in plant regeneration in further improving transformation efficiency and accelerating the application of genome editing technology.

    4.2.Additional measures to further increase transformation efficiency

    Most current wheat transformation protocols require immature embryos for callus production.High quality immature embryos demand well-grown plants that are mostly produced in environments that require extra inputs and costs.Use of mature embryos would remove seasonal limitations and the need to maintain high-cost conditions for plant growth.

    The second measure to further increase wheat transformation efficiency is to develop and use visible selection markers.This is because detection of positive transgenic wheat plants using current molecular tools and chemical markers is still time-consuming and costly.In this regard,pigment encoded genes as visible markers can be employed for direct identification of transgenic tissues or plants.In fact,transgenic rice with purple endosperm was generated by the transference of eight anthocyanin-related genes(two regulatory genes from maize and six structural genes from Coleus)[84].Purple transgenic wheat plants have also been obtained in the authors' laboratory by transferring two anthocyanin-related genes from maize(Fig.2).We can link the anthocyanin-related genes with a selective gene such as nptII,bar,or hpt,to identify transgenic wheat plants directly by color.The application of these extra measures should further increase wheat transformation efficiency to an industrial level for future commercialization.

    4.3.Developmentofmarker-freeandtransgene-free engineered wheat plants

    For a long time,selective markers used in transgenic plants were antibiotic resistance genes that caused a focus of public concern.Current approaches to generate marker-free transgenic plants use FLP/FRT and Cre/lox site-specific recombination,multi-auto-transformation,co-transformation,and marker-free binary vectors [85]. Among these,co-transformation is the most efficient and simple technique[86],where a co-transformed T-DNA vector that carries the selective marker can be separated from the one carrying the target gene by genetic segregation.Visible markers are an alternate way for marker-free transformation when they are linked with a selective marker.Transgenic plants with no color are marker free.The use of a visible marker linked with the genome editing cassette can accelerate detection rates for positively edited cells or plants because the presence of the color suggests expression of genome editing machinery and hence the plants have a higher possibility of being edited.

    Fig.2–Primary transformation of visible markers(two anthocyanin-related genes from maize)into wheat by Agrobacterium-mediation.(a)Immature wheat embryos infected by the Agrobacterium containing a normal vector without a visible markers.(b)Expression of visible marker genes in immature wheat embryos following Agrobacterium infection.(c)Transgenic wheat plants transformed with normal vectors without visible markers.(d)Transformed wheat plants expressing a visible marker.

    The presence of genome editing technology makes transgene-free genetic engineering possible.Currently,there are three promising methods to create transgene-free plants:TECCDNA,TECCRNA,and direct transfer of TALENs or Cas9 protein into cells[81,87–89].Wheat transgene-free mutant plants without herbicide selection have been obtained by these methods[81,82].However,all three methods have a low efficiency due to lack of selection during plant regeneration from tissue culture.Transformation efficiency for the model wheat genotype Fielder was>50%with selection whereas it was only 3%without selection pressure[40].The problem of low efficiency in generating transgene-free plants can be alleviated by use of visible markers,where transgenic cells can be selected by color after Agrobacterium infection,and transgene-free plants can be obtained in the following generation when the visible marker disappears.

    4.4.Increasing the accuracy of wheat genome editing

    Although many examples demonstrate that genome editing is a powerful tool for generating future elite crops,some problems remain.One problem is undesired off targeting due to the nature of the Cas9 enzyme to tolerate mismatches between the sgRNA and target DNA sites[44,90,91].A few strategies have been developed to improve the specificity of Cas9-mediated genome editing.One way to reduce off-targeting during genome editing is to use a pair of Cas9 nickases,i.e.,one Cas9 and one D10A,a nickase-mutated version of Cas9 that produces a single-strand break(SSB)[44,90].Two distinct sgRNAs can then be used,resulting in SSBs on each of the two DNA strands,leading to site-specific DSBs.The Cas9-D10A system has been tested in human cells and shown to reduce off-target activity by 50-to 1500-fold[92].Recent studies demonstrated that Cpf1 has much greater specificity than classical Cas9 nucleases[93].

    For many existing elite varieties,genetic variation often occurs in a few bases[94].Current methods of identifying point mutations(such as targeted induced local lesions in genomes,or TILLING)are time-consuming and only detect limited numbers of point mutations[95].Thus,single-base editing could play a much larger role in this regard.The dCas9-cytidine deaminase system is very efficient,but is limited to the conversion of C/G to T/A,whereas C to G replacement occurs only at low frequency[77].Additional studies are needed to expand editing capabilities that should contribute to more efficient plant genetic engineering.

    5.Conclusions

    An efficient wheat transformation system has now been established,providing the required platform for developing genome editing technologies.It can be expected that more genes will be modified to increase yield and enhance stress tolerance. These technologies enable production of transgene-free varieties for commercialization.We can now solve food security issues by biotechnology applications.

    Acknowledgments

    We are grateful for financial support from the National Transgenic Key Project of the Chinese Natural Science Foundation (2016ZX08010-004,2016ZX08009001),andthe Beijing Natural Science Foundation(6162009).We thank Prof.Long Mao,Institute of Crop Science,CAAS,for critical revision and editing of the manuscript.

    R E F E R E N C E S

    [1]H.C.Godfray,J.R.Beddington,I.R.Crute,L.Haddad,D.Lawrence,J.F.Muir,J.Pretty,S.Robinson,S.M.Thomas,C.Toulmin,Food security:the challenge of feeding 9 billion people,Science 327(2010)812–818.

    [2]P.L.Bhalla,Genetic engineering of wheat-current challenges and opportunities,Trends Biotechnol.24(2006)305–311.

    [3]J.Li,X.Ye,B.An,L.Du,H.Xu,Genetic transformation of wheat:current status and future prospects,Plant Biotechnol.Rep.6(2012)183–193.

    [4]Y.Ishida,M.Tsunashima,Y.Hiei,T.Komari,Wheat(Triticum aestivum L.),in:K.Wang(Ed.),Methods in Molecular Biology,Agrobacterium Protocols,3rd EdnSpringer Science+Business Media,New York,USA 2014,pp.189–198.

    [5]J.San Filippo,P.Sung,H.Klein,Mechanism of eukaryotic homologous recombination,Annu.Rev.Biochem.77(2008)229–257.

    [6]M.R.Lieber,The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway,Annu.Rev.Biochem.79(2010)181–211.

    [7]J.R.Chapman,M.R.Taylor,S.J.Boulton,Playing the end game:DNA double-strand break repair pathway choice,Mol.Cell 47(2012)497–510.

