吳還梅,盧洪洲,2,3
1. 復(fù)旦大學(xué)附屬公共衛(wèi)生臨床中心感染科,上海 201508; 2. 復(fù)旦大學(xué)附屬華山醫(yī)院感染科,上海 200040; 3. 復(fù)旦大學(xué)上海醫(yī)學(xué)院內(nèi)科學(xué)系,上海 200032
人類免疫缺陷病毒(human immunodeficiency virus,HIV)感染引起的獲得性免疫缺陷綜合征(acquired immunodeficiency syndrome,AIDS)一直是全球范圍內(nèi)的一個難題。據(jù)世界衛(wèi)生組織(World Health Organization,WHO)報道,截至2016年底,全球約有 3 670 萬人感染HIV,其中2016年新發(fā)感染人數(shù)為180萬。截至2017年年中,已有超過 2 000 萬HIV感染者接受規(guī)范化抗反轉(zhuǎn)錄病毒治療(antiretroviral treatment,ART)[1]。ART的目標(biāo)是通過控制HIV復(fù)制,幫助患者實現(xiàn)免疫功能重建。在此過程中,CD4+T細(xì)胞計數(shù)是評估免疫重建狀況的核心指標(biāo)。
CD4+T細(xì)胞計數(shù)水平低是HIV感染者發(fā)生各種機會性感染、腫瘤乃至死亡的最主要危險因素。多數(shù)患者接受ART后,CD4+T細(xì)胞水平可恢復(fù)正常;但仍有約20%的患者在接受ART后,即使血漿病毒載量已持續(xù)數(shù)年低于檢測下限,其CD4+T細(xì)胞計數(shù)可能仍<200個/μL,該現(xiàn)象稱為免疫功能重建不全。目前,國際上仍缺乏固定統(tǒng)一的界定指標(biāo)和標(biāo)準(zhǔn),公認(rèn)的指標(biāo)主要為CD4+T細(xì)胞計數(shù)、血漿HIV載量及病毒抑制持續(xù)時間。一般將接受ART后血漿HIV載量持續(xù)<50拷貝/mL達(dá)12個月以上,且期間CD4+T細(xì)胞計數(shù)持續(xù)<200個/μL或CD4+T細(xì)胞回升比例<25%,定義為發(fā)生免疫功能重建不全[2]。
HIV感染免疫功能重建不全患者發(fā)生機會性感染和腫瘤的風(fēng)險是免疫功能重建完全患者的 2.6 倍[3]。我國新診斷出的HIV感染者的臨床指標(biāo)顯示,>70%的患者在未治療前CD4+T細(xì)胞<200個/μL,是發(fā)生免疫功能重建不全的高危人群;且我國高達(dá)70%的HIV感染者在明確診斷時已表現(xiàn)出AIDS癥狀,多數(shù)會發(fā)生免疫功能重建不全[4]。
CD4+T細(xì)胞來源于胸腺。有研究發(fā)現(xiàn),免疫功能重建不全患者的胸腺功能受到影響,導(dǎo)致體內(nèi)無法產(chǎn)生足夠的CD4+T細(xì)胞[5],提示胸腺的分化能力是影響免疫功能重建的因素之一。在胸腺分化能力沒有差異的情況下,免疫功能重建不全的HIV感染者中,CXCR4嗜性的HIV毒株比例顯著高于CCR5嗜性的毒株[6],表明病毒亞型也是免疫功能重建不全的相關(guān)因素。
國外既往隊列研究顯示,免疫功能重建不全的風(fēng)險因素包括年齡、啟動ART時的CD4+T細(xì)胞計數(shù)[3,7]、男性同性戀和靜脈毒品注射傳播,以及從啟動治療到實現(xiàn)病毒抑制的時間等[3,8]。就診時低CD4+T細(xì)胞計數(shù)水平是HIV感染者免疫功能重建不全的獨立危險因素[9-10]。進(jìn)一步探索發(fā)現(xiàn),對于ART前CD4+T細(xì)胞計數(shù)<200 個/μL的HIV感染者,CD4+T細(xì)胞絕對數(shù)下降的速率與治療后發(fā)生免疫功能重建不全的風(fēng)險呈正相關(guān)[11]。國內(nèi)研究者從浙江省HIV感染者隊列中篩選出初始治療時CD4+T細(xì)胞計數(shù)<100個/μL的免疫功能重建不全患者,發(fā)現(xiàn)隨訪時間越長,隊列中發(fā)生免疫功能重建不全的比例越高[12]。對此類HIV感染者而言,及早開始ART無疑能在一定程度上降低未來發(fā)生免疫功能重建不全的風(fēng)險。
