• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The landscape of molecular mechanisms for salt tolerance in wheat

    2018-03-04 18:22:56*
    The Crop Journal 2018年1期

    *

    aThe Key Laboratory of Plant Cell Engineering and Germplasm Innovation,Ministry of Education,School of Life Sciences,Shandong University,Jinan 250100,Shandong,China

    bState Key Laboratory of Soil and Sustainable Agriculture,Institute of Soil Science,Chinese Academy of Sciences,Nanjing 210008,Jiangsu,China

    1.Introduction

    Bread wheat(Triticum aestivum L.),one of the most important staple crops globally,provides most of the calories for approximately 30%of the world population[1].Increasing attention is being given to the mechanisms of abiotic stress response due to greater awareness of the threats of climate change,and loss of arable land during urbanization,and environmental degradation caused by pollution[2].Since more than 800 Mha(6%)of arable land are affected by salinity worldwide[3],soil salinity is a major constraint upon wheat grain yield[4].

    A direct consequence of soil salinity is the over-accumulation of intracellular sodium(Na+),resulting in serious ionic toxicity,especially in the leaves with direct inhibitory effects on photosynthesis.Moreover,salt stress can cause osmotic and oxidative stress,further disturbing metabolic processes and leading to DNA damage and even cell death[3].Therefore,understanding the mechanisms of response and adaptation to salt stress and then improving the salinity tolerance of crops are critical tasks for breeders and researchers.

    Although some mechanisms,such as osmotic adjustment,tissue tolerance processes,and K+retention,have been elaborated in other crops[5],these are greater challenges for bread wheat due to its large,complicated and hexaploid genome[6].Nevertheless,the mechanisms underlying salinity tolerance in wheat,including leaf Na+exclusion mediated by high-affinity K+transporters(HKTs)and reactive oxygen species (ROS)detoxification,have been addressed in long-term and subtle ways[5].Multiple components involved in crosstalk of salinity response with other environmental or developmental signals were identified.Notably,in line with the continuous releases of wheat whole genome information[7]and recently established wheat mutant libraries[8],more versatile approaches will be available for salt tolerance improvement.Therefore,this review will provide an outline of the mechanisms of wheat salinity tolerance,and present an outlook on prospective key research on this topic.

    2.HKT-type transporters confer wheat salinity tolerance by promoting sodium exclusion

    It has long been known that tetraploid wheat is less salt tolerant than bread wheat[9,10],and that a major factor behind this difference is that bread wheat is able to maintain a higher ratio of potassium concentration to sodium concentration in the leaves[11].This trait was shown to be governed by Kna1 on chromosome 4D[12].A genetic analysis,based on a population derived from a cross between a standard durum wheat genotype and a line containing introgressions from the A genome diploid ancestral wheat relative Triticum monococcum showing high Na+exclusion ability,revealed that two loci,Nax1 and Nax2,were involved in excluding sodium ions[13].

    Class 1 HKT genes are involved in regulating transport of Na+in higherplants[14].Several HKT1genes,includingHKT1;1/2-like,HKT1;3-like,HKT1;4-like,and HKT1;5-like,have been identified and mapped to wheat homoeologous chromosome groups2,6,2,and 4,respectively[15].Among these,Nax1 in chromosome arm 2AL co-segregated with sodium transporter gene HKT1;4-A2,which was shown to control Na+unloading from xylem in roots and sheaths and therefore was proposed as the functional candidate[16].Nax2 was mapped to the distal region of chromosome 5AL that is homoeologous to a region on chromosome 4DL containing Kna1.Based on synteny and phylogeny analysis with Nax2,TmHKT1;5-A was proposed to be the candidate of Nax2[17].In addition,field trials in saline soils demonstrated that the presence of TmHKT1;5-A significantly reduced leaf sodium content and increased durum wheat grain yield by 25%compared to lines without the Nax2 locus[18].Furthermore,decreased expression of TaHKT1;5-D,which is homoeologous to TmHKT1;5-A and underlies Kna1 locus in bread wheat,caused by target-specific RNA interference-induced silencing(RNAi),led to an accumulation of Na+in leaves[19],strongly suggesting that TaHKT1;5-D should be the candidate gene of Kna1.

    Na+exclusion mediated by HKT genes in leaves has been recognized as a major mechanism in salinity tolerance of wheat.However,some fundamental issues need to be further addressed.One is how these HKT genes respond to salt stress in wheat.For example,TaHKT1;5-D exhibited a transcriptional reprogramming from constitutive high basal expression in diploid Aegilops tauschii to salt-induced expression in a newly synthetic allohexaploid wheat[20],whilst Byrt et al.[19]discovered no detectable difference in TaHKT1;5-D expression when hexaploid wheat cv.Bobwhite was challenged by salt stress.Additionally,a reduction inTaHKT1;5-Dtranscripts was revealed after salt treatment in both hexaploid wheat cv.JN177 and its introgression line SR3[21].These contradictory results bring about an interesting question of whether the response of TaHKT1;5-D to salinity is accession-dependent(that is,is there an association between the response mode and tolerance to salt stress?),or tissue-specific(as TaHKT1;5-D was previously implied to be predominantly functional within the stele,particularly within xylem parenchyma and pericycle cells adjacent to the xylem vessels[19]).

    Another question is how these wheat HKT genes are regulated.The sole HKT gene in Arabidopsis,AtHKT1,is regulated by small RNA and DNA methylation[22].Moreover,DNA methylation also participated in the response of TaHKT1;5s to salt stress in wheat cv.JN177 and SR3[21].Intriguingly,the transcript levels of TaHKT1;5-B1 and TaHKT1;5-B2 were extremely low compared with that of TaHKT1;5-D[19].Epigenetics plays an important role in the dosage effect of homeologous transcription[7].Therefore,the contribution of epigenetics to the lower expressions of TaHKT1;5-B1 and TaHKT1;5-B2 should be further studied.Moreover,transcription factors,such as AtABI4[23]and OsMYBc[24],were shown to regulate HKT genes in plants,offering more candidate targets for enhancing salinity tolerance.However,an up-stream regulator(s)of wheat HKT genes is still unidentified possibly due to the complexity of the hexaploid wheat genome.

    3.ROS homeostasis involved in salinity tolerance of a somatic hybrid introgression line

    Wild relatives and related species often carry specific traits with potential for improvement of common wheat[25].For example,tall wheat grass(Thinopyrum ponticum),a species that normally grows in barren areas,exhibits tolerance to abiotic stress[26]and is therefore a valuable genetic resource for wheat improvement.However,hybrids between potentially beneficial species and common wheat may be restricted by the “recombination barrier”[27].Asymmetric somatic hybridization is a viable alternative to introgression,especially where inter-specific crosses are not possible[28].Utilizing this approach,the salinity-tolerant bread wheat cultivar Shanrong No.3(SR3)was generated as a derivative of a somatic hybrid between bread wheat and tall wheatgrass[29].This novel cultivar is not only an elite line for breeding,but also a valuable genetic resource to uncover mechanisms underlying salt tolerance.