    [8]F.G.Jiang,J.A.Doudna,CRISPR-Cas9 structures and mechanisms,Annu.Rev.Biophys.46(2017)505–529.

    [9]K.Lowe,E.Wu,N.Wang,G.Hoerster,C.Hastings,M.J.Cho,C.Scelonge,B.Lenderts,M.Chamberlin,J.Cushatt,L.Wang,L.Ryan,T.Khan,J.Chow-Yiu,W.Hua,M.Yu,J.Banh,Z.Bao,K.Brink,E.Igo,B.Rudrappa,P.M.Shamseer,W.Bruce,L.Newman,B.Shen,P.Zheng,D.Bidney,S.C.Falco,I.J.Register,Z.Y.Zhao,D.Xu,T.J.Jones,W.J.Gordon-Kamm,Morphogenic regulators Baby boom and Wuschel improve monocot transformation,Plant Cell(2016)1998–2015.

    [10]V.Vasil,A.M.Castillo,M.E.Fromm,I.K.Vasil,Herbicide resistant fertile transgenic wheat plants obtained by microprojectile bombardment of regenerable embryogenic callus,Nat.Biotechnol.10(1992)667–674.

    [11]H.J.Xu,J.L.Pang,X.G.Ye,L.P.Du,L.C.Li,Z.Y.Xin,Y.Z.Ma,J.P.Chen,J.Chen,S.H.Cheng,H.Y.Wu,Study on the gene transferring of Nib8 into wheat for its resistance to the yellow mosaic virus by bombardment,Acta Agron.Sin.27(2001)688–693(in Chinese with English abstract).

    [12]X.G.Ye,L.Kang,H.J.Xu,L.P.Du,Transferring glucose oxidase gene into wheat by biolistic particles,Acta Agron.Sin.31(2005)686–691(in Chinese with English abstract).

    [13]Q.Yao,L.Cong,J.L.Chang,K.X.Li,G.X.Yang,G.Y.He,Low copy number gene transfer and stable expression in a commercial wheat cultivar via particle bombardment,J.Exp.Bot.57(2006)3737–3746.

    [14]Q.Yao,L.Cong,G.He,J.Chang,K.Li,G.Yang,Optimization of wheat co-transformation procedure with gene cassettes resulted in an improvement in transformation frequency,Mol.Biol.Rep.34(2007)61–67.

    [15]N.N.Shi,G.Y.He,K.X.Li,H.Z.Wang,G.P.Chen,Y.Xu,Transferring a gene expression cassette lacking the vector backbone sequences of the 1Ax1 high molecular weight glutenin subunit into two Chinese hexaploid wheat genotypes,Agric.Sci.China 6(2007)381–390.

    [16]L.Chen,Z.Zhang,H.Liang,H.Liu,L.Du,H.Xu,Z.Xin,Overexpression of TiERF1 enhances resistance to sharp eyespot in transgenic wheat,J.Exp.Bot.59(2008)4195–4204.

    [17]S.Q.Gao,M.Chen,L.Q.Xia,H.J.Xiu,Z.S.Xu,L.C.Li,C.P.Zhao,X.G.Cheng,Y.Z.Ma,A cotton(Gossypium hirsutum)DRE-binding transcription factor gene,GhDREB,confers enhanced tolerance to drought,high salt,and freezing stresses in transgenic wheat,Plant Cell Rep.28(2009)301–311.

    [18]N.Dong,X.Liu,Y.Lu,L.Du,H.Xu,H.Liu,Z.Xin,Z.Zhang,Overexpression of TaPIEP1,a pathogen-induced ERF gene of wheat,confers host-enhanced resistance to fungal pathogen Bipolaris sorokiniana,Funct.Integr.Genomics 10(2010)215–226.

    [19]Z.Li,M.Zhou,Z.Zhang,L.Ren,L.Du,B.Zhang,H.Xu,Z.Xin,Expression of a radish defensin in transgenic wheat confers increased resistance to Fusarium graminearum and Rhizoctonia cerealis,Funct.Integr.Genomics 11(2011)63–70.

    [20]Z.Zhang,X.Liu,X.Wang,M.Zhou,X.Zhou,X.Ye,X.Wei,An R2R3 MYB transcription factor in wheat,TaPIMP1,mediates host resistance to Bipolaris sorokiniana and drought stresses through regulation of defense-and stress-related genes,New Phytol.196(2012)1155–1170.

    [21]M.Chen,L.Sun,H.Wu,J.Chen,Y.Ma,X.Zhang,L.Du,S.Cheng,B.Zhang,X.Ye,J.Pang,X.Zhang,L.Li,I.B.Andika,J.Chen,H.Xu,Durable field resistance to wheat yellow mosaic virus in transgenic wheat containing the antisense virus polymerase gene,Plant Biotechnol.J.12(2014)447–456.

    [22]W.Liu,M.Frick,R.Huel,C.L.Nykiforuk,X.Wang,D.A.Gaudet,F.Eudes,R.L.Conner,A.Kuzyk,Q.Chen,Z.Kang,A.Laroche,The stripe rust resistance gene Yr10 encodes an evolutionaryconserved and unique CC-NBS-LRR sequence in wheat,Mol.Plant 7(2014)1740–1755.

    [23]L.Gao,S.Wang,X.Y.Li,X.J.Wei,Y.J.Zhang,H.Y.Wang,D.Q.Liu,Expression and functional analysis of a pathogenesisrelated protein 1 gene,TcLr19PR1,involved in wheat resistance against leaf rust fungus,Plant Mol.Biol.Report.33(2015)797–805.

    [24]W.Chen,Q.Zhu,H.Wang,J.Xiao,L.Xing,P.Chen,W.Jin,X.E.Wang,Competitive expression of endogenous wheat CENH3 may lead to suppression of alien ZmCENH3 in transgenic wheat× maize hybrids,J.Genet.Genomics 42(2015)639–649.

    [25]W.Cheng,X.S.Song,H.P.Li,L.H.Cao,K.Sun,X.L.Qiu,Y.B.Xu,P.Yang,T.Huang,J.B.Zhang,B.Qu,Y.C.Liao,Host-induced gene silencing of an essential chitin synthase gene confers durable resistance to fusarium head blight and seedling blight in wheat,Plant Biotechnol.J.13(2015)1335–1345.

    [26]X.He,B.Qu,W.Li,X.Zhao,W.Teng,W.Ma,Y.Ren,B.Li,Z.Li,Y.Tong,The nitrate-inducible NAC transcription factor TaNAC2-5A controls nitrate response and increases wheat yield,Plant Physiol.169(2015)1991–2005.