與健康志愿者和免疫功能重建完全的HIV感染者相比,免疫功能重建不全的HIV感染者血漿中CD4 IgG抗體水平顯著上升。這些IgG能在體外通過抗體依賴的細(xì)胞介導(dǎo)的細(xì)胞毒作用(antibody-dependent cell-mediated cytotoxicity,ADCC),促發(fā)天然殺傷(natural killer,NK)細(xì)胞誘導(dǎo)CD4+T細(xì)胞發(fā)生凋亡和裂解。此效應(yīng)對初始CD4+T細(xì)胞的作用較記憶性CD4+T細(xì)胞明顯[13],也就是說免疫功能重建不全患者體內(nèi)因某些原因而產(chǎn)生了自體反應(yīng)的IgG,攻擊自身CD4+T細(xì)胞,導(dǎo)致其數(shù)量減少。
免疫功能重建不全的HIV感染者外周血記憶性CD4+T細(xì)胞的單細(xì)胞蛋白質(zhì)組學(xué)分析顯示,該細(xì)胞亞群免疫應(yīng)答通路受到抑制[14]。HIV再次侵襲時,記憶性CD4+T細(xì)胞有可能減弱,無法正常擴增CD4+T和CD8+T細(xì)胞 。分析CD4+T細(xì)胞的原始祖細(xì)胞發(fā)現(xiàn),免疫功能重建不全患者的CD34+造血祖細(xì)胞分化為T細(xì)胞的功能受損。其機制為細(xì)胞死亡相關(guān)受體P2X7表達(dá)上調(diào),通過ATP通路阻礙CD34+造血祖細(xì)胞分化為T細(xì)胞[15]。T細(xì)胞耗竭標(biāo)記——程序性細(xì)胞死亡蛋白1(programmed cell death 1,PD-1)的升高與免疫功能重建不全的發(fā)生相關(guān)[16],高表達(dá)PD-1的T細(xì)胞在免疫系統(tǒng)活化過程中可能抑制正常T細(xì)胞擴增。因此,PD-1無疑對HIV感染者免疫恢復(fù)有一定的負(fù)面影響。
NK細(xì)胞介導(dǎo)的細(xì)胞毒作用能直接殺傷被HIV感染的CD4+T細(xì)胞。雖然免疫功能重建不全患者體內(nèi)NK細(xì)胞產(chǎn)生γ干擾素(interferon γ,IFN-γ)的能力被削弱,但CD56高表達(dá)的NK細(xì)胞數(shù)量增加,且細(xì)胞毒性顯著增加,脫顆粒能力也沒有受到影響[17]。另有研究顯示,免疫功能重建不全患者的NK細(xì)胞數(shù)量無顯著變化,但CD56中度表達(dá)的NK細(xì)胞被激活,這些活化的NK細(xì)胞對離體未感染HIV的CD4+T細(xì)胞亦有細(xì)胞毒性[18]。免疫功能重建不全患者的天然細(xì)胞毒性受體NKp44的配體表達(dá)上調(diào),這部分細(xì)胞為高度分化的、多功能的、發(fā)生凋亡的CD4+T細(xì)胞[19]。綜上所述,HIV感染的免疫功能重建不全患者體內(nèi)依然有很強的NK細(xì)胞介導(dǎo)的CD4+T細(xì)胞殺傷反應(yīng),此效應(yīng)可刪除被感染的CD4+T細(xì)胞,還累及未感染的CD4+T細(xì)胞,從而導(dǎo)致其細(xì)胞數(shù)量減少。另一方面,細(xì)胞產(chǎn)生IFN-γ的能力減弱會導(dǎo)致免疫功能重建不全患者發(fā)生機會性感染和腫瘤的風(fēng)險增加。
作為免疫系統(tǒng)的第三信使,細(xì)胞因子調(diào)節(jié)細(xì)胞的分化和功能。HIV感染導(dǎo)致白細(xì)胞介素7(interleukin 7,IL-7)水平升高,理論上能促進(jìn)T細(xì)胞分化;但I(xiàn)L-7受體CD127的表達(dá)下調(diào)[20],很可能導(dǎo)致T細(xì)胞分化不全。研究顯示,HIV感染后升高的IL-7在ART后可基本下降至正常水平,但免疫功能重建不全患者中 IL-7水平持續(xù)偏高[21],伴隨IL-7受體表達(dá)減少,導(dǎo)致初始T細(xì)胞不能正常擴增。由此可見,IL-7信號通路確實在HIV感染者中產(chǎn)生影響,使部分感染者發(fā)生免疫功能重建不全,但具體機制尚不清楚。嚴(yán)重免疫功能重建不全患者中,激活的和發(fā)生凋亡的CD8+T細(xì)胞比例較高[22],提示體內(nèi)細(xì)胞毒作用仍在持續(xù),可能是引發(fā)慢性炎癥的原因之一。