    Transcriptomic,proteomic and metabolomic comparisons of SR3 with its wild type cv.Jinan 177(JN177)wheat parent suggested that reactive oxygen species homeostasis was the major biochemical basis for the salt tolerance of cv.SR3[30].A mapping analysis localized a tolerance QTL on chromosome arm 5AL,at a position containing TaSRO1,a gene encoding a poly(ADP ribose)polymerase(PARP)domain protein.PARP proteins have been implicated in modulation of redox homeostasis.Sequence variation between the TaSRO1 alleles present in cv.SR3 and cv.JN177 was predicted to affect PARP catalytic activity that is significant for DNA repair under oxidative stress.The transgenic constitutive expression of the allele from cv.JN17,a sensitive cultivar,enhanced the levels of salinity and ROS tolerance,while RNAi-induced knock--down of the gene in cv.SR3 compromised the level of tolerance.Thus TaSRO1 was considered to be a strong candidate for the salt tolerance QTL in cv.SR3[31].

    ADP-ribosylation is a kind of protein modification involved in signal transduction,DNA repair,and stress response[32].PARP-like genes are present in many eukaryotes,and the PARP catalytic domain is the major ADP ribosylation factor in mammalian cells[33].In Arabidopsis,AtRCD1 and six AtSRO genes(similar to RCD One)belong to the PARP subfamily,but intriguingly,none of these members exhibited PARP catalytic activity,even though they were implicated in stress response[34].You et al.showed that OsSRO1c had dual roles in drought and oxidative stress tolerance in rice by modulating stomatal closure and H2O2accumulation,but also had no PARP catalytic activity[35].In contrast,wheat TaSRO1 is unique in being the first SRO1 protein found to possess PARP catalytic activity in plants, and the higher PARP catalytic activity of the TaSRO1 allele in SR3 accounted for the stronger DNA repair capability under stress conditions.This at least partly contributed to the vigorous growth and stress tolerance of SR3[31].Moreover,TaSRO1 contained an RST (for RCD-SRO-TAF4) domain that functions in protein-protein interactions[34].It is meaningful to further identify TaSRO1-interacting proteins,and examine whether TaSRO1 ADP-ribosylates the interacting proteins and therefore contributes to the superior capacity of ROS homeostasis maintenance in SR3.

    Somatic hybridization introduces a minimum of exogenous chromatin into a recipient genome, but causes genomic shock that induces high frequencies of both point mutations and indels(insertions and deletions)in coding sequences,and is thus capable of generating elite alleles[36].Genetic analysis indicated the remarkable salinity tolerance of SR3 by modulation of ROS homeostasis that was accomplished by a polygene effect.A zinc finger transcription factor,TaCHP,was activated in SR3 with much higher transcript abundance than in JN177[37].TaCHP facilitated salinity tolerance in wheat through improved leaf peroxidase(POD)activity to enhance ROS scavenging ability.Another example is the wheat oxophytodienoate reductase gene TaOPR1,whose expression was induced in roots by salt treatment with higher induction in SR3 than in JN177[38].TaOPR1 enhanced salt tolerance by triggering transcription of ROS homeostasis associated genes,consequently reducing malondialdehyde and ROS levels in an ABA-pathway dependent manner[38].

    “Genomic shock”during the process of somatic hybridization also causes massive epigenetic reprogramming[39].A topic of increasing interest is the role of epigenetic variation in controlling gene expression.Observed differences in transcript abundances of TaFLS1,TaWRSI1,and TaTIP2;2 between JN177 and SR3 that could not be explained by differences in either the promoter or the coding sequences,were shown to vary with respect to DNA methylation level[21].In animals,the status of DNA methylation is affected by the level of ROS content[40].It is essential to determine whether the divergence of ROS accumulation and ROS homeostasis maintenance between SR3 and JN177 is associated with DNA methylation,and its effect on expression patterns of salt-stress responsive genes.

    4.Genes involved in crosstalk between salinity response and other environmental or developmental signals in wheat

    When plants are confronted with high salinity,complex physiological responses such as phytohormone signaling pathways and developmental signals are triggered to cope with or adapt to the stress[41].Therefore,it is essential to identify the node(s)linking salinity response and other environmental or developmental signals.An attempt to do this in wheat was firstly performed by looking at phytohormones,as most phytohormones are regulatory factors of both developmental processes and stress response.For example,the wheat gene TaAOC1,encoding an allene oxide cyclase involved in jasmonic acid(JA)synthesis,was induced by high salinity[42].Constitutive expression of TaAOC1 in both wheat and Arabidopsis restricted root growth,but enhanced salt tolerance and JA content.The evidence indicates JA was involved in the orchestration of salt stress response and developmental processes.Moreover,TaAOC1 and TaOPR1 encode two key enzymes of the α-linolenic acid metabolic pathway,catalyzing JA synthesis and OPRI branches,respectively.In line with the data of TaAOC1 and TaOPR1[37,41],we determined that these two branches provide salt tolerance via both the JA-and ABA-dependent pathways to promote expression of MYC2,a crucial component of the abiotic stress response-signaling pathway.These findings firstly indicate that different branches of a metabolic pathway participate in a single process but controlled by different mechanisms.Importantly,variation in TaAOC1 and TaOPR1 alleles could be exploitable in molecular breeding.

    Another example is TaBASS2 that transports pyruvic acid from the cytoplasm into the chloroplasts,where it can be used as the precursor of ABA and other compounds.Overexpres-sion of TaBASS2 improved salinity tolerance and reactive oxygen species scavenging in wheat and Arabidops is through repression of ABI4 expression,indicating that ABA signaling and plastid retrograde signaling pathways were involved in the performance of TaBASS2[43].

    Light is a basic factor that positively affects the growth and development of plants.TaGBF1,a blue light-specific responsive G-box binding factor,was induced after exposure to salt[44].TaGBF1 caused salt sensitivity and promoted blue light mediated photomorphogenesis,showing that it was a common component of the blue light-and salt stress-responsive signaling pathways.Interestingly,genetic analysis suggested that the role of TaGBF1 in response to salt relied on ABI5,a key component of the ABA signaling pathway,rather than light.