    [27]X.N.Wei,F.D.Shen,Y.T.Hong,W.Rong,L.P.Du,X.Liu,H.J.Xu,L.J.Ma,Z.Y.Zhang,The wheat calcium-dependent protein kinase TaCPK7-D positively regulates host resistance to sharp eyespot disease,Mol.Plant Pathol.17(2016)1252–1264.

    [28]X.N.Wei,T.L.Shan,Y.T.Hong,H.J.Xu,X.Liu,Z.Y.Zhang,TaPIMP2,a pathogen-induced MYB protein in wheat,contributes to host resistance to common root rot caused by Bipolaris sorokiniana,Sci.Rep.7(2017)1754.

    [29]X.G.Ye,S.Shirley,H.J.Xu,L.P.Du,T.Clement,Regular production of transgenic wheat mediated by Agrobacterium tumefaciens,Agric.Sci.China 1(2002)239–244.

    [30]X.G.Ye,H.M.Cheng,H.J.Xu,L.P.Du,W.Z.Lu,Y.H.Huang,Development of transgenic wheat plants with chitinase and β-1,3-glucosanase genes and their resistance to fusarium head blight,Acta Agron.Sin.31(2005)583–586(in Chinese with English abstract).

    [31]X.G.Ye,S.Shirley,H.J.Xu,L.P.Du,Y.H.Huang,W.Z.Lu,T.Clemente,Transformation and identification of BCL and RIP genes related to cell apoptosis into wheat mediated by Agrobacterium,Acta Agron.Sin.31(2005)1389–1393(in Chinese with English abstract).

    [32]J.R.Li,W.Zhao,Q.Z.Li,X.G.Ye,B.Y.An,X.Li,X.S.Zhang,RNA silencing of Waxy gene results in low levels of amylose in the seeds of transgenic wheat(Triticum aestivum L.),Acta Genet.Sin.32(2005)846–854(in Chinese with English abstract).

    [33]T.J.Zhao,S.Y.Zhao,H.M.Chen,Q.Z.Zhao,Z.M.Hu,B.K.Hou,G.M.Xia,Transgenic wheat progeny resistant to powdery mildew generated by Agrobacterium inoculum to the basal portion of wheat seedlings,Plant Cell Rep.25(2006)1199–1204.

    [34]H.Wu,A.Doherty,H.D.Jones,Efficient and rapid Agrobacterium-mediated genetic transformation of durum wheat(Triticum turgidum L.var.durum)using additional virulence genes,Transgenic Res.17(2008)425–436.

    [35]L.Ding,S.Li,J.Gao,Y.Wang,G.Yang,G.He,Optimization of Agrobacterium-mediated transformation conditions in mature embryos of elite wheat,Mol.Biol.Rep.36(2009)29–36.

    [36]Y.L.Wang,M.X.Xu,G.X.Yin,L.L.Tao,D.W.Wang,X.G.Ye,Transgenic wheat plants derived from Agrobacteriummediated transformation of mature embryo tissues,Cereal Res.Commun.37(2009)1–12.

    [37]Y.He,H.D.Jones,S.Chen,X.M.Chen,D.W.Wang,K.X.Li,D.S.Wang,L.Q.Xia,Agrobacterium-mediated transformation of durum wheat(Triticum turgidum L.var.durum cv Stewart)with improved efficiency,J.Exp.Bot.61(2010)1567–1581.

    [38]G.P.Wang,X.D.Yu,Y.W.Sun,H.D.Jones,L.Q.Xia,Generation of marker-and/or backbone-free transgenic wheat plants via Agrobacterium-mediated transformation,Front.Plant Sci.7(2016)1324.

    [39]K.Wang,H.Y.Liu,L.P.Du,X.G.Ye,Generation of marker-free transgenic hexaploid wheat via an Agrobacterium-mediated co-transformation strategy in commercial Chinese wheat varieties,Plant Biotechnol.J.15(2017)614–623.

    [40]T.Richardson,J.Thistleton,T.J.Higgins,C.Howitt,M.Ayliffe,Efficient Agrobacterium transformation of elite wheat germplasm without selection,Plant Cell Tiss.Org.119(2014)647–659.

    [41]M.Cheng,J.E.Fry,S.Pang,H.Zhou,C.M.Hironaka,D.R.Duncan,T.W.Conner,Y.Wan,Genetic transformation of wheat mediated by Agrobacterium tumefaciens,Plant Physiol.115(1997)971–980.

    [42]L.L.Tao,G.X.Yin,L.P.Du,Z.Y.Shi,M.Y.She,H.J.Xu,X.G.Ye,Improvement of plant regeneration from immature embryos of wheat infected by Agrobacterium tumefaciens,Agric.Sci.China 10(2011)317–326.

    [43]X.M.Wang,X.Ren,G.X.Yin,K.Wang,J.R.Li,L.P.Du,H.J.Xu,X.G.Ye,Effects of environmental temperature on the regeneration frequency of the immature embryos of wheat(Triticum aestivum L.),J.Inter.Agric.13(2014)722–732.

    [44]L.Cong,F.A.Ran,D.Cox,S.L.Lin,R.Barretto,N.Habib,P.D.Hsu,X.B.Wu,W.Y.Jiang,L.A.Marraffini,F.Zhang,Multiplex genome engineering using CRISPR/Cas systems,Science 339(2013)819–823.

    [45]P.Mali,L.H.Yang,K.M.Esvelt,J.Aach,M.Guell,J.E.DiCarlo,J.E.Norville,G.M.Church,RNA-guided human genome engineering via Cas9,Science 339(2013)823–826.

    [46]A.Tovkach,V.Zeevi,T.Tzfira,A toolbox and procedural notes for characterizing novel zinc finger nucleases for genome editing in plant cells,Plant J.57(2009)747–757.

    [47]V.M.Bedell,Y.Wang,J.M.Campbell,T.L.Poshusta,C.G.Starker,R.G.Krug,W.Tan,S.G.Penheiter,A.C.Ma,A.Y.Leung,S.C.Fahrenkrug,D.F.Carlson,D.F.Voytas,K.J.Clark,J.J.Essner,S.C.Ekker,In vivo genome editing using a high-efficiency TALEN system,Nature 491(2012)114–118.

    [48]Y.Zhang,F.Zhang,X.Li,J.A.Baller,Y.Qi,C.G.Starker,A.J.Bogdanove,D.F.Voytas,Transcription activator-like effector nucleases enable efficient plant genome engineering,Plant Physiol.161(2013)20–27.

    [49]J.F.Li,J.E.Norville,J.Aach,M.McCormack,D.Zhang,J.Bush,G.M.Church,J.Sheen,Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9,Nat.Biotechnol.31(2013)688–691.