但有研究發(fā)現(xiàn),免疫功能重建完全與免疫功能重建不全患者之間血漿細(xì)胞因子水平?jīng)]有顯著差異,隨訪2年后只有IFN-γ誘導(dǎo)蛋白10(interferon γ-inducible protein 10,IP-10)在免疫功能重建不全患者中略有上升[23]。因此,利用細(xì)胞因子表達(dá)譜不能區(qū)分兩類感染者。有兩項研究顯示,免疫功能重建不全患者外周血中的調(diào)節(jié)性T細(xì)胞(regulatory T cell,Treg)數(shù)量顯著上升,且以活化的Treg為主[24-25],伴有高表達(dá)的IL-10。研究者認(rèn)為,Treg是免疫功能重建的保護性因素[24]。另一項研究則發(fā)現(xiàn),血漿IP-10升高與CD4+T細(xì)胞數(shù)下降呈正相關(guān)[25],推測可能是因為IP-10的高表達(dá)可募集與激活T細(xì)胞,從而促進(jìn)CD4+T細(xì)胞刪除。近期研究顯示,炎癥小體介導(dǎo)的促炎反應(yīng)可能是免疫系統(tǒng)持續(xù)性激活的途徑,細(xì)胞焦亡通路則可能是導(dǎo)致CD4+T細(xì)胞數(shù)下降的機制之一[26]。
腸道黏膜是HIV感染的主要病灶之一,CD4+T細(xì)胞損傷主要發(fā)生于淋巴組織,特別是腸道相關(guān)淋巴組織[27]。在這些淋巴組織中,HIV仍處于低水平復(fù)制狀態(tài),接受ART后CD4+T細(xì)胞數(shù)量恢復(fù)較慢[28],可見CD4+T細(xì)胞恢復(fù)水平與腸道CD4+T細(xì)胞數(shù)量恢復(fù)密切相關(guān)。腸道黏膜固有層中的淋巴細(xì)胞是HIV在組織中的主要潛伏庫,此處HIV DNA或有缺陷的RNA水平是血液中的2倍[29]。ART抑制成熟HIV產(chǎn)生,但在CD4+T細(xì)胞發(fā)生焦亡和組織局部伴隨炎癥反應(yīng)的情況下,大量不完整的HIV DNA或RNA釋放。IFN-γ誘導(dǎo)蛋白16(interferon γ-inducible protein 16,IFI16)感受缺陷型DNA或RNA,進(jìn)一步誘導(dǎo)產(chǎn)生細(xì)胞焦亡[30],大量刪除CD4+T細(xì)胞。另有研究顯示,免疫功能重建不全患者的腸黏膜相關(guān)淋巴組織歸巢受體α4β7的表達(dá)顯著高于免疫功能重建完全患者,其中β7+Th17和Treg細(xì)胞數(shù)量有所上升[31]。這一表型或可影響HIV在黏膜局部組織潛伏庫的形成和HIV在體內(nèi)的傳播,從而影響患者的免疫重建。
半胱氨酸天冬氨酸特異性蛋白水解酶1(cysteinyl aspartate specific proteinase 1,caspase-1)和caspase-3引起的細(xì)胞死亡,均是HIV感染過程中CD4+T細(xì)胞刪除的重要通路。近期研究發(fā)現(xiàn),ART后患者外周血中發(fā)生焦亡的CD4+T細(xì)胞比例與活化的CD8+T細(xì)胞比例呈正相關(guān),且與未治療時相比,CD4+T細(xì)胞焦亡比例顯著下降[32]。被HIV感染的CD4+T細(xì)胞發(fā)生凋亡,但絕大多數(shù)未被感染的CD4+T旁路細(xì)胞則通過焦亡途徑死亡,超過95%的靜息性CD4+T細(xì)胞發(fā)生caspase-1介導(dǎo)的焦亡[33]。因此,焦亡是HIV感染導(dǎo)致CD4+T細(xì)胞數(shù)量減少的主要原因,這一通路還伴隨IL-1β釋放及一系列慢性炎癥反應(yīng)。焦亡的CD4+T細(xì)胞釋放ATP、IL-1β、caspase-1適配體ASC和NLRP3炎癥小體,進(jìn)一步引誘更多的CD4+T細(xì)胞被刪除[30]。