    In summary,only fragmentary information has been mined on crosstalk between response to salinity and other environmental or developmental stimuli in wheat.Along with the enrichment of genomic data and other omics data forming a network(see next section),more key components embedded in the machinery will be dissected for wheat improvement.

    5.New trends in functional genomic studies of salinity tolerance in wheat

    5.1.Omics networks

    Along with the recent advances in wheat whole genome sequencing,a new epoch for wheat research is emerging[7].Rapidly increasing information on genomics and other omics approaches,including transcriptomics, proteomics, epigenomics,metabolomics and phenomics, will accelerate the rate of gene discovery in wheat.

    In earlier studies,subtraction hybridization[37]and cDNA microarrays[45]between salt-susceptible and tolerant wheat lines were performed to identify the molecular basis in salinity tolerance.For example, TaCHP,which was expressed at extremely low levels in JN177 but at high levels in SR3 was isolated by subtraction hybridization between JN177 and SR3[37].However,there were numerous omissions in prediction of candidate genes because of the low throughput and low resolution of the approach,especially in the absence of a whole genome sequence for wheat.More recently,high-throughput transcriptome sequencing profiles using wheat cultivarswith contrasting levels of salt tolerance enabled global gene expression reprogramming involving 36,804 genes following salt stress[46].Moreover,as the assembly and annotation of the transcripts were based on information from wheat genome survey sequences,the resolution was sufficiently high to permit expression partitioning of homologs and tandem duplications contributing to the variation in salt tolerance.

    The rapidly improving technical capacity of next generation sequencing(NGS)and genomic enrichment information for wheat will also enable identification of the role of epigenomics in salinity tolerance.A preliminary DNA methylome analysis of salt stress differences between SR3 and JN177 revealed that multiple salt stress responsive genes were regulated by DNA methylation[21].Recently,genome-wide DNA methylation was measured in wheat under different temperature conditions,using the whole genome sequence to distinguish sub-genome-specific methylation[47].A similar high-resolution DNA methylome analysis following salinity treatment has not yet been reported.Furthermore,bulks of small RNAs in response to salt stress were discovered through miRNome analysis[48,49].However,functional validations of these candidate small RNAs and their putative targeted genes were rarely performed and need further study.The first functional noncoding mi RNA screened from high-resolution omics data was involved in wheat β-diketone wax metabolism[50].Such studies will facilitate the functional study of wheat small RNAs in response to salt stress.

    The rapid accumulation of omics data from multiple tissues and temporal developmental time-courses,and various stress conditions in wheat has encouraged the building of a pan-omics database[51].That omics network will greatly promote the exploitation of functional genes,and give us a more comprehensive understanding ofsalinity tolerance.Moreover,co-/multi-regulatory genetic bases of salinity tolerance together with other environmental or developmental stimuli will be easily identified from the network intersections.

    5.2.Salt-resistant germ plasm

    Specific germplasms,including the diploid ancestral wheat relative T.monococcum and the somatic hybrid introgression,were fundamental in elaborating two major mechanisms(ionic and ROS homeostasis)of wheat salinity tolerance.More elegant systems need to be applied to generate novel salt-resistant germplasms for gene discovery and breeding.A further example is the salt-tolerant wheat germplasm RH8706049,a mutant derived from anther culture,EMS induction and selection for salt tolerance,from which several salt-responsive genes were identified.Preliminary functional analyses of these genes were made in Arabidopsis[52,53].Further analyses of the genes in transgenic wheat are needed.Moreover,multiple approaches such as that in SR3 using multiple omics,population genetics and salt-tolerant QTL analysis are essential for further investigation of RH8706049.

    Another recent trend in functional genomics is the establishment of comprehensive EMS mutant libraries of tetraploid wheat and hexaploid wheat[8].Mutant sites were sequenced and cataloged using the next-generation sequenc-ing and exome capture platform.Based on phenotype screening,novel genes involving salinity tolerance will be easily identified from these potentially informative libraries.Moreover,selected mutants can be used to validate the functions of salt stress responsive genes,hopefully avoiding the tedious process of wheat transformation.

    6.Conclusions

    Fig.1–Pathways involved in wheat salinity tolerance.ROS,reactive oxygen species;NOX,NADPH oxidase;AOX,alternative oxidase;ABA,abscisic acid;wheat genes(Ta),including TaAOC1,an allene oxide cyclase gene;TaBASS2,a pyruvic acid transporter gene;TaGBF1,a G-box binding factor gene;TaCHP,a zinc finger transcription factor gene;TaOPR1,an oxophytodienoate reductase gene;TaSRO1,a similar to RCD One gene;TaHKTs,high-affinity potassium transporter genes.

    Despite the complexity of the wheat genome,two major pathways,namely HKT genes that mediate Na+exclusion and the SRO gene that regulates ROS homeostasis,are pivotal in wheat salinity tolerance(Fig.1).The issues of regulation of HKT genes and the interaction protein from the SRO gene need to be further addressed.The discovery of the two pathways was greatly assisted by the use of specific germplasms(such as the diploid ancestral wheat relative T.monococcum and the somatic hybrid introgression line SR3).With the emergence of NGS and wheat whole genome information,functional genomics studies of salinity tolerance will be accelerated in wheat.Recent advances in the development of wheat EMS mutant libraries and genome editing will hasten validation and exploitation of salt stress responsive genes.More genes conferring salinity tolerance are likely to be identified and used in wheat improvement.

    This study was supported by the National Key Research and Development Project(2016YFD0101004),NationalNatural Science Foundation of China(31430060,31601306),and China Postdoctoral Science Foundation(2016M601161).

    R E F E R E N C E S

    [1]Food and Agriculture Organization of the United Nations,www.fao.org/worldfoodsituation/csdb/en/.

    [2]International Wheat Genome Sequencing Consortium(IWGSC),A chromosome-based draft sequence of the hexaploid bread wheat(Triticum aestivum)genome,Science 345(2014)1251788.

    [3]R.Munns,M.Tester,Mechanisms of salinity tolerance,Annu.Rev.Plant Biol.59(2008)651–681.

    [4]D.B.Lobell,W.Schlenker,J.Costa-Roberts,Climate trends and global crop production since 1980,Science 333(2011)616–620.

    [5]R.Munns,M.Gilliham,Salinity tolerance of crops–what is the cost?New Phytol.208(2015)668–673.

    [6]T.Marcussen,S.R.Sandve,L.Heier,M.Spannagl,M.Pfeifer,K.S.Jakobsen,B.B.Wulff,B.Steuernagel,K.F.Mayer,O.A.Olsen,Ancient hybridizations among the ancestral genomes of bread wheat,Science 345(2014)1250092.

    [7]M.Wang,S.B.Wang,G.M.Xia,From genome to gene:a new epoch for wheat research?Trends Plant Sci.20(2015)380–387.