    [50]Y.Li,R.Moore,M.Guinn,L.Bleris,Transcription activatorlike effector hybrids for conditional control and rewiring of chromosomal transgene expression,Sci.Rep.2(2012)897.

    [51]J.P.Tremblay,P.Chapdelaine,Z.Coulombe,J.Rousseau,Transcription activator-like effector proteins induce the expression of the frataxin gene,Hum.Gene Ther.23(2012)883–890.

    [52]J.D.Sander,J.K.Joung,CRISPR-Cas systems for editing,regulating and targeting genomes,Nat.Biotechnol.32(2014)347–355.

    [53]L.S.Qi,M.H.Larson,L.A.Gilbert,J.A.Doudna,J.S.Weissman,A.P.Arkin,W.A.Lim,Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression,Cell 152(2013)1173–1183.

    [54]A.W.Snowden,P.D.Gregory,C.C.Case,C.O.Pabo,Genespecific targeting of H3K9 methylation is sufficient for initiating repression in vivo,Curr.Biol.12(2002)2159–2166.

    [55]A.G.Rivenbark,S.Stolzenburg,A.S.Beltran,X.Yuan,M.G.Rots,B.D.Strahl,P.Blancafort,Epigenetic reprogramming of cancer cells via targeted DNA methylation,Epigenetics 7(2012)350–360.

    [56]M.L.Maeder,J.F.Angstman,M.E.Richardson,S.J.Linder,V.M.Cascio,S.Q.Tsai,Q.H.Ho,J.D.Sander,D.Reyon,B.E.Bernstein,J.F.Costello,M.F.Wilkinson,J.K.Joung,Targeted DNA demethylation and activation of endogenous genes using programmable TALE-TET1 fusion proteins,Nat.Biotechnol.31(2013)1137–1142.

    [57]E.M.Mendenhall,K.E.Williamson,D.Reyon,J.Y.Zou,O.Ram,J.K.Joung,B.E.Bernstein,Locus-specific editing of histone modifications at endogenous enhancers,Nat.Biotechnol.31(2013)1133–1136.

    [58]I.B.Hilton,A.M.D'Ippolito,C.M.Vockley,P.I.Thakore,G.E.Crawford,T.E.Reddy,C.A.Gersbach,Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers,Nat.Biotechnol.33(2015)510–517.

    [59]Y.Nihongaki,F.Kawano,T.Nakajima,M.Sato,Photoactivatable CRISPR-Cas9 for optogenetic genome editing,Nat.Biotechnol.33(2015)755–760.

    [60]Y.Nihongaki,S.Yamamoto,F.Kawano,H.Suzuki,M.Sato,CRISPR-Cas9-based photoactivatable transcription system,Chem.Biol.22(2015)169–174.

    [61]L.R.Polstein,C.A.Gersbach,A light-inducible CRISPR-Cas9 system for control of endogenous gene activation,Nat.Chem.Biol.11(2015)198–200.

    [62]C.M.Lee,T.J.Cradick,G.Bao,The Neisseria meningitidis CRISPR-Cas9 system enables specific genome editing in mammalian cells,Mol.Ther.24(2016)645–654.

    [63]E.Ma,L.B.Harrington,M.R.O'Connell,K.Zhou,J.A.Doudna,Single-stranded DNA cleavage by divergent CRISPR-Cas9 enzymes,Mol.Cell 60(2015)398–407.

    [64]F.A.Ran,L.Cong,W.X.Yan,D.A.Scott,J.S.Gootenberg,A.J.Kriz,B.Zetsche,O.Shalem,X.Wu,K.S.Makarova,E.V.Koonin,P.A.Sharp,F.Zhang,In vivo genome editing using Staphylococcus aureus Cas9,Nature 520(2015)186–191.

    [65]E.Kim,T.Koo,S.W.Park,D.Kim,K.Kim,H.Y.Cho,D.W.Song,K.J.Lee,M.H.Jung,S.Kim,J.H.Kim,J.H.Kim,J.S.Kim,In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni,Nat.Commun.8(2017)14500.

    [66]I.Fonfara,H.Richter,M.Bratovic,A.Le Rhun,E.Charpentier,The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA,Nature 532(2016)517–521.

    [67]B.Zetsche,J.S.Gootenberg,O.O.Abudayyeh,I.M.Slaymaker,K.S.Makarova,P.Essletzbichler,S.E.Volz,J.Joung,J.van der Oost,A.Regev,E.V.Koonin,F.Zhang,Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system,Cell 163(2015)759–771.

    [68]B.Zetsche,M.Heidenreich,P.Mohanraju,I.Fedorova,J.Kneppers,E.M.DeGennaro,N.Winblad,S.R.Choudhury,O.O.Abudayyeh,J.S.Gootenberg,W.Y.Wu,D.A.Scott,K.Severinov,J.van der Oost,F.Zhang,Multiplex gene editing by CRISPR-Cpf1 using a single crRNA array,Nat.Biotechnol.35(2017)31–34.

    [69]R.Xu,R.Qin,H.Li,D.Li,L.Li,P.Wei,J.Yang,Generation of targeted mutant rice using a CRISPR-Cpf1 system,Plant Biotechnol.J.15(2017)713–717.

    [70]X.Tang,L.G.Lowder,T.Zhang,A.A.Malzahn,X.Zheng,D.F.Voytas,Z.Zhong,Y.Chen,Q.Ren,Q.Li,E.R.Kirkland,Y.Zhang,Y.Qi,A CRISPR-Cpf1 system for efficient genome editing and transcriptional repression in plants,Nat.Plants 3(2017)17103.

    [71]L.Liu,P.Chen,M.Wang,X.Li,J.Wang,M.Yin,Y.Wang,C2c1-sgRNA complex structure reveals a RNA-guided DNA cleavage mechanism,Mol.Cell 65(2017)310–322.

    [72]O.O.Abudayyeh,J.S.Gootenberg,S.Konermann,J.Joung,I.M.Slaymaker,D.B.Cox,S.Shmakov,K.S.Makarova,E.Semenova,L.Minakhin,K.Severinov,A.Regev,E.S.Lander,E.V.Koonin,F.Zhang,C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector,Science 353(2016)aaf5573.

    [73]S.Shmakov,O.O.Abudayyeh,K.S.Makarova,Y.I.Wolf,J.S.Gootenberg,E.Semenova,L.Minakhin,J.Joung,S.Konermann,K.Severinov,F.Zhang,E.V.Koonin,Discovery and functional characterization of diverse class 2 CRISPR-Cas systems,Mol.Cell 60(2015)385–397.

    [74]A.East-Seletsky,M.R.O'Connell,S.C.Knight,D.Burstein,J.H.Cate,R.Tjian,J.A.Doudna,Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection,Nature 538(2016)270–273.

