• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    電致發(fā)光用于大功率半導體激光器失效模式分析

    2018-02-28 09:23:29劉啟坤孔金霞朱凌妮劉素平馬驍宇
    發(fā)光學報 2018年2期
    關(guān)鍵詞:研究

    劉啟坤, 孔金霞, 朱凌妮, 熊 聰, 劉素平, 馬驍宇

    (1. 中國科學院半導體研究所 光電子器件國家工程研究中心, 北京 100083; 2. 中國科學院大學 材料科學與光電技術(shù)學院, 北京 100049)

    1 Introduction

    High-power diode lasers have been studied for decades for their wide applications in industrial, communication, military, civil, medical,etc. For 975 nm high-power diode lasers, one of the most important applications is used as pumping sources for the erbium-doped fiber amplifiers (EDFAs) . Moreover, when a 975 nm high-power laser is coupled into a fiber, both the beam quality and output optical power can be promoted[1], which extends the applications. To further widen the applications of high-power laser diodes, higher power and more reliable devices are required.

    A great effort is devoted to understanding the main causes to the failure of high-power laser diodes by many groups[2-7]. Generally speaking, the symptoms of the degradation include: (a) the decrease of the optical power (under the constant current); (b) the increase of the threshold current, operation voltage and divergence angle;(c) facet degradation; (d) wavelength shift;etc.

    Because of the unperfect substrates, epitaxy layers, defects and strain that introduced by processing steps, together with external factors, such as current injection, optical power, and operation atmosphere, the degradation mechanism is rather complex. By facet passivation and coating, quantum well intermixing, non-injection regions in the vicinity of the facets, both the power and reliability have been promoted significantly. However, the mechanism of the degradation is not totally understood yet.

    To achieve higher power and more reliable lasers, the catastrophic optical damage (COD) must be suppressed, for its suddenly occurrence without a previous sign[8]. Once the COD happens, the laser fails totally. When the COD is associated with the facets, it is called catastrophic optical mirror damage (COMD); when it happens in the bulk, it calls catastrophic optical bulk damage (COBD). The COD process usually associates with DLDs in the active region. By means of electron beam-induced current (EBIC)[8],optical beam-induced current (OBIC)[9], cathode luminescence (CL)[10-11]and electroluminescence (EL)[6], the DLDs appear, since the DLDs are damaged regions and full of non-radiative recombination centers.

    In this paper, we performed EL on the suddenly failed 975 nm strained quantum well laser diodes. The EL images reveal regions with dark contrast corresponding to the DLDs that generated during the laser degradation process. We found that the COD not only happened at the facets (COMD), but also in the bulk (COBD), which is really valuable for our further refinement. And the common features of the DLDs of two typical COD modes were interpreted and compared. Furthermore, the causes to the two COD modes were analyzed. In addition, we made some suggestions to suppress the COD process and further refine the laser diodes.

    2 Laser Structure and Experimental Setup

    In this paper, the broad-area diode lasers lasing at 975 nm were grown on n-GaAs substrates by metalorganic chemical vapor deposition (MOCVD). As Fig.1 shows, the structure of the lasers is strained Single-quantum-well separate-confinement-heterostructure (SQW-SCH). The AlGaInAs QW was undoped with width of 8 nm. It was embedded in the undoped AlGaAs waveguide layers, and the thickness is 400 nm and 900 nm, respectively. And the cladding layers are 1 100 nm p-doped and 1 400 nm n-doped AlGaAs. The cavity length was 3.5 mm and the width of the active region is 80 μm. And near both facets, the injection current is blocked by the oxide mask, forming the non-injection regions. The front facets of the lasers were anti-reflection (AR) coated with reflectivity of 5%, and high-reflection (HR) coated with reflectivity of 95% for the rear facets. The isolator is SiO2. The p-contact is Ti/Pt/Au and the n-contact is Au/Ge/Ni. The total thickness of the laser chip is about 120 μm. The laser chip was mounted p-side down on submount by AuSn solder, which is so called COS (chip on submount) laser diode, as Fig.2 shows. The lasers operate in continuous wave operation and the typical optical output power of these lasers is 12 W atI=12 A and the temperature of the heat-sink (Ths) is 20 ℃.