    [8]K.V.Krasileva,H.A.Vasquez-Gross,T.Howell,P.Bailey,F.Paraiso,L.Clissold,J.Simmonds,R.H.Ramirez-Gonzalez,X.D.Wang,P.Borrill,C.Foskerc,S.Aylingc,A.L.Phillips,C.Uauy,J.Dubcovsky,Uncovering hidden variation in polyploid wheat,Proc.Natl.Acad.Sci.U.S.A.114(2017)201619268.

    [9]L.Francois,E.Maas,T.Donovan,V.Youngs,Effect of salinity on grain yield and quality,vegetative growth,and germination of semi-dwarf and durum wheat,Agron.J.78(1986)1053–1058.

    [10]H.Rawson,R.Richards,R.Munns,An examination of selection criteria for salt tolerance in wheat,barley and triticale genotypes,Aust.J.Agric.Res.39(1988)759–772.

    [11]J.Gorham,R.G.W.Jones,A.Bristol,Partial characterization of the trait for enhanced K+–Na+discrimination in the D genome of wheat,Planta 180(1990)590–597.

    [12]J.Dubcovsky,G.Santa Maria,E.Epstein,M.C.Luo,J.Dvo?ák,Mapping of the K+/Na+discrimination locus Kna1 in wheat,Theor.Appl.Genet.92(1996)448–454.

    [13]R.Munns,R.Hare,R.James,G.Rebetzke,Genetic variation for improving the salt tolerance of durum wheat,Aust.J.Agric.Res.51(2000)69–74.

    [14]T.Horie,F.Hauser,J.I.Schroeder,HKT transporter-mediated salinity resistance mechanisms in Arabidopsis and monocot crop plants,Trends Plant Sci.14(2009)660–668.

    [15]S.B.Huang,W.Spielmeyer,E.S.Lagudah,R.Munns,Comparative mapping of HKT genes in wheat,barley,and rice,key determinants of Na+transport,and salt tolerance,J.Exp.Bot.59(2008)927–937.

    [16]S.B.Huang,W.Spielmeyer,E.S.Lagudah,R.A.James,J.D.Platten,E.S.Dennis,R.Munns,A sodium transporter(HKT7)is a candidate for Nax1,a gene for salt tolerance in durum wheat,Plant Physiol.142(2006)1718–1727.

    [17]C.S.Byrt,J.D.Platten,W.Spielmeyer,R.A.James,E.S.Lagudah,E.S.Dennis,M.Tester,R.Munns,HKT1;5-like cation transporters linked to Na+exclusion loci in wheat,Nax2 and Kna1,Plant Physiol.143(2007)1918–1928.

    [18]R.Munns,R.A.James,B.Xu,A.Athman,S.J.Conn,C.Jordans,C.S.Byrt,R.A.Hare,S.D.Tyerman,M.Tester,M.Gilliham,Wheat grain yield on saline soils is improved by an ancestral Na+transporter gene,Nat.Biotechnol.30(2012)360–364.

    [19]C.S.Byrt,B.Xu,M.Krishnan,D.J.Lightfoot,A.Athman,A.K.Jacobs,N.S.Watson-Haigh,D.Plett,R.Munns,M.Tester,M.Gilliham,The Na+transporter,TaHKT1;5–D,limits shoot Na+accumulation in bread wheat,Plant J.80(2014)516–526.

    [20]C.W.Yang,L.Zhao,H.K.Zhang,Z.Z.Yang,H.Wang,S.S.Wen,C.Y.Zhang,S.Rustgi,D.von Wettstein,B.Liu,Evolution of physiological responses to salt stress in hexaploid wheat,Proc.Natl.Acad.Sci.U.S.A.111(2014)11882–11887.

    [21]M.Wang,L.M.Qin,C.Xie,W.Li,J.R.Yuan,L.N.Kong,W.L.Yu,G.M.Xia,S.W.Liu,Induced and constitutive DNA methylation in a salinity tolerant wheat introgression line,Plant Cell Physiol.(2014)1354–1365.

    [22]D.Baek,J.Jiang,J.S.Chung,B.Wang,J.Chen,Z.Xin,H.Shi,Regulated AtHKT1 gene expression by a distal enhancer element and DNA methylation in the promoter plays an important role in salt tolerance,Plant Cell Physiol.52(2011)149–161.

    [23]D.Shkolnik-Inbar,G.Adler,D.Bar-Zvi,ABI4 downregulates expression of the sodium transporter HKT1;1 in Arabidopsis roots and affects salt tolerance,Plant J.73(2013)993–1005.

    [24]R.Wang,W.Jing,L.Y.Xiao,Y.K.Jin,L.Shen,W.H.Zhang,The rice high-affinity potassium transporter1;1 is involved in salt tolerance and regulated by an MYB-type transcription factor,Plant Physiol.168(2015)1076–1090.

    [25]T.Cox,Deepening the wheat gene pool,J.Crop.Prod.1(1997)1–25.

    [26]T.D.Colmer,T.J.Flowers,R.Munns,Use of wild relatives to improve salt tolerance in wheat,J.Exp.Bot.57(2006)1059–1078.

    [27]C.Feuillet,P.Langridge,R.Waugh,Cereal breeding takes a walk on the wild side,Trends Genet.24(2008)24–32.

    [28]G.M.Xia,Progress of chromosome engineering mediated by asymmetric somatic hybridization,J.Genet.Genomics 36(2009)547–556.

    [29]G.M.Xia,F.N.Xiang,A.F.Zhou,H.Wang,H.M.Chen,Asymmetric somatic hybridization between wheat(Triticum aestivum L.)and Agropyron elongatum(Host)Nevishi,Theor.Appl.Genet.107(2003)299–305.

    [30]Z.Y.Peng,M.C.Wang,F.Li,H.J.Lv,C.L.Li,G.M.Xia,A proteomic study of the response to salinity and drought stress in an introgression strain of bread wheat,Mol.Cell.Proteomics 8(2009)2676–2686.

    [31]S.T.Liu,S.W.Liu,M.Wang,T.D.Wei,C.Meng,M.Wang,G.M.Xia,A wheat SIMILAR TO RCD-ONE gene enhances seedling growth and abiotic stress resistance by modulating redox homeostasis and maintaining genomic integrity,Plant Cell 26(2014)164–180.

    [32]R.Gupte,Z.Y.Liu,W.L.Kraus,PARPs and ADP-ribosylation:recent advances linking molecular functions to biological outcomes,Genes Dev.31(2017)101–126.

    [33]W.L.Kraus,PARPs and ADP-ribosylation:50 years…and counting,Mol.Cell 58(2015)902–910.