    [75]A.C.Komor,Y.B.Kim,M.S.Packer,J.A.Zuris,D.R.Liu,Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage,Nature 533(2016)420–424.

    [76]Z.Shimatani,S.Kashojiya,M.Takayama,R.Terada,T.Arazoe,H.Ishii,H.Teramura,T.Yamamoto,H.Komatsu,K.Miura,H.Ezura,K.Nishida,T.Ariizumi,A.Kondo,Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion,Nat.Biotechnol.35(2017)441–443.

    [77]Y.Lu,J.K.Zhu,Precise editing of a target base in the rice genome using a modified CRISPR/Cas9 system,Mol.Plant 10(2017)523–525.

    [78]Q.W.Shan,Y.P.Wang,K.L.Chen,Z.Liang,J.Li,Y.Zhang,K.Zhang,J.X.Liu,D.F.Voytas,X.L.Zheng,Y.Zhang,C.X.Gao,Rapid and efficient gene modification in rice and Brachypodium using TALENs,Mol.Plant 6(2013)1365–1368.

    [79]Y.Wang,X.Cheng,Q.Shan,Y.Zhang,J.Liu,C.Gao,J.L.Qiu,Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew,Nat.Biotechnol.32(2014)947–951.

    [80]Q.Shan,Y.Wang,J.Li,C.Gao,Genome editing in rice and wheat using the CRISPR/Cas system,Nat.Protoc.9(2014)2395–2410.

    [81]Y.Zhang,Z.Liang,Y.Zong,Y.P.Wang,J.X.Liu,K.L.Chen,J.L.Qiu,C.X.Gao,Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA,Nat.Commun.7(2016)12617.

    [82]Z.Liang,K.Chen,T.Li,Y.Zhang,Y.Wang,Q.Zhao,J.Liu,H.Zhang,C.Liu,Y.Ran,C.Gao,Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes,Nat.Commun.8(2017)14261.

    [83]Y.Zong,Y.Wang,C.Li,R.Zhang,K.Chen,Y.Ran,J.L.Qiu,D.Wang,C.Gao,Precise base editing in rice,wheat and maize with a Cas9-cytidine deaminase fusion,Nat.Biotechnol.35(2017)438–440.

    [84]Q.Zhu,S.Yu,D.Zeng,H.Liu,H.Wang,Z.Yang,X.Xie,R.Shen,J.Tan,H.Li,X.Zhao,Q.Zhang,Y.Chen,J.Guo,L.Chen,Y.G.Liu,Development of“purple endosperm rice”by engineering anthocyanin biosynthesis in the endosperm with a high-efficiency transgene stacking system,Mol.Plant 10(2017)918–929.

    [85]A.C.McCormac,M.R.Fowler,D.F.Chen,M.C.Elliott,Efficient co-transformation of Nicotiana tabacum by two independent T-DNAs,the effect of T-DNA size and implications for genetic separation,Transgenic Res.10(2001)143–155.

    [86]N.Tuteja,S.Verma,R.K.Sahoo,S.Raveendar,I.N.Reddy,Recent advances in development of marker-free transgenic plants:regulation and biosafety concerns,J.Biosci.37(2012)167–197.

    [87]S.Luo,J.Li,T.J.Stoddard,N.J.Baltes,Z.L.Demorest,B.M.Clasen,A.Coffman,A.Retterath,L.Mathis,D.F.Voytas,F.Zhang,Non-transgenic plant genome editing using purified sequence-specific nucleases,Mol.Plant 8(2015)1425–1427.

    [88]T.J.Stoddard,B.M.Clasen,N.J.Baltes,Z.L.Demorest,D.F.Voytas,F.Zhang,S.Luo,Targeted mutagenesis in plant cells through transformation of sequence-specific nuclease mRNA,PLoS One 11(2016),e0154634.

    [89]J.W.Woo,J.Kim,S.I.Kwon,C.Corvalan,S.W.Cho,H.Kim,S.G.Kim,S.T.Kim,S.Choe,J.S.Kim,DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins,Nat.Biotechnol.33(2015)1162–1164.

    [90]M.Jinek,K.Chylinski,I.Fonfara,M.Hauer,J.A.Doudna,E.Charpentier,A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity,Science 337(2012)816–821.

    [91]S.H.Sternberg,S.Redding,M.Jinek,E.C.Greene,J.A.Doudna,DNA interrogation by the CRISPR RNA-guided endonuclease Cas9,Nature 507(2014)62–67.

    [92]F.A.Ran,P.D.Hsu,C.Y.Lin,J.S.Gootenberg,S.Konermann,A.E.Trevino,D.A.Scott,A.Inoue,S.Matoba,Y.Zhang,F.Zhang,Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity,Cell 154(2013)1380–1389.

    [93]D.Kim,J.Kim,J.K.Hur,K.W.Been,S.H.Yoon,J.S.Kim,Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells,Nat.Biotechnol.34(2016)863–868.

    [94]K.Zhao,C.W.Tung,G.C.Eizenga,M.H.Wright,M.L.Ali,A.H.Price,G.J.Norton,M.R.Islam,A.Reynolds,J.Mezey,A.M.McClung,C.D.Bustamante,S.R.McCouch,Genome-wide association mapping reveals a rich genetic architecture of complex traits in Oryza sativa,Nat.Commun.2(2011)467.

    [95]A.J.Slade,S.I.Fuerstenberg,D.Loeffler,M.N.Steine,D.Facciotti,A reverse genetic,nontransgenic approach to wheat crop improvement by tilling,Nat.Biotechnol.23(2005)75–81.