HIV通過黏膜途徑感染后,首先導(dǎo)致黏膜局部組織中效應(yīng)CD4+T細(xì)胞被大量刪除,包括Th17和Th22,進(jìn)而引發(fā)黏膜上皮損傷,進(jìn)一步發(fā)生微生物易位,激活系統(tǒng)免疫反應(yīng)。免疫功能重建不全患者在治療后期,腸道黏膜交聯(lián)結(jié)構(gòu)受損,表現(xiàn)為上皮細(xì)胞表面表達(dá)交聯(lián)復(fù)合蛋白的水平下降。雖然外周血與腸道組織中CD4+T細(xì)胞計數(shù)并無差異,但黏膜局部HIV載量升高[34],可見腸道黏膜破損會對機體的免疫應(yīng)答產(chǎn)生直接負(fù)面影響。慢性炎癥和Th17細(xì)胞刪除導(dǎo)致不可逆損傷,微生物易位,使得CD4+T細(xì)胞數(shù)量恢復(fù)較慢。有研究顯示,某些腸道菌可使HIV誘導(dǎo)黏膜CD4+T細(xì)胞的死亡方式從凋亡轉(zhuǎn)變?yōu)榻雇鯷35]。HIV感染導(dǎo)致部分抗炎性菌群減少,這些腸道菌群可能直接影響外周血中CD4+T細(xì)胞數(shù)量,從而影響HIV感染進(jìn)程[36-37]。而某些腸道微生物能促進(jìn)腸黏膜中HIV復(fù)制,增加腸道CD4+T細(xì)胞破壞,從而導(dǎo)致疾病進(jìn)展[38]。由此可見,這些腸道微生物菌群極有可能對HIV感染者接受治療后CD4+T細(xì)胞數(shù)量和功能的恢復(fù)產(chǎn)生影響。
目前,全球范圍內(nèi)僅有6項關(guān)于HIV感染后免疫功能重建不全患者隊列的臨床試驗。藥物馬拉諾維Ⅳ期臨床試驗結(jié)果顯示,CD4+T細(xì)胞的恢復(fù)能力沒有顯著提升[39];雷公藤提取物能在一定程度上降低患者免疫激活水平,同時增強CD4+T細(xì)胞恢復(fù)能力[40],但CD4+T細(xì)胞絕對計數(shù)仍然<200個/μL;飲食中添加營養(yǎng)補充劑鋅和腺苷甲硫氨酸改善免疫功能重建不全,以及吡斯的明Ⅱ期臨床試驗正在進(jìn)行;國內(nèi)部分研究機構(gòu)也在嘗試中醫(yī)藥介入治療,但基本處于實驗室探索階段。
IL-2和IL-15與T細(xì)胞的增殖、分化及激活密切相關(guān),HIV感染者中兩者表達(dá)下調(diào)。臨床研究試圖使用IL-2皮下注射間歇性給藥,以促進(jìn)免疫系統(tǒng)CD4+T細(xì)胞的產(chǎn)生;但對于免疫功能重建不全的HIV感染者,效果并不理想[41]。IL-2雖然能促使免疫系統(tǒng)產(chǎn)生更多的CD4+T細(xì)胞,但不能降低患者發(fā)生機會性感染和死亡的風(fēng)險[20]。眾所周知,IL-7能促進(jìn)胸腺產(chǎn)生T細(xì)胞,免疫功能重建不全患者血漿中IL-7表達(dá)水平雖然較高,但未能使CD4+T細(xì)胞計數(shù)達(dá)到正常水平[21],機制尚未闡明。雖然IL-7對猴免疫缺陷病毒(simian immunodeficiency virus,SIV)感染有一定的保護作用[20],但I(xiàn)L-7是否可作為臨床輔助用藥用于治療免疫功能重建不全患者仍有待探討。綜上所述,免疫功能重建不全患者體內(nèi)CD4+T細(xì)胞水平低的根本原因可能不是免疫系統(tǒng)不能產(chǎn)生足夠的CD4+T細(xì)胞,而是這些CD4+T細(xì)胞發(fā)生了死亡。雖然IL-15能促進(jìn)黏膜局部記憶型T細(xì)胞的擴增及向外周非淋巴組織遷徙,但研究者在SIV感染的恒河猴模型中采用IL-15與ART聯(lián)用的方案時,并沒有起到對宿主的保護作用,反而促進(jìn)了CD4+T細(xì)胞的刪除[42]。
P2X7升高與CD34+造血祖細(xì)胞分化為T細(xì)胞的功能受損直接相關(guān)[15],那么是否可設(shè)計P2X7阻斷劑來重新解放造血祖細(xì)胞的分化功能,誘導(dǎo)其分化出更多的CD4+T細(xì)胞。鑒于免疫功能重建不全患者中細(xì)胞因子水平與免疫功能重建完全患者沒有顯著差異,推測影響CD4+T細(xì)胞恢復(fù)的因素可能局限于細(xì)胞水平。因此,激活免疫系統(tǒng)產(chǎn)生更多的CD4+T細(xì)胞可能是未來治療免疫功能重建不全的策略之一。
關(guān)于免疫功能重建不全的分類標(biāo)準(zhǔn)尚未統(tǒng)一,加上研究隊列一般較小,導(dǎo)致目前的研究結(jié)果無法支持臨床應(yīng)用。黏膜局部組織中CD4+T細(xì)胞減少是HIV感染者免疫功能重建不全的原因之一,但機制仍不明確。免疫功能重建不全患者中CD4+T細(xì)胞凋亡和焦亡較為明顯,可能的通路為PD-1和caspase-1相互作用。CD4+T細(xì)胞焦亡與AIDS進(jìn)展相關(guān),而免疫功能重建不全導(dǎo)致CD4+T細(xì)胞焦亡更為嚴(yán)重。免疫功能重建不全患者中吲哚胺2,3-雙加氧酶(indoleamine-2,3-dioxygenase,IDO)活性與caspase-3/9呈明顯正相關(guān)。IDO可抑制T細(xì)胞增殖,免疫功能重建不全患者體內(nèi)是否發(fā)生了多方面的連鎖反應(yīng),最終導(dǎo)致CD4+T細(xì)胞數(shù)量減少且難以恢復(fù)仍有待確認(rèn)。