    Fig.1 Structure of the stained SQW-SCH laser diode chip

    Fig.2 Schematic diagram of the COS laser diode

    The aging tests were performed in continuous wave atI=12 A,Ths=20 ℃. After the lasers failed, the EL was employed to perform the failure mode analysis (FMA). Fig.3 shows the laser diode chip sample to perform EL. The n-contacts were removed by grinding and polishing. The EL images were taken under the condition ofI=200~300 mA (lower than the typical threshold current) at room-temperature. In addition, the lasers were not just from one wafer.

    Fig.3 Laser diode chip sample to perform EL

    3 Results and Discussion

    In general, the failure modes can be classified as rapid, gradual and catastrophic degradation[7]. Fig.4 shows the typicalP-tcurves of three degradation modes under constant current. We can see that three degradation modes present the different features: for the rapid degradation mode, the optical power usually drops during the first hundred hours of operation; for the catastrophic degradation mode, the optical power drops suddenly and it can happen at any time during the operation; and for the gradual degradation mode, the optical power decreases gradually and the laser may last for several thousand hours.

    Fig.4 TypicalP-tcurves of three degradation modes under constant current. (a) Rapid degradation mode. (b) Catastrophic degradation mode. (c) Gradual degradation mode.

    A COD happens along with a thermal runaway process[2]. The heat generates from different aspects[12], and among them the non-radiative recombination plays a critical role. For example, the surface recombination and the presence of non-radiative recombination centers (NRRCs) in the bulk generate a large amount of heat and the temperature is increased locally, thus narrowing the locals bandgap which contributes to the enhanced self-absorption, so the temperature further increases, forming a feedback loop; finally, the large stress leads to the broken of the atom bonds and the lattice disorders, thus the COD occurs. When performing the EL on the failed lasers, the DLDs were shown, which are the result of melting and recrystallization. The DLDs are usually guided by the optical field and confined in the cavity. The COD process will be even worse to QW lasers for their reduced dimension of the QW thickness and the presence of interfaces[13-14].

    Because of the asymmetric coating of the facets, the photon density, carrier density and temperature profiles in the cavity are inhomogeneous and may be asymmetric[15]. Together with the quality of the epitaxy layers and the facet coatings, the COD may happen at the facets and in the bulk.

    In this paper, the EL images reveal that 90 lasers suffered COD among all the failed lasers. 62 lasers suffered COMD and 28 lasers suffered COBD.

    3.1 COMD

    Among all the 62 lasers suffered COMD, 37 lasers suffered COMD at the front facets and 25 lasers suffered COMD at the rear facets.

    3.1.1 COMD at The Front Facet

    We identified two typical DLDs patterns at the front facets: “one point” COMD and “multiple points” COMD. As Fig.5 shows, the EL images real the damaged area in the active regions and the optical images present the melted facets. And we can clearly see that the damaged area in the active regions and front facets are quite different, both in size and position.

    Fig.5(a)-(c) show the “one point” COMD. The EL image Fig.5(a) shows that the DLDs originate from “one point” at the front facet and extend into the active region about 1/2 of the cavity. Under higher magnification (200×), we can see that the point expands in the vicinity of the front facet just as the EL image Fig.5(b) presents. The optical image (c) presents that the scale of the melting point is about 10 μm.

    Fig.5(d)-(f) show the “multiple points” COMD. The EL image Fig.5(d) shows that the DLDs originate from “multiple points” of the front facet and extend into the active region. Under higher magnification (200×), we can clearly see that the multiple points originate from the front facet and expand into the active region in different orientations just as the EL image Fig.5(e) presents. The optical image Fig.5(f) presents the complete damage of the front facet. The “multiple points” correspond to the bolder points along the damage line.

    All the images show that the DLDs originate from the front facet and extend into the active region in different orientations, and the DLDs are confined in the active region. The different surface recombination, distribution of the optical flux and carrier density may result in the different heat distributions at the facet, thus leading to the different melting points.

    Fig.5 EL and optical images of the COMD at the front facets. (a) EL image of “one point” COMD at the front facet (50×). (b) EL image of the front part of the DLDs (200×). (c) Typical optical image of the facet with “one point” COMD (1 000×). (d) EL image of “multiple points” COMD at the front facet (50×). (e) EL image of the front part of the DLDs (200×). (f) Typical optical image of the facet with “multiple points” COMD (1 000×).