    精品少妇一区二区三区视频日本电影 | 国产精品久久久久久精品古装| 女性被躁到高潮视频| 夜夜骑夜夜射夜夜干| 一边摸一边抽搐一进一出视频| 我要看黄色一级片免费的| 欧美日韩av久久| 日本欧美国产在线视频| 久久97久久精品| 国产免费视频播放在线视频| 亚洲精品国产av成人精品| 亚洲自偷自拍图片 自拍| 国产成人a∨麻豆精品| 亚洲,一卡二卡三卡| 国产av国产精品国产| av卡一久久| 天美传媒精品一区二区| 久久国产亚洲av麻豆专区| 丝袜美足系列| 久久精品亚洲熟妇少妇任你| 欧美精品亚洲一区二区| 国产精品一区二区精品视频观看| 国产精品久久久久久精品电影小说| 一级毛片我不卡| av在线播放精品| 婷婷色综合www| 大片免费播放器 马上看| 亚洲自偷自拍图片 自拍| 一边摸一边做爽爽视频免费| 另类精品久久| av在线app专区| 亚洲伊人色综图| 亚洲欧美成人精品一区二区| 老司机影院毛片| 制服丝袜香蕉在线| 这个男人来自地球电影免费观看 | av电影中文网址| 韩国av在线不卡| 欧美av亚洲av综合av国产av | 成人国产麻豆网| www.精华液| 国产一区二区 视频在线| 9191精品国产免费久久| 美女国产高潮福利片在线看| 青春草国产在线视频| 亚洲精品在线美女| 啦啦啦啦在线视频资源| 无遮挡黄片免费观看| 色网站视频免费| 菩萨蛮人人尽说江南好唐韦庄| 丝袜美足系列| av在线老鸭窝| 老鸭窝网址在线观看| 国产激情久久老熟女| a级毛片黄视频| 美女午夜性视频免费| 久久精品国产亚洲av高清一级| 最近最新中文字幕免费大全7| 日韩免费高清中文字幕av| 亚洲伊人色综图| 色网站视频免费| 成人国产av品久久久| 十八禁网站网址无遮挡| 如日韩欧美国产精品一区二区三区| 精品第一国产精品| 婷婷成人精品国产| 国产免费现黄频在线看| 18禁裸乳无遮挡动漫免费视频| 精品国产国语对白av| 国产深夜福利视频在线观看| 亚洲成色77777| 精品国产一区二区久久| 老司机亚洲免费影院| 国产精品麻豆人妻色哟哟久久| 亚洲国产欧美日韩在线播放| 男人添女人高潮全过程视频| 视频在线观看一区二区三区| 青春草亚洲视频在线观看| 麻豆乱淫一区二区| 大香蕉久久网| 一本色道久久久久久精品综合| 亚洲精品国产av成人精品| 在线观看一区二区三区激情| 久久免费观看电影| xxxhd国产人妻xxx| 亚洲少妇的诱惑av| 老鸭窝网址在线观看| 国产视频首页在线观看| 天天躁夜夜躁狠狠躁躁| 亚洲第一区二区三区不卡| 狂野欧美激情性xxxx| 久久精品亚洲熟妇少妇任你| 免费在线观看完整版高清| 国产一区二区三区av在线| 亚洲精品久久午夜乱码| av在线app专区| 亚洲第一区二区三区不卡| 欧美日韩亚洲国产一区二区在线观看 | 亚洲国产精品一区三区| 亚洲av成人不卡在线观看播放网 | 在线精品无人区一区二区三| 欧美人与性动交α欧美精品济南到| av国产精品久久久久影院| 久久久久久人人人人人| 国产伦人伦偷精品视频| 欧美精品av麻豆av| 亚洲国产欧美日韩在线播放| 成年美女黄网站色视频大全免费| 制服人妻中文乱码| 久久久久久人人人人人| 欧美日韩综合久久久久久| 自拍欧美九色日韩亚洲蝌蚪91| 中文乱码字字幕精品一区二区三区| 国产淫语在线视频| 亚洲色图 男人天堂 中文字幕| 久久97久久精品| 亚洲国产精品国产精品| av网站免费在线观看视频| 夫妻午夜视频| 女人被躁到高潮嗷嗷叫费观| 大话2 男鬼变身卡| 黑人欧美特级aaaaaa片| 九九爱精品视频在线观看| 99国产综合亚洲精品| 亚洲综合色网址| 一二三四在线观看免费中文在| 欧美老熟妇乱子伦牲交| 亚洲天堂av无毛| 嫩草影院入口| 精品人妻在线不人妻| 国产黄频视频在线观看| 日本黄色日本黄色录像| 99精品久久久久人妻精品| 日日爽夜夜爽网站| 欧美av亚洲av综合av国产av | 国产欧美日韩一区二区三区在线| 亚洲精品aⅴ在线观看| www.熟女人妻精品国产| 纯流量卡能插随身wifi吗| 久久国产精品大桥未久av| 成年女人毛片免费观看观看9 | 纯流量卡能插随身wifi吗| 国产高清不卡午夜福利| 一级毛片电影观看| 国产深夜福利视频在线观看| 汤姆久久久久久久影院中文字幕| 精品国产国语对白av| avwww免费| 天天操日日干夜夜撸| 国产人伦9x9x在线观看| 日本91视频免费播放| av网站免费在线观看视频| 亚洲情色 制服丝袜| 天天躁夜夜躁狠狠躁躁| 视频在线观看一区二区三区| 一本久久精品| 欧美变态另类bdsm刘玥| 日韩制服骚丝袜av| 久久人人爽人人片av| 国产欧美亚洲国产| 一级毛片电影观看| 亚洲美女搞黄在线观看| 亚洲精品自拍成人| 男男h啪啪无遮挡| 国产成人系列免费观看| 日本午夜av视频| 欧美乱码精品一区二区三区| 国产成人一区二区在线| 国产成人欧美在线观看 | 热99久久久久精品小说推荐| 久久这里只有精品19| 国产精品熟女久久久久浪| 国产伦理片在线播放av一区| 成人三级做爰电影| 18禁动态无遮挡网站| 天堂中文最新版在线下载| 亚洲国产精品一区三区| 巨乳人妻的诱惑在线观看| 亚洲精品久久久久久婷婷小说| 亚洲色图综合在线观看| 一区二区日韩欧美中文字幕| e午夜精品久久久久久久| 黄色视频在线播放观看不卡| 人人妻人人澡人人爽人人夜夜| 精品午夜福利在线看| 日韩中文字幕欧美一区二区 | 桃花免费在线播放| 一边摸一边做爽爽视频免费| 大陆偷拍与自拍| 国产片内射在线| 亚洲av成人不卡在线观看播放网 | 成年美女黄网站色视频大全免费| 啦啦啦在线免费观看视频4| 久久久国产欧美日韩av| 久久性视频一级片| 高清欧美精品videossex| 尾随美女入室| 成人三级做爰电影| 女人高潮潮喷娇喘18禁视频| 欧美人与性动交α欧美精品济南到| 2021少妇久久久久久久久久久| 