    [34]S.Kangasj?rvi,J.Kangasj?rvi,Towards understanding extracellular ROS sensory and signaling systems in plants,Adv.Bot.2014(2014)538946.

    [35]J.You,W.Zong,X.K.Li,J.Ning,H.H.Hu,X.H.Li,J.H.Xiao,L.Z.Xiong,The SNAC1-targeted gene OsSRO1c modulates stomatal closure and oxidative stress tolerance by regulating hydrogen peroxide in rice,J.Exp.Bot.64(2012)569–583.

    [36]M.C.Wang,C.Liu,T.Xing,Y.X.Wang,G.M.Xia,Asymmetric somatic hybridization induces point mutations and indels in wheat,BMC Genomics 16(2015)807.

    [37]C.L.Li,J.Lv,X.Zhao,X.H.Ai,X.L.Zhu,M.C.Wang,S.Y.Zhao,G.M.Xia,TaCHP:a wheat zinc finger protein gene downregulated by abscisic acid and salinity stress plays a positive role in stress tolerance,Plant Physiol.154(2010)211–221.

    [38]W.Dong,M.C.Wang,F.Xu,T.Y.Quan,K.Q.Peng,L.T.Xiao,G.M.Xia,Wheat oxophytodienoate reductase gene TaOPR1 confers salinity tolerance via enhancement of abscisic acid signaling and reactive oxygen species scavenging,Plant Physiol.161(2013)1217–1228.

    [39]S.W.Liu,F.Li,L.N.Kong,Y.Sun,L.M.Qin,S.Y.Chen,H.F.Cui,Y.H.Huang,G.M.Xia,Genetic and epigenetic changes in somatic hybrid introgression lines between wheat and tall wheat grass,Genetics 199(2015)1035–1045.

    [40]Q.H.Wu,X.H.Ni,ROS-mediated DNA methylation pattern alterations in carcinogenesis,Curr.Drug Targets 16(2015)13–19.

    [41]D.Golldack,C.Li,H.Mohan,N.Probst,Tolerance to drought and salt stress in plants:unraveling the signaling networks,Front.Plant Sci.5(2014)151.

    [42]Y.Zhao,W.Dong,N.B.Zhang,X.H.Ai,M.C.Wang,Z.G.Huang,L.T.Xiao,G.M.Xia,A wheat allene oxide cyclase gene enhances salinity tolerance via jasmonate signaling,Plant Physiol.164(2014)1068–1076.

    [43]Y.Zhao,X.H.Ai,M.C.Wang,L.T.Xiao,G.M.Xia,A putative pyruvate transporter TaBASS2 positively regulates salinity tolerance in wheat via modulation of ABI4 expression,BMC Plant Biol.16(2016)109.

    [44]Y.Sun,W.Xu,Y.B.Jia,M.C.Wang,G.M.Xia,The wheat TaGBF1 gene is involved in the blue-light response and salt tolerance,Plant J.84(2015)1219–1230.

    [45]C.Liu,S.Li,M.C.Wang,G.M.Xia,A transcriptomic analysis reveals the nature of salinity tolerance of a wheat introgression line,Plant Mol.Biol.78(2012)159–169.

    [46]Y.M.Zhang,Z.S.Liu,A.A.Khan,Q.Lin,Y.Han,P.Mu,Y.G.Liu,H.S.Zhang,L.Y.Li,X.H.Meng,Z.F.Ni,M.M.Xin,Expression partitioning of homeologs and tandem duplications contribute to salt tolerance in wheat(Triticum aestivum L.),Sci Rep 6(2016)21476.

    [47]L.J.Gardiner,M.Quinton-Tulloch,L.Olohan,J.Price,N.Hall,A.Hall,A genome-wide survey of DNA methylation in hexaploid wheat,Genome Biol.16(2015)273.

    [48]H.Eren,M.Pekmezci,S.Okay,M.Turktas,B.Inal,E.Ilhan,M.Atak,M.Erayman,T.Unver,Hexaploid wheat(Triticum aestivum)root miRNome analysis in response to salt stress,Ann.Appl.Biol.167(2015)208–216.

    [49]B.Wang,Y.F.Sun,N.Song,J.P.Wei,X.J.Wang,H.Feng,Z.Y.Yin,Z.S.Kang,Micro RNAs involving in cold,wounding and salt stresses in Triticum aestivum L.Plant Physiol.Biochem.80(2014)90–96.

    [50]D.Q.Huang,J.A.Feurtado,M.A.Smith,L.K.Flatman,C.Koh,A.J.Cutler,Long noncoding mi RNA gene represses wheat βdiketone waxes,Proc.Natl.Acad.Sci.U.S.A.114(2017)E3149–E3158.

    [51]C.Uauy,Wheat genomics comes of age,Curr.Opin.Plant Biol.36(2017)142–148.

    [52]Z.X.Gao,X.L.He,B.C.Zhao,C.J.Zhou,Y.Z.Liang,R.C.Ge,Y.S.Shen,Z.J.Huang,Overexpressing a putative aquaporin gene from wheat,TaNIP,enhances salt tolerance in transgenic Arabidopsis,Plant Cell Physiol.51(2010)767–775.

    [53]X.Huang,Y.Zhang,B.Jiao,G.P.Chen,S.H.Huang,F.Guo,Y.Z.Shen,Z.J.Huang,B.C.Zhao,Overexpression of the wheat salt tolerance-related gene TaSC enhances salt tolerance in Arabidopsis,J.Exp.Bot.63(2012)5463–5473.