針對HIV感染者免疫功能重建不全的治療方法,尚沒有權(quán)威的專家共識或臨床指南。從治療的角度講,HIV感染免疫功能重建不全患者即使接受ART,免疫系統(tǒng)也無法正常應(yīng)答,從而無法使CD4+T細(xì)胞數(shù)量恢復(fù)至正常水平。因此,需采取其他途徑的治療策略,如對癥聯(lián)合抗菌藥物。在診斷方面,則可以檢測毒株亞型、評估造血干細(xì)胞的T細(xì)胞分化能力等作為輔助。雖然目前研究顯示免疫功能重建完全與免疫功能重建不全患者之間腸道菌群的組成及豐度存在差異,但機制尚不清楚,也沒有任何藥物和治療手段可幫助患者恢復(fù)CD4+T細(xì)胞計數(shù)水平。因此,通過研究以明確相關(guān)機制,將有助于延長HIV感染者的生存時間,改善其生活質(zhì)量。
[1] World Health Organization. Antiretroviral therapy [EB/OL]. http: //www.who.int/topics/antiretroviral_therapy/en.
[2] Cenderello G, De Maria A. Discordant responses to cART in HIV-1 patients in the era of high potency antiretroviral drugs: clinical evaluation, classification, management prospects [J]. Expert Rev Anti Infect Ther, 2016, 14(1): 29-40.
[3] Engsig FN, Zangerle R, Katsarou O, Dabis F, Reiss P, Gill J, Porter K, Sabin C, Riordan A, F?tkenheuer G, Gutiérrez F, Raffi F, Kirk O, Mary-Krause M, Stephan C, de Olalla PG, Guest J, Samji H, Castagna A, d’Arminio Monforte A, Skaletz-Rorowski A, Ramos J, Lapadula G, Mussini C, Force L, Meyer L, Lampe F, Boufassa F, Bucher HC, De Wit S, Burkholder GA, Teira R, Justice AC, Sterling TR, Crane HM, Gerstoft J, Grarup J, May M, Chêne G, Ingle SM, Sterne J, Obel N; Antiretroviral Therapy Cohort Collaboration (ART-CC) and the Collaboration of Observational HIV Epidemiological Research Europe (COHERE) in EuroCoord. Long-term mortality in HIV-positive individuals virally suppressed for >3 years with incomplete CD4 recovery [J]. Clin Infect Dis, 2014, 58(9): 1312-1321.
[4] Shen Y, Lu H, Wang Z, Qi T, Wang J. Analysis of the immunologic status of a newly diagnosed HIV positive population in China [J]. BMC Infect Dis, 2013, 13: 429. doi: 10.1186/1471-2334-13-429.