    In addition, among all the 37 lasers suffered COMD at the front facets, the number of lasers that suffered “one point” COMD is almost the same to the number of lasers that suffered “multiple points” COMD. When the COMD occurs, by roughly estimating, the average length of the DLDs is about 1/2 of the cavity and the optical power reduced above 80%.

    3.1.2 COMD at The Rear Facet

    Generally speaking, due to the asymmetric coatings, the optical power at the front facet is much larger. It means the light-absorption at the front facet is much larger than at the rear facet, thus generating more heat through the non-radiative recombination. And the COS package provides the rear facet a better thermal conducting condition than the front facet[16]. Therefore, the front facet is under more thermal stress than the rear facet. However, the COD may also happen at the rear facet due to different heating scenario[17].

    In this paper, 25 lasers suffered COMD at the rear facets, and the DLDs patterns are quite similar. Fig.6 shows the typical DLDs pattern of the COMD at the rear facet.

    Fig.6(a) shows that the DLDs originate from the rear facet and extend into the active region. When presented under higher magnification (200×), we can clearly see the initial multiple points at the rear facet, just as the EL image Fig.6(b) presents. And we can see the fuzzy dark regions around the DLDs. Maybe it is electrical field induced damage since the life test wasn’t shut down immediately after the COD happened.

    Fig.6 EL images of the COMD at the rear facet. (a) EL image of COMD at the rear facet (50×). (b) EL image of DLDs originating from the rear facet (200×).

    Among all the 25 lasers that suffered COMD at the rear facets, all the DLDs originate from the “multiple points” at the rear facets. The optical power reduced by 30%~90%.

    Usually, the COMD process can be described as following. There are initial defects at the interface and the active region near the facets, and during the operation the defects accumulate. And the facets keep being oxidized. Due to the surface recombination and non-radiative recombination, the heat keeps generating. If the heat can’t be conducted in time, the temperature of the facets will keep increasing. And the elevated temperature will narrow the bandgap, which will further enhance the light-absorption, and result in the further facet oxidation, which will enhance the non-radiative recombination. The feedback loop will finally lead to the COMD, when the critical temperature is reached. In addition, due to the high optical density, the laser standing wave at the facet coating films may also result in the COMD, especially to the rear facet.

    After describing and analyzing the two typical COMD modes, there are some suggestions to suppress the COMD process:

    1.Introducing the non-injection regions and non-absorption windows in the vicinity of the facets, to suppress the heat generated by non-radiative recombination.

    2.Developing new facet passivation and facet coating process, to obtain high quality interface and suppress the defect density at the facets.

    3.2 COBD

    Before performing the EL, we believed that the suddenly failed lasers suffered COMD. However, it turns out that 28 lasers suffered COD in the bulk, which guides our refinement process to suppress the COBD.

    By facet passivation, high quality facet coatings, the introduction of the non-injection regions and non-absorption windows,etc, the COMD level will be promoted and even higher than the COBD level. Therefore, the COD can happen in the bulk. When a COBD occurs, there is no degradation signature at both facets.

    Among all the 28 lasers that suffered COBD, different typical DLDs patterns are identified. DLDs originate from different parts of the bulk: near the front facet, near the rear facet and in the middle of the bulk.

    3.2.1 COBD Near The Front Facet

    18 lasers suffered COBD near the front facets.

    Fig.7 shows the EL image of DLDs near the front facet. The EL image Fig.7 (a) shows that the DLDs originate from the point near the front facet and extend into the active region about 2/3 of the cavity. Under higher magnification (200×), we can see several dark spot defects, as the image Fig.7(b) shows. Maybe one of them became the origin point of the DLDs when the heat around the point is beyond control. In addition, about half of the lasers’ EL images show that the origin points are really close to the non-injection edges near the facets.

    Fig.7 EL images of the COBD near the front facet. (a)EL image of COBD near the front facet (50×). (b)EL image of the front part of the DLDs (200×).

    3.2.2 COBD Near The Rear Facet

    3 lasers suffered COBD near the rear facets.

    Fig.8 shows the EL images of DLDs near the rear facet. The EL image Fig.8(a) shows that the DLDs originate near the rear facet and extend into the active region about 1/3 of the cavity with several branches. Under higher magnification (200×), we can clearly see the DLDs originate from the three points in the vicinity of the rear facet, as the EL image Fig.8(b) presents.