亚洲精华国产精华液的使用体验| 国产男人的电影天堂91| 狠狠精品人妻久久久久久综合| 亚洲欧美一区二区三区黑人| av在线播放精品| 青春草视频在线免费观看| 久久免费观看电影| 咕卡用的链子| 人人妻人人爽人人添夜夜欢视频| 一级毛片 在线播放| 免费黄色在线免费观看| 成年美女黄网站色视频大全免费| 一二三四中文在线观看免费高清| 国产又爽黄色视频| 人人妻人人澡人人看| av女优亚洲男人天堂| 日本黄色日本黄色录像| av天堂久久9| 日本91视频免费播放| 成人手机av| 最近手机中文字幕大全| 不卡视频在线观看欧美| 黑人猛操日本美女一级片| 国产爽快片一区二区三区| 亚洲精品aⅴ在线观看| 91精品国产国语对白视频| 在线观看免费视频网站a站| 又大又黄又爽视频免费| 国产乱来视频区| 色网站视频免费| 精品第一国产精品| h视频一区二区三区| 免费在线观看黄色视频的| 欧美国产精品va在线观看不卡| 亚洲久久久国产精品| 桃花免费在线播放| 国产爽快片一区二区三区| 电影成人av| 亚洲国产最新在线播放| 不卡视频在线观看欧美| av又黄又爽大尺度在线免费看| 久久人人爽人人片av| 一级毛片黄色毛片免费观看视频| 亚洲 欧美一区二区三区| 高清在线视频一区二区三区| 日韩人妻精品一区2区三区| xxxhd国产人妻xxx| 久久av网站| 国产成人欧美在线观看 | 捣出白浆h1v1| 久久久久精品国产欧美久久久 | 一本久久精品| 大香蕉久久网| av又黄又爽大尺度在线免费看| 欧美 亚洲 国产 日韩一| 女人高潮潮喷娇喘18禁视频| 国产成人精品久久二区二区91 | 一区二区三区乱码不卡18| kizo精华| 国产男女内射视频| 国产免费又黄又爽又色| 免费不卡黄色视频| 熟妇人妻不卡中文字幕| 中文字幕人妻熟女乱码| 免费看av在线观看网站| 男女边摸边吃奶| 天天躁日日躁夜夜躁夜夜| 人妻一区二区av| 自拍欧美九色日韩亚洲蝌蚪91| 自线自在国产av| 久久精品亚洲av国产电影网| 韩国av在线不卡| 满18在线观看网站| 丝袜美足系列| 岛国毛片在线播放| 综合色丁香网| 宅男免费午夜| 999久久久国产精品视频| 亚洲成色77777| 国产亚洲最大av| 丁香六月天网| 99热网站在线观看| 人人妻,人人澡人人爽秒播 | 只有这里有精品99| 亚洲精品日本国产第一区| 久久国产精品大桥未久av| 最近中文字幕高清免费大全6| 欧美黑人精品巨大| 久久久久视频综合| 天天躁狠狠躁夜夜躁狠狠躁| 少妇人妻 视频| 在线观看www视频免费| 在线天堂最新版资源| 看免费av毛片| 捣出白浆h1v1| xxxhd国产人妻xxx| 深夜精品福利| 综合色丁香网| 欧美黄色片欧美黄色片| 亚洲国产精品一区三区| 国产又色又爽无遮挡免| 亚洲精品国产色婷婷电影| 亚洲国产精品国产精品| 亚洲av成人精品一二三区| 亚洲精品国产区一区二| 亚洲精品久久久久久婷婷小说| 国产精品熟女久久久久浪| 久久久国产精品麻豆| 久久久久久久精品精品| a级片在线免费高清观看视频| 国产97色在线日韩免费| 97在线人人人人妻| 日本午夜av视频| 最近的中文字幕免费完整| 男女之事视频高清在线观看 | 中文字幕av电影在线播放| 国产成人系列免费观看| 99热网站在线观看| 精品亚洲乱码少妇综合久久| 久久久精品国产亚洲av高清涩受| 在线观看www视频免费| 欧美精品一区二区大全| 亚洲精品日本国产第一区| 欧美最新免费一区二区三区| 精品少妇内射三级| 国产成人精品福利久久| 在线观看免费高清a一片| 国产又色又爽无遮挡免| 久久久久视频综合| 国产色婷婷99| 最新在线观看一区二区三区 | 涩涩av久久男人的天堂| 操出白浆在线播放| 18禁观看日本| 波多野结衣一区麻豆| 欧美日韩精品网址| 精品国产露脸久久av麻豆| 观看美女的网站| 久久精品aⅴ一区二区三区四区| 免费不卡黄色视频| 亚洲图色成人| 一级毛片 在线播放| 久久久久久久国产电影| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲国产欧美日韩在线播放| 观看av在线不卡| 亚洲熟女毛片儿| 男女边摸边吃奶| 777久久人妻少妇嫩草av网站| 丝袜美腿诱惑在线| 美女福利国产在线| 成人亚洲欧美一区二区av| 天美传媒精品一区二区| 欧美人与善性xxx| 久久热在线av| 久久精品aⅴ一区二区三区四区| 桃花免费在线播放| 免费少妇av软件| e午夜精品久久久久久久| 女的被弄到高潮叫床怎么办| 街头女战士在线观看网站| 麻豆乱淫一区二区| 亚洲精品久久久久久婷婷小说| 国产精品嫩草影院av在线观看| 人体艺术视频欧美日本| 天天躁日日躁夜夜躁夜夜| 国产精品.久久久| 久久久久久久精品精品| 亚洲第一青青草原| 伦理电影免费视频| 国产伦理片在线播放av一区| 最近中文字幕高清免费大全6| 熟女av电影| 中文字幕最新亚洲高清| 免费在线观看完整版高清| 亚洲精品国产色婷婷电影| avwww免费| 夫妻午夜视频| 国产精品久久久人人做人人爽| 久久久久国产一级毛片高清牌| 亚洲av在线观看美女高潮| 99热网站在线观看| 91成人精品电影| 菩萨蛮人人尽说江南好唐韦庄| 日韩制服丝袜自拍偷拍| 国产精品秋霞免费鲁丝片| 飞空精品影院首页| 亚洲天堂av无毛| 久久久久久久大尺度免费视频| 成人手机av| 亚洲欧美激情在线| 制服诱惑二区| 国产欧美日韩一区二区三区在线| 青草久久国产| 国产爽快片一区二区三区| 别揉我奶头~嗯~啊~动态视频 | 亚洲精品日本国产第一区| 国产伦人伦偷精品视频| 曰老女人黄片| 亚洲一区二区三区欧美精品| 天堂俺去俺来也www色官网| 大香蕉久久成人网| 亚洲国产欧美日韩在线播放| 亚洲国产av影院在线观看| 高清在线视频一区二区三区| 各种免费的搞黄视频| 国产淫语在线视频| 免费av中文字幕在线| 久久婷婷青草| 精品一区在线观看国产| 久久毛片免费看一区二区三区| 国产日韩一区二区三区精品不卡| 亚洲久久久国产精品| 成人18禁高潮啪啪吃奶动态图| 亚洲国产精品999| 久久影院123| 亚洲,欧美精品.