[5] Aiuti F, Mezzaroma I. Failure to reconstitute CD4+T-cells despite suppression of HIV replication under HAART [J]. AIDS Rev, 2006, 8(2): 88-97.
[6] Delobel P, Nugeyre MT, Cazabat M, Sandres-Sauné K, Pasquier C, Cuzin L, Marchou B, Massip P, Cheynier R, Barré-Sinoussi F, Izopet J, Isra?l N. Naive T-cell depletion related to infection by X4 human immunodeficiency virus type 1 in poor immunological responders to highly active antiretroviral therapy [J]. J Virol, 2006, 80(20): 10229-10236.
[7] Prabhakar B, Banu A, Pavithra HB, Chandrashekhara P, Sasthri S. Immunological failure despite virological suppression in HIV seropositive individuals on antiretroviral therapy [J]. Indian J Sex Transm Dis, 2011, 32(2): 94-98.
[8] Gazzola L, Tincati C, Bellistrì GM, d’Arminio Monforte A, Marchetti G. The absence of CD4+T cell count recovery despite receipt of virologically suppressive highly active antiretroviral therapy: clinical risk, immunological gaps, and therapeutic options [J]. Clin Infect Dis, 2009, 48(3): 328-337.
[9] Negredo E, Massanella M, Puig J, Pérez-Alvarez N, Gallego-Escuredo JM, Villarroya J, Villarroya F, Moltó J, Santos JR, Clotet B, Blanco J. Nadir CD4 T cell count as predictor and high CD4 T cell intrinsic apoptosis as final mechanism of poor CD4 T cell recovery in virologically suppressed HIV-infected patients: clinical implications [J]. Clin Infect Dis, 2010, 50(9): 1300-1308.
[10] Zhang F, Sun M, Sun J, Guan L, Wang J, Lu H. The risk factors for suboptimal CD4 recovery in HIV infected population: an observational and retrospective study in Shanghai, China [J]. Biosci Trends, 2015, 9(5): 335-341.
[11] Darraj M, Shafer LA, Chan S, Kasper K, Keynan Y. Rapid CD4 decline prior to antiretroviral therapy predicts subsequent failure to reconstitute despite HIV viral suppression [J]. J Infect Public Health, 2017. doi: 10.1016/j.jiph.2017.08.001.
[12] He L, Pan X, Dou Z, Huang P, Zhou X, Peng Z, Zheng J, Zhang J, Yang J, Xu Y, Jiang J, Chen L, Jiang J, Wang N. The factors related to CD4+T-cell recovery and viral suppression in patients who have low CD4+T cell counts at the initiation of HAART: a retrospective study of the National HIV Treatment Sub-database of Zhejiang Province, China, 2014 [J]. PLoS One, 2016, 11(2): e0148915.
[13] Luo Z, Li Z, Martin L, Wan Z, Meissner EG, Espinosa E, Wu H, Yu X, Fu P, Westerink MAJ, Kilby JM, Wu J, Huang L, Heath SL, Li Z, Jiang W. Pathological role of anti-CD4 antibodies in HIV-infected immunologic nonresponders receiving virus-suppressive antiretroviral therapy [J]. J Infect Dis, 2017, 216(1): 82-91.
[14] Azzam S, Schlatzer D, Maxwell S, Li X, Bazdar D, Chen Y, Asaad R, Barnholtz-Sloan J, Chance MR, Sieg SF. Proteome and protein network analyses of memory T cells find altered translation and cell stress signaling in treated human immunodeficiency virus patients exhibiting poor CD4 recovery [J]. Open Forum Infect Dis, 2016, 3(2): ofw 37. doi: 10.1093/ofid/ofw037.
[15] Menkova-Garnier I, Hocini H, Foucat E, Tisserand P, Bourdery L, Delaugerre C, Benne C, Lévy Y, Lelièvre JD. P2X7 receptor inhibition improves CD34 T-cell differentiation in HIV-infected immunological nonresponders on c-ART [J]. PLoS Pathog, 2016, 12(4): e1005571.
[16] Grabmeier-Pfistershammer K, Steinberger P, Rieger A, Leitner J, Kohrgruber N. Identification of PD-1 as a unique marker for failing immune reconstitution in HIV-1-infected patients on treatment [J]. J Acquir Immune Defic Syndr, 2011, 56(2): 118-124.