    青青草视频在线视频观看| 两性午夜刺激爽爽歪歪视频在线观看| 国产精品美女特级片免费视频播放器| 国产成人91sexporn| 精品人妻偷拍中文字幕| 美女内射精品一级片tv| 国产一区亚洲一区在线观看| 精品国内亚洲2022精品成人| 97人妻精品一区二区三区麻豆| av专区在线播放| 日韩一区二区视频免费看| 啦啦啦韩国在线观看视频| 亚洲经典国产精华液单| 网址你懂的国产日韩在线| 一个人看视频在线观看www免费| 一个人观看的视频www高清免费观看| 午夜福利成人在线免费观看| 久久久久网色| 免费观看人在逋| 九九热线精品视视频播放| 久久久久久久午夜电影| 三级男女做爰猛烈吃奶摸视频| 成人综合一区亚洲| 简卡轻食公司| 亚洲国产欧美人成| 亚洲电影在线观看av| 日本免费在线观看一区| 亚洲欧美精品自产自拍| 亚洲经典国产精华液单| 国产极品精品免费视频能看的| 中文天堂在线官网| 国产av不卡久久| 久久久精品欧美日韩精品| 国产亚洲av嫩草精品影院| 99久国产av精品国产电影| 亚洲国产精品成人综合色| 国产av不卡久久| 在线观看一区二区三区| 久久热精品热| 美女脱内裤让男人舔精品视频| 内射极品少妇av片p| 特级一级黄色大片| 天天一区二区日本电影三级| 亚洲美女搞黄在线观看| 亚洲欧美中文字幕日韩二区| 一级毛片久久久久久久久女| 久久久久久久午夜电影| 久久久久久伊人网av| 成人三级黄色视频| 久久久久精品久久久久真实原创| 九色成人免费人妻av| 天美传媒精品一区二区| 丝袜美腿在线中文| 国产亚洲av嫩草精品影院| 国产v大片淫在线免费观看| 美女高潮的动态| 美女cb高潮喷水在线观看| 变态另类丝袜制服| 中文欧美无线码| 日产精品乱码卡一卡2卡三| 国产三级中文精品| av免费观看日本| 日韩欧美三级三区| 成人无遮挡网站| 国产av一区在线观看免费| 亚洲成人av在线免费| 国产精品av视频在线免费观看| 99九九线精品视频在线观看视频| av卡一久久| 一边摸一边抽搐一进一小说| 69av精品久久久久久| 国产亚洲av嫩草精品影院| 国产在视频线精品| 亚洲欧美清纯卡通| 九九爱精品视频在线观看| 看十八女毛片水多多多| 亚洲精品色激情综合| 免费观看的影片在线观看| 国产色爽女视频免费观看| 国产精品久久久久久久电影| 99在线人妻在线中文字幕| 性插视频无遮挡在线免费观看| 变态另类丝袜制服| 中文字幕熟女人妻在线| 国产成人免费观看mmmm| av免费观看日本| 人人妻人人澡欧美一区二区| 日本与韩国留学比较| 国产精品综合久久久久久久免费| 亚洲电影在线观看av| 亚洲乱码一区二区免费版| 成人特级av手机在线观看| 人妻少妇偷人精品九色| 日韩av不卡免费在线播放| 伊人久久精品亚洲午夜| 精品少妇黑人巨大在线播放 | 久久久久久久亚洲中文字幕| 日韩一区二区视频免费看| 高清视频免费观看一区二区 | 建设人人有责人人尽责人人享有的 | 日本av手机在线免费观看| 久久6这里有精品| 亚洲av电影不卡..在线观看| 亚洲电影在线观看av| 国产精品国产三级国产av玫瑰| 青青草视频在线视频观看| 丰满乱子伦码专区| 亚洲自偷自拍三级| 九九久久精品国产亚洲av麻豆| 欧美一区二区精品小视频在线| 久久热精品热| 欧美又色又爽又黄视频| 汤姆久久久久久久影院中文字幕 | 国产午夜精品论理片| 天堂中文最新版在线下载 | 亚洲欧美成人精品一区二区| 老女人水多毛片| 国产色爽女视频免费观看| 中文字幕制服av| 国产精品永久免费网站| 97超碰精品成人国产| 日日啪夜夜撸| 久久午夜福利片| 国产色爽女视频免费观看| ponron亚洲| 九九热线精品视视频播放| 中文乱码字字幕精品一区二区三区 | 色网站视频免费| 亚洲成色77777| 国产伦一二天堂av在线观看| 国产精品不卡视频一区二区| 内射极品少妇av片p| 婷婷色麻豆天堂久久 | 亚洲在线观看片| 亚洲性久久影院| 99久久精品一区二区三区| 国产乱人偷精品视频| 久久精品国产亚洲av天美| 色尼玛亚洲综合影院| 如何舔出高潮| 国产综合懂色| 亚洲国产高清在线一区二区三| 色哟哟·www| 欧美xxxx性猛交bbbb| 国产在视频线在精品| 赤兔流量卡办理| 免费一级毛片在线播放高清视频| 色尼玛亚洲综合影院| 亚洲在线自拍视频| 免费av观看视频| 99久久九九国产精品国产免费| av在线蜜桃| 亚洲av免费在线观看| 在线免费十八禁| 久久精品熟女亚洲av麻豆精品 | 欧美成人一区二区免费高清观看| 欧美一区二区国产精品久久精品| 国产亚洲午夜精品一区二区久久 | 美女被艹到高潮喷水动态| 人妻制服诱惑在线中文字幕| 男的添女的下面高潮视频| 村上凉子中文字幕在线| 国产高清视频在线观看网站| 久久精品国产99精品国产亚洲性色| 三级男女做爰猛烈吃奶摸视频| 在线免费观看的www视频| 18禁在线无遮挡免费观看视频| 亚洲成人久久爱视频| 亚洲欧美清纯卡通| 插阴视频在线观看视频| 日韩亚洲欧美综合| 麻豆av噜噜一区二区三区| 尤物成人国产欧美一区二区三区| 国产综合懂色| 伊人久久精品亚洲午夜| 色哟哟·www| 麻豆av噜噜一区二区三区| 少妇的逼水好多| 岛国毛片在线播放| 黄色日韩在线| 精品熟女少妇av免费看| 亚洲精品亚洲一区二区| 成人国产麻豆网| 国产亚洲午夜精品一区二区久久 | 精品久久久久久久久亚洲| 日韩强制内射视频| av女优亚洲男人天堂| av女优亚洲男人天堂| 久久久国产成人免费| 美女cb高潮喷水在线观看| 韩国av在线不卡| 99久久人妻综合| 色5月婷婷丁香| 亚洲激情五月婷婷啪啪| 日韩欧美精品免费久久| 中文字幕av在线有码专区| 麻豆久久精品国产亚洲av| 2022亚洲国产成人精品| 日日撸夜夜添| 五月玫瑰六月丁香| 国产精品,欧美在线| 亚洲国产欧美人成| 美女xxoo啪啪120秒动态图| 18禁在线无遮挡免费观看视频| 中文字幕久久专区| 免费av毛片视频| 国产在视频线精品| 大又大粗又爽又黄少妇毛片口| 少妇熟女aⅴ在线视频| 