    Fig.8 EL images of the COBD near the rear facet.(a)EL image of COBD near the rear facet (50×). (b) EL image of the front part of the DLDs under (200×).

    3.2.3 COBD in The Middle of The Bulk

    7 lasers suffered COBD in the middle of the bulk.

    Fig.9 shows the EL images of DLDs in the middle of the bulk. From the EL image Fig.9(a), it is difficult to confirm the origin of the DLDs. Under higher magnification (200×), we can clearly see the edges of DLDs are large dark regions and it seems that the DLDs tend to extend in <110> direction, as the image Fig.9(b) shows. During the operation, the thermal runaway happens in the middle of the bulk and the dislocations extend along the cavity and expand in <110> direction.

    Fig.9 EL images of the COBD in the middle of the bulk.(a) EL image of COBD in the middle of the bulk (50×). (b) EL image of the DLDs in the middle of the bulk (200×).

    Among all the 28 lasers that suffered COBD, about 65% of lasers suffered COBD near the front facets, 10% of the lasers suffered COBD near the rear facets, and 25% suffered COBD in the middle of the bulk. Maybe the asymmetric coatings result in the higher optical power in the vicinity of the front facets than the rear facets and the bulk. And due to the non-radiative recombination, more heat is produced near the front facet. Therefore, the COBD tends to happen near the front facet. Moreover, after the COBD happened, the optical power reduced by 30%~90%, corresponding to different damage level.

    Different from the COMD, the pre-existing NRCs or specific type of point defects in the active region are the most likely root causes of COBD. During the operation, the NRCs and point defects accumulate. Non-radiative recombination makes defects migrate, react, and dissociate, namely recombination enhanced defect reaction (REDR). Together with filamentation and self-focusing of light, resulting in the increasing local temperature. When the local temperature reaches the critical point, the COBD will occur.

    After describing and analyzing the three typical COBD modes, there are some suggestions to suppress COBD process:

    1.Developing new materials, such as Al-free material and material with band gap that show low dependence on temperature.

    2.Designing new structures, to optimize the optical power distribution and heat distribution profile.

    3.Optimizing the epitaxy growth conditions, to obtain high quality interfaces, thus reducing the inter-diffusion, NRRCs, misfit stress, and thermal resistance.

    In addition, to obtain higher power and more reliable laser diodes we should:

    1.Develop new metal alloy and refine the alloy process condition, to reduce the electrical and thermal resistance, thus lessening the joule heat and improving the heat conducting condition.

    2.Introduce new solder, submount and heat-sink, to reduce the strain and improve the thermal conduction condition.

    3.Refine the fabrication process, including the lithography, etch, polish,etc, to reduce the contaminations and defects.

    4 Conclusion

    In this paper, the suddenly failed 975 nm SQW-SCH diode lasers were investigated by performing the electroluminescence. We found that the COD can happen in the bulk without any damage at both facets, guiding our further improvement. The EL images reveal that the dark line defects (DLDs) may originate from the facets (COMD) and the bulk (COBD). And the features of the DLDs of two typical COD modes were interpreted and compared. Furthermore, the causes to the three COD modes are analyzed. And we make some suggestions about suppressing the COD process and further refining the high-power laser diodes.

    [1] 王鑫, 王翠鸞, 吳霞, 等. GaAs基高功率半導體激光器單管耦合研究 [J]. 發(fā)光學報, 2015, 36(9):1018-1021.

    WANG X, WANG C L, WU X,etal.. Coupling research of high power single GaAs based semiconductor laser [J].Chin.J.Lumin., 2015, 36(9):1018-1021. (in Chinese).

    [2] HENRY C H, PETROFF P M, LOGAN R A,etal.. Catastrophic damage of AlxGa1-xAs double-heterostructure laser material [J].J.Appl.Phys., 1979, 50(5):3721-3732.

    [3] HEMPEL M, TOMM J W, MATTINA F L,etal.. Microscopic origins of catastrophic optical damage in diode lasers [J].IEEEJ.Select.Top.Quant.Electron., 2013, 19(4):1500508.

    [4] SOUTO J, PURA J L, TORRES A,etal.. Catastrophic optical damage of high power InGaAs/AlGaAs laser diodes [J].MicroelectronicsReliability, 2016, 64:627-630.