[17] Giuliani E, Vassena L, Di Cesare S, Malagnino V, Desimio MG, Andreoni M, Barnaba V, Doria M. NK cells of HIV-1-infected patients with poor CD4+T-cell reconstitution despite suppressive HAART show reduced IFN-gamma production and high frequency of autoreactive CD56brightcells [J]. Immunol Lett, 2017, 190: 185-193.
[18] Luo Z, Li Z, Martin L, Hu Z, Wu H, Wan Z, Kilby M, Heath SL, Huang L, Jiang W. Increased natural killer cell activation in HIV-infected immunologic non-responders correlates with CD4+T cell recovery after antiretroviral therapy and viral suppression[J]. PLoS One, 2017, 12(1): e0167640.
[19] Sennepin A, Baychelier F, Guihot A, Nel I, Ho Tsong Fang R, Calin R, Katlama C, Simon A, Crouzet J, Debré P, Vieillard V. NKp44L expression on CD4+T cells is associated with impaired immunological recovery in HIV-infected patients under highly active antiretroviral therapy [J]. AIDS, 2013, 27(12): 1857-1866.
[20] Khoury G, Rajasuriar R, Cameron PU, Lewin SR. The role of na?ve T-cells in HIV-1 pathogenesis: an emerging key player [J]. Clin Immunol, 2011, 141(3): 253-267.
[21] Leone A, Rohankhedkar M, Okoye A, Legasse A, Axthelm MK, Villinger F, Piatak M Jr, Lifson JD, Assouline B, Morre M, Picker LJ, Sodora DL. Increased CD4+T cell levels during IL-7 administration of antiretroviral therapy-treated simian immunodeficiency virus-positive macaques are not dependent on strong proliferative responses [J]. J Immunol, 2010, 185(3): 1650-1659.
[22] Bai F, Bellistri GM, Tincati C, Savoldi A, Pandolfo A, Bini T, Carpani G, Sinigaglia E, Marchetti G, d’Arminio Monforte A. Reduced CD127 expression on peripheral CD4+T cells impairs immunological recovery in course of suppressive highly active antiretroviral therapy [J]. AIDS, 2010, 24(16): 2590-2593.
[23] Norris PJ, Zhang J, Worlock A, Nair SV, Anastos K, Minkoff HL, Villacres MC, Young M, Greenblatt RM, Desai S, Landay AL, Gange SJ, Nugent CT, Golub ET, Keating SM. Systemic cytokine levels do not predict CD4+T-cell recovery after suppressive combination antiretroviral therapy in chronic human immunodeficiency virus infection [J]. Open Forum Infect Dis, 2016, 3(1): ofw025. doi: 10.1093/ofid/ofw025.
[24] Gaardbo JC, Hartling HJ, Ronit A, Springborg K, Gjerdrum LM, Ralfkiaer E, Thorsteinsson K, Ullum H, Andersen AB, Nielsen SD. Regulatory T cells in HIV-infected immunological nonresponders are increased in blood but depleted in lymphoid tissue and predict immunological reconstitution [J]. J Acquir Immune Defic Syndr, 2014, 66(4): 349-357.
[25] Stiksrud B, Lorvik KB, Kvale D, Mollnes TE, Ueland PM, Tr?seid M, Taskén K, Dyrhol-Riise AM. Plasma IP-10 is increased in immunological nonresponders and associated with activated regulatory T cells and persisting low CD4 counts [J]. J Acquir Immune Defic Syndr, 2016, 73(2): 138-148.
[26] Masetti M, Fabbiani M, Biasin M, Muscatello A, Squillace N, Colella E, Clerici M, Gori A, Trabattoni D, Bandera A. Inflammasome and pyroptosis are involved in the lack of immune response during cART [C/OL]. 2017. http: //www.croiconference.org/sessions/inflammasome-and-pyroptosis-are-involved-lack-immune-response-during-cart.
[27] Veazey RS, Demaria M, Chalifoux LV, Shvetz DE, Pauley DR, Knight HL, Rosenzweig M, Johnson RP, Desrosiers RC, Lackner AA. Gastrointestinal tract as a major site of CD4+T cell depletion and viral replication in SIV infection [J]. Science, 1998, 280(5362): 427-431.
[28] Mudd JC, Brenchley JM. Gut mucosal barrier dysfunction, microbial dysbiosis, and their role in HIV-1 disease progression [J]. J Infec Dis, 2016, 214(Suppl 2): S58-S66.
[29] Khan S, Telwatte S, Trapecar M, Yukl S, Sanjabi S. Differentiating immune cell targets in gut-associated lymphoid tissue for HIV cure [J]. AIDS Res Hum Retroviruses, 2017, 33(S1): S40-S58.