欧美日本视频| 成人美女网站在线观看视频| 97超碰精品成人国产| 国产老妇女一区| 汤姆久久久久久久影院中文字幕 | 久久久午夜欧美精品| 成人午夜高清在线视频| 国产精品电影一区二区三区| 色综合亚洲欧美另类图片| 亚洲五月天丁香| 大又大粗又爽又黄少妇毛片口| 岛国在线免费视频观看| 日韩 亚洲 欧美在线| 久久久久久久国产电影| av专区在线播放| 国内精品一区二区在线观看| 色网站视频免费| 日本午夜av视频| 欧美一区二区国产精品久久精品| 亚洲综合精品二区| 真实男女啪啪啪动态图| eeuss影院久久| 国产精品一区www在线观看| 伦理电影大哥的女人| 丰满乱子伦码专区| 中文字幕久久专区| 国产精品久久久久久精品电影| 丰满少妇做爰视频| 少妇人妻精品综合一区二区| 免费黄网站久久成人精品| 国产淫语在线视频| 一个人看的www免费观看视频| 男人舔奶头视频| 精品久久久久久久久av| 老司机影院成人| 精品久久久久久成人av| 岛国毛片在线播放| 我要看日韩黄色一级片| 中文字幕久久专区| 亚洲精品乱久久久久久| 国产久久久一区二区三区| 在线观看av片永久免费下载| 精品欧美国产一区二区三| 亚洲色图av天堂| 色综合站精品国产| 国产成人精品一,二区| 久久精品国产自在天天线| 国产麻豆成人av免费视频| 人体艺术视频欧美日本| 日本免费a在线| 夜夜爽夜夜爽视频| 亚洲av成人精品一二三区| 51国产日韩欧美| 免费av不卡在线播放| 一级二级三级毛片免费看| 啦啦啦观看免费观看视频高清| 国产真实伦视频高清在线观看| 国产精华一区二区三区| 亚洲欧美日韩东京热| a级毛片免费高清观看在线播放| 中文字幕人妻熟人妻熟丝袜美| 欧美又色又爽又黄视频| 亚洲人与动物交配视频| 91久久精品电影网| 99久久精品国产国产毛片| 国产精品.久久久| 久久精品综合一区二区三区| 亚洲在线自拍视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产女主播在线喷水免费视频网站 | 久久99热6这里只有精品| 国产av一区在线观看免费| 一个人看视频在线观看www免费| 伦理电影大哥的女人| 精华霜和精华液先用哪个| 在线观看美女被高潮喷水网站| 国产视频内射| 女人久久www免费人成看片 | 国产欧美日韩精品一区二区| 国产精品国产三级国产av玫瑰| 啦啦啦啦在线视频资源| 免费看光身美女| 午夜日本视频在线| 亚州av有码| 91精品伊人久久大香线蕉| 国产精品久久久久久精品电影小说 | 色播亚洲综合网| 看片在线看免费视频| 久久婷婷人人爽人人干人人爱| 色视频www国产| 精品一区二区三区人妻视频| 超碰av人人做人人爽久久| 韩国高清视频一区二区三区| 久久久久久久亚洲中文字幕| 少妇的逼水好多| 中文亚洲av片在线观看爽| 国内揄拍国产精品人妻在线| 天美传媒精品一区二区| 美女高潮的动态| 欧美区成人在线视频| 国产成人免费观看mmmm| 国产在线男女| 精品少妇黑人巨大在线播放 | 午夜免费男女啪啪视频观看| 久久久精品94久久精品| 波多野结衣巨乳人妻| 亚洲av福利一区| 国产大屁股一区二区在线视频| 成人国产麻豆网| 亚洲欧美一区二区三区国产| 午夜久久久久精精品| 熟妇人妻久久中文字幕3abv| 日韩av在线免费看完整版不卡| 国产成人91sexporn| 狠狠狠狠99中文字幕| 成人鲁丝片一二三区免费| 国产精品不卡视频一区二区| 日韩av不卡免费在线播放| 久久99热这里只频精品6学生 | 精品人妻视频免费看| 最近2019中文字幕mv第一页| 国产探花极品一区二区| 97超视频在线观看视频| 久久久色成人| 亚洲精品影视一区二区三区av| 大又大粗又爽又黄少妇毛片口| 两个人的视频大全免费| 青春草亚洲视频在线观看| 天堂网av新在线| 黄片wwwwww| 午夜精品在线福利| 国产精品国产高清国产av| 国产精品日韩av在线免费观看| 精品久久久久久成人av| 成人毛片60女人毛片免费| 狠狠狠狠99中文字幕| 丝袜喷水一区| av播播在线观看一区| 男插女下体视频免费在线播放| 人人妻人人澡欧美一区二区| 亚洲av熟女| av在线老鸭窝| 男人舔女人下体高潮全视频| 久久久久性生活片| 日韩在线高清观看一区二区三区| 亚洲自偷自拍三级| 嫩草影院入口| 免费观看精品视频网站| 搡女人真爽免费视频火全软件| 日韩一区二区三区影片| 99视频精品全部免费 在线| 亚洲av电影在线观看一区二区三区 | 日本三级黄在线观看| 欧美精品一区二区大全| 午夜福利视频1000在线观看| 欧美激情国产日韩精品一区| 国产男人的电影天堂91| 美女高潮的动态| 国内少妇人妻偷人精品xxx网站| 国产精品久久久久久精品电影小说 | 美女xxoo啪啪120秒动态图| 欧美日本视频| 美女xxoo啪啪120秒动态图| 91狼人影院| a级毛片免费高清观看在线播放| 国产在线男女| 免费大片18禁| 色综合色国产| 性色avwww在线观看| 亚洲中文字幕日韩| 国产精品久久久久久精品电影小说 | 久久午夜福利片| 国产高清不卡午夜福利| 一级毛片我不卡| 日本黄色视频三级网站网址| 简卡轻食公司| 自拍偷自拍亚洲精品老妇| 成人鲁丝片一二三区免费| 亚洲精品日韩av片在线观看| 欧美极品一区二区三区四区| 亚洲av.av天堂| 真实男女啪啪啪动态图| 有码 亚洲区| 中文字幕av在线有码专区| 听说在线观看完整版免费高清| 亚洲精华国产精华液的使用体验| 综合色丁香网| 亚洲经典国产精华液单| 国产亚洲精品久久久com| 成年女人看的毛片在线观看| 亚洲成人久久爱视频| 久久久午夜欧美精品| 美女高潮的动态| 日本色播在线视频| 亚洲精品一区蜜桃| 国产男人的电影天堂91| kizo精华| 日日摸夜夜添夜夜爱| 夫妻性生交免费视频一级片| 国产精品嫩草影院av在线观看| 免费观看在线日韩| 午夜激情欧美在线| av免费观看日本| 亚洲精品乱码久久久v下载方式| 日韩制服骚丝袜av| 国产精品麻豆人妻色哟哟久久 | 