| 精品第一国产精品| 岛国毛片在线播放| 亚洲国产欧美网| 夫妻性生交免费视频一级片| 欧美人与性动交α欧美软件| av.在线天堂| 亚洲精品日本国产第一区| 色精品久久人妻99蜜桃| 在线免费观看不下载黄p国产| 国产极品天堂在线| 超碰97精品在线观看| 如日韩欧美国产精品一区二区三区| 啦啦啦啦在线视频资源| 久久精品久久久久久噜噜老黄| 十八禁高潮呻吟视频| 国产成人免费观看mmmm| 秋霞伦理黄片| 久久久久人妻精品一区果冻| 亚洲第一青青草原| 男男h啪啪无遮挡| 欧美最新免费一区二区三区| 亚洲四区av| 久久久亚洲精品成人影院| 少妇 在线观看| 成人手机av| 九九爱精品视频在线观看| 亚洲国产av影院在线观看| 搡老岳熟女国产| 精品午夜福利在线看| 精品视频人人做人人爽| 青青草视频在线视频观看| 不卡视频在线观看欧美| 精品卡一卡二卡四卡免费| 一级毛片黄色毛片免费观看视频| 黄色视频在线播放观看不卡| 亚洲天堂av无毛| 狠狠精品人妻久久久久久综合| 日本vs欧美在线观看视频| 亚洲国产看品久久| 国产人伦9x9x在线观看| 成人免费观看视频高清| 久久精品国产综合久久久| 免费观看人在逋| 9热在线视频观看99| 美女大奶头黄色视频| 建设人人有责人人尽责人人享有的| 制服诱惑二区| 中文字幕亚洲精品专区| 精品一区二区免费观看| 成年动漫av网址| 十分钟在线观看高清视频www| videos熟女内射| av又黄又爽大尺度在线免费看| 大片电影免费在线观看免费| 久久天堂一区二区三区四区| 美女福利国产在线| 免费观看av网站的网址| 97人妻天天添夜夜摸| 91国产中文字幕| 在线观看www视频免费| 国产黄色免费在线视频| 欧美 亚洲 国产 日韩一| 人人妻人人澡人人爽人人夜夜| 中文字幕另类日韩欧美亚洲嫩草| 丰满迷人的少妇在线观看| 国产免费现黄频在线看| 欧美少妇被猛烈插入视频| 黄频高清免费视频| 免费观看性生交大片5| 18禁国产床啪视频网站| 激情五月婷婷亚洲| 男女午夜视频在线观看| 成年女人毛片免费观看观看9 | 欧美97在线视频| 亚洲av男天堂| 成年av动漫网址| 久久精品亚洲av国产电影网| 中文字幕精品免费在线观看视频| av有码第一页| 亚洲精品久久午夜乱码| 人妻一区二区av| 精品少妇久久久久久888优播| 1024香蕉在线观看| 啦啦啦在线观看免费高清www| 亚洲欧美色中文字幕在线| 一级片免费观看大全| 五月天丁香电影| 一个人免费看片子| 一本—道久久a久久精品蜜桃钙片| 91成人精品电影| 一本—道久久a久久精品蜜桃钙片| 97在线人人人人妻| 日本vs欧美在线观看视频| 热99国产精品久久久久久7| 女的被弄到高潮叫床怎么办| 精品国产乱码久久久久久小说| 精品亚洲乱码少妇综合久久| 操美女的视频在线观看| 精品亚洲成a人片在线观看| 成人国语在线视频| 亚洲第一av免费看| 中文精品一卡2卡3卡4更新| 少妇精品久久久久久久| 日本vs欧美在线观看视频| tube8黄色片| 免费久久久久久久精品成人欧美视频| 成人午夜精彩视频在线观看| 成人影院久久| 亚洲视频免费观看视频| 午夜免费鲁丝| 成人亚洲欧美一区二区av| 高清欧美精品videossex| 免费女性裸体啪啪无遮挡网站| 亚洲一区中文字幕在线| 男女免费视频国产| 国产老妇伦熟女老妇高清| 1024视频免费在线观看| 亚洲精品成人av观看孕妇| 国产 一区精品| 黑人巨大精品欧美一区二区蜜桃| 日本vs欧美在线观看视频| 亚洲国产毛片av蜜桃av| 高清av免费在线| 赤兔流量卡办理| 人人澡人人妻人| 午夜福利乱码中文字幕| 日韩中文字幕视频在线看片| 亚洲国产看品久久| av天堂久久9| 日韩,欧美,国产一区二区三区| 色视频在线一区二区三区| 久久久久精品人妻al黑| 久久影院123| 十八禁网站网址无遮挡| 亚洲婷婷狠狠爱综合网| 精品国产露脸久久av麻豆| www日本在线高清视频| a级毛片在线看网站| 亚洲成人一二三区av| 在线观看免费午夜福利视频| av在线app专区| 最新在线观看一区二区三区 | 成年人午夜在线观看视频| 麻豆av在线久日| 久久久精品区二区三区| 日韩伦理黄色片| 嫩草影视91久久| 国产一区二区在线观看av| 涩涩av久久男人的天堂| 少妇人妻 视频| 丁香六月天网| 多毛熟女@视频| 99re6热这里在线精品视频| 欧美日韩视频高清一区二区三区二| 成人亚洲精品一区在线观看| 国语对白做爰xxxⅹ性视频网站| 精品福利永久在线观看| 婷婷成人精品国产| 美女主播在线视频| 国产成人系列免费观看| 精品久久蜜臀av无| 秋霞伦理黄片| 久久97久久精品| 免费高清在线观看日韩| 欧美乱码精品一区二区三区| 国产av精品麻豆| 观看美女的网站| 免费高清在线观看日韩| 亚洲一区中文字幕在线| 亚洲精品自拍成人| 国产爽快片一区二区三区| e午夜精品久久久久久久| 国产免费又黄又爽又色| 国产亚洲最大av| 捣出白浆h1v1| 男男h啪啪无遮挡| 丝袜美腿诱惑在线| 欧美国产精品va在线观看不卡| 久久99一区二区三区| 久久久久精品性色| 亚洲精品自拍成人| 国产亚洲一区二区精品| 久久99精品国语久久久| 妹子高潮喷水视频| 亚洲av成人精品一二三区| 极品少妇高潮喷水抽搐| 久久久久视频综合| 一区福利在线观看| 激情五月婷婷亚洲| 欧美黑人欧美精品刺激| 精品少妇久久久久久888优播| 亚洲中文av在线| 大片免费播放器 马上看| 欧美日韩一区二区视频在线观看视频在线| 一级毛片我不卡| 欧美xxⅹ黑人| 成年人午夜在线观看视频|