[30] Doitsh G, Greene WC. Dissecting how CD4 T cells are lost during HIV infection [J]. Cell Host Microbe, 2016, 19(3): 280-291.
[31] Girard A, Vergnon-Miszczycha D, Depincé-Berger AE, Roblin X, Lutch F, Lambert C, Rochereau N, Bourlet T, Genin C, Paul S. Brief report: a high rate of beta7+gut-homing lymphocytes in HIV-infected immunological nonresponders is associated with poor CD4 T-cell recovery during suppressive HAART [J]. J Acquir Immune Defic Syndr, 2016, 72(3): 259-265.
[32] Cai R, Liu L, Luo B, Wang J, Shen J, Shen Y, Zhang R, Chen J, Lu H. Caspase-1 activity in CD4 T cells is downregulated following antiretroviral therapy for HIV-1 infection [J]. AIDS Res Hum Retroviruses, 2017, 33(2): 164-171.
[33] Doitsh G, Galloway NL, Geng X, Yang Z, Monroe KM, Zepeda O, Hunt PW, Hatano H, Sowinski S, Muoz-Arias I, Greene WC. Cell death by pyroptosis drives CD4 T-cell depletion in HIV-1 infection [J]. Nature, 2014, 505(7484): 509-514.
[34] Tincati C, Merlini E, Braidotti P, Ancona G, Savi F, Tosi D, Borghi E, Callegari ML, Mangiavillano B, Barassi A, Bulfamante G, d’Arminio Monforte A, Romagnoli S, Chomont N, Marchetti G. Impaired gut junctional complexes feature late-treated individuals with suboptimal CD4+T-cell recovery upon virologically suppressive combination antiretroviral therapy [J]. AIDS, 2016, 30(7): 991-1003.
[35] Steele AK, Lee EJ, Manuzak JA, Dillon SM, Beckham JD, McCarter MD, Santiago ML, Wilson CC. Microbial exposure alters HIV-1-induced mucosal CD4+T cell death pathways ex vivo [J]. Retrovirology, 2014, 11: 14. doi: 10.1186/1742-4690-11-14.
[36] Harper KN. HIV-altered gut microbiome may be driving disease progression [J]. AIDS, 2017, 31(2): N1. doi: 10.1097/QAD.0000000000001295.
[37] Dillon SM, Frank DN, Wilson CC. The gut microbiome and HIV-1 pathogenesis: a two-way street [J]. AIDS, 2016, 30(18): 2737-2751.
[38] Dillon SM, Lee EJ, Kotter CV, Austin GL, Gianella S, Siewe B, Smith DM, Landay AL, McManus MC, Robertson CE, Frank DN, McCarter MD, Wilson CC. Gut dendritic cell activation links an altered colonic microbiome to mucosal and systemic T-cell activation in untreated HIV-1 infection [J]. Mucosal Immunol, 2016, 9(1): 24-37.
[39] Rusconi S, Vitiello P, Adorni F, Colella E, Focà E, Capetti A, Meraviglia P, Abeli C, Bonora S, D’Annunzio M, Di Biagio A, Di Pietro M, Butini L, Orofino G, Colafigli M, d’Ettorre G, Francisci D, Parruti G, Soria A, Buonomini AR, Tommasi C, Mosti S, Bai F, Di Nardo Stuppino S, Morosi M, Montano M, Tau P, Merlini E, Marchetti G. Maraviroc as intensification strategy in HIV-1 positive patients with deficient immunological response: an Italian randomized clinical trial [J]. PLoS One, 2013, 8(11): e80157.
[40] Li T, Xie J, Li Y, Routy JP, Li Y, Han Y, Qiu Z, Lv W, Song X, Sun M, Zhang X, Wang F, Jiang H. Tripterygium wilfordii Hook F extract in cART-treated HIV patients with poor immune response: a pilot study to assess its immunomodulatory effects and safety [J]. HIV Clin Trials, 2015, 16(2): 49-56.
[41] Farel CE, Chaitt DG, Hahn BK, Tavel JA, Kovacs JA, Polis MA, Masur H, Follmann DA, Lane HC, Davey RJ Jr. Induction and maintenance therapy with intermittent interleukin-2 in HIV-1 infection [J]. Blood, 2004, 103(9): 3282-3286.
[42] Lugli E, Mueller YM, Lewis MG, Villinger F, Katsikis PD, Roederer M. IL-15 delays suppression and fails to promote immune reconstitution in virally suppressed chronically SIV-infected macaques [J]. Blood, 2011, 118(9): 2520-2529.