国产成人aa在线观看| 亚洲精品自拍成人| 特大巨黑吊av在线直播| 我的女老师完整版在线观看| 联通29元200g的流量卡| 狂野欧美激情性xxxx在线观看| 亚洲,欧美,日韩| 日韩av在线大香蕉| 国产熟女欧美一区二区| 日韩 亚洲 欧美在线| 亚洲精品,欧美精品| 久久久国产成人精品二区| 少妇被粗大猛烈的视频| 十八禁国产超污无遮挡网站| 丰满乱子伦码专区| 看免费成人av毛片| 男插女下体视频免费在线播放| 亚洲精品aⅴ在线观看| 国产成人aa在线观看| av播播在线观看一区| 欧美另类亚洲清纯唯美| 高清日韩中文字幕在线| 亚洲在线观看片| a级毛片免费高清观看在线播放| 麻豆成人av视频| av在线播放精品| 在线观看66精品国产| 男人和女人高潮做爰伦理| 国产成人精品久久久久久| 久久精品夜色国产| 国产 一区精品| 国产精品永久免费网站| 麻豆国产97在线/欧美| 麻豆一二三区av精品| 久热久热在线精品观看| 国产午夜福利久久久久久| 国产黄色小视频在线观看| 特级一级黄色大片| 日韩成人av中文字幕在线观看| 18+在线观看网站| 最近最新中文字幕免费大全7| 少妇熟女欧美另类| 欧美最新免费一区二区三区| 亚洲av电影在线观看一区二区三区 | 网址你懂的国产日韩在线| 一个人观看的视频www高清免费观看| 高清午夜精品一区二区三区| 久久久色成人| 中文欧美无线码| av线在线观看网站| 色哟哟·www| 熟妇人妻久久中文字幕3abv| 性色avwww在线观看| 精品人妻偷拍中文字幕| 亚洲一区高清亚洲精品| 亚洲av成人精品一二三区| 国产免费又黄又爽又色| 青青草视频在线视频观看| av福利片在线观看| 最近2019中文字幕mv第一页| 国产不卡一卡二| 一级爰片在线观看| 免费看美女性在线毛片视频| 欧美区成人在线视频| 国产美女午夜福利| 欧美精品一区二区大全| 晚上一个人看的免费电影| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 成人鲁丝片一二三区免费| 国产伦精品一区二区三区视频9| 啦啦啦观看免费观看视频高清| 国产精品女同一区二区软件| 九九在线视频观看精品| 免费在线观看成人毛片| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲一级一片aⅴ在线观看| 联通29元200g的流量卡| 久久精品久久精品一区二区三区| 欧美三级亚洲精品| a级毛色黄片| 亚洲欧洲国产日韩| 免费一级毛片在线播放高清视频| 欧美激情在线99| 亚洲av日韩在线播放| 少妇人妻精品综合一区二区| 日本wwww免费看| a级一级毛片免费在线观看| 一个人免费在线观看电影| 你懂的网址亚洲精品在线观看 | 亚洲国产精品专区欧美| 可以在线观看毛片的网站| 两个人视频免费观看高清| 永久网站在线| 99热这里只有是精品在线观看| 久久亚洲精品不卡| 麻豆一二三区av精品| 亚洲国产精品成人综合色| 亚洲电影在线观看av| 成年免费大片在线观看| 在线免费观看的www视频| 尾随美女入室| 男人的好看免费观看在线视频| 天天躁夜夜躁狠狠久久av| 国产男人的电影天堂91| 日韩国内少妇激情av| 欧美xxxx黑人xx丫x性爽| 国内少妇人妻偷人精品xxx网站| 中文字幕亚洲精品专区| 色吧在线观看| 国产亚洲精品av在线| 18禁在线无遮挡免费观看视频| 日韩av不卡免费在线播放| 亚洲不卡免费看| a级毛片免费高清观看在线播放| 国产白丝娇喘喷水9色精品| 国产美女午夜福利| 婷婷六月久久综合丁香| 可以在线观看毛片的网站| 日韩av在线大香蕉| 男女啪啪激烈高潮av片| 国产乱人偷精品视频| 国产高清国产精品国产三级 | 欧美xxxx性猛交bbbb| 亚洲美女视频黄频| 欧美高清成人免费视频www| 97热精品久久久久久| 国产av在哪里看| 老女人水多毛片| 国产精品精品国产色婷婷| 白带黄色成豆腐渣| 嫩草影院入口| 日产精品乱码卡一卡2卡三| 国产大屁股一区二区在线视频| 欧美性感艳星| 国产免费福利视频在线观看| 国产精品蜜桃在线观看| 亚洲国产欧美人成| 成人亚洲欧美一区二区av| 亚洲欧美一区二区三区国产| 免费观看性生交大片5| 国产精品一区二区三区四区免费观看| 日韩 亚洲 欧美在线| 亚洲伊人久久精品综合 | eeuss影院久久| 日韩一区二区视频免费看| 性插视频无遮挡在线免费观看| 久久欧美精品欧美久久欧美| 国产 一区 欧美 日韩| 一个人免费在线观看电影| 我的老师免费观看完整版| 欧美极品一区二区三区四区| 亚洲av成人av| 成年版毛片免费区| 大香蕉97超碰在线| 亚洲欧美精品专区久久| 精品99又大又爽又粗少妇毛片| 成人特级av手机在线观看| 插逼视频在线观看| 91精品国产九色| 国产亚洲午夜精品一区二区久久 | 久久精品熟女亚洲av麻豆精品 | 1024手机看黄色片| 大话2 男鬼变身卡| 精品久久久久久成人av| 我要看日韩黄色一级片| 国产免费福利视频在线观看| 亚洲久久久久久中文字幕| 亚洲最大成人av| 国产午夜福利久久久久久| 一卡2卡三卡四卡精品乱码亚洲| 高清av免费在线| av天堂中文字幕网| 国产精品嫩草影院av在线观看| 国产成人精品久久久久久| 久久精品久久久久久久性| 国产欧美另类精品又又久久亚洲欧美| 国内精品一区二区在线观看| 国产老妇伦熟女老妇高清| 久久婷婷人人爽人人干人人爱| 日本一本二区三区精品| 99九九线精品视频在线观看视频| 精品一区二区三区人妻视频| 高清毛片免费看| 色综合站精品国产| 伊人久久精品亚洲午夜| 岛国在线免费视频观看| 久久久久国产网址| 国产女主播在线喷水免费视频网站 | 精品国产三级普通话版| 国产成人a区在线观看| 成年女人永久免费观看视频| 久久久久久久久久成人| 国产黄色小视频在线观看| 国产精品国产高清国产av| 插阴视频在线观看视频| 永久免费av网站大全| 精品人妻熟女av久视频| 亚洲真实伦在线观看| 桃色一区二区三区在线观看| 久久婷婷人人爽人人干人人爱|