    [5] 王文知, 井紅旗, 祁瓊, 等. 大功率半導體激光器可靠性研究和失效分析 [J]. 發(fā)光學報, 2017, 38(2):165-169.

    WANG W Z, JING H Q, QI Q,etal.. Reliability test and failure analysis of high power semiconductor laser [J].Chin.J.Lumin. 2017, 38(2):165-169. (in Chinese).

    [6] SIN Y, LINGLEY Z, PRESSER N,etal.. Catastrophic optical bulk damage in high-power InGaAs-AlGaAs strained quantum well lasers [J].IEEEJ.Select.Top.Quant.Electron., 2017, 23(6):1-13.

    [7] JIMENEZ J. Laser diode reliability: crystal defects and degradation modes [J].ComptesRendusPhysique, 2003, 4(6):663-673.

    [8] VANZI M, BONFIGLIO A, MAGISTRALI F,etal.. Electron microscopy of life-tested semiconductor laser diodes [J].Micron, 2000, 31(3):259-267.

    [9] TAKESHITA T, SUGO M, SASAKI T,etal.. Failure analysis of InGaAs/GaAs strained-layer quantum-well lasers using a digital OBIC monitor [J].IEEETrans.ElectronDev., 2006, 53(2):211-217.

    [10] MARTIN-MARTIN A, AVELLA M, INIGUEZ M P,etal.. A physical model for the rapid degradation of semiconductor laser diodes [J].Appl.Phys.Lett., 2008, 93(17):171106.

    [11] QIAO Y B, FENG S W, XIONG C,etal.. Spatial hole burning degradation of AlGaAs/GaAs laser diodes [J].Appl.Phys.Lett., 2011, 99(10):103506.

    [12] 井紅旗, 仲莉, 倪羽茜, 等. 高功率密度激光二極管疊層散熱結(jié)構(gòu)的熱分析 [J]. 發(fā)光學報, 2016, 37(1):81-87.

    JING H Q, ZHONG L, NI Y X,etal.. Thermal analysis of high power density laser diode stack cooling structure [J].Chin.J.Lumin., 2016, 37(1):81-87. (in Chinese)

    [13] NAKWASKI W. Thermal-model of the catastrophic degradation of high-power stripe-geometry GaAs/(AlGa)As double-heterostructure diode-lasers [J].J.Appl.Phys., 1990, 67(4):1659-1668.

    [14] SOUTO J, PURA J L, JIMENEZ J. About the physical meaning of the critical temperature for catastrophic optical damage in high power quantum well laser diodes [J].LaserPhys.Lett., 2016, 13(2):6.

    [15] MENZEL U. Self-consistent calculation of facet heating in asymmetrically coated edge emitting diode lasers [J].Semicond.Sci.Technol., 1998, 13(3):265.

    [16] NI Y X, MA X Y, JING H Q,etal.. Finite element analysis of expansion-matched submounts for high-power laser diodes packaging [J].J.Semicond., 2016, 37(6):76-80.

    [17] HEMPEL M, TOMM J W, ZIEGLER M,etal.. Catastrophic optical damage at front and rear facets of diode lasers [J].Appl.Phys.Lett., 2010, 97(23):231101.

    猜你喜歡
    研究
    FMS與YBT相關(guān)性的實證研究
    2020年國內(nèi)翻譯研究述評
    遼代千人邑研究述論
    視錯覺在平面設(shè)計中的應(yīng)用與研究
    科技傳播(2019年22期)2020-01-14 03:06:54
    關(guān)于遼朝“一國兩制”研究的回顧與思考
    EMA伺服控制系統(tǒng)研究
    基于聲、光、磁、觸摸多功能控制的研究
    電子制作(2018年11期)2018-08-04 03:26:04
    新版C-NCAP側(cè)面碰撞假人損傷研究
    關(guān)于反傾銷會計研究的思考
    焊接膜層脫落的攻關(guān)研究
    電子制作(2017年23期)2017-02-02 07:17:19
    最近最新中文字幕大全免费视频| 亚洲男人的天堂狠狠| 久久人妻av系列| 大型av网站在线播放| 亚洲五月婷婷丁香| 人人澡人人妻人| 久久国产精品影院| 丁香欧美五月| 日本免费a在线| 国产欧美日韩一区二区精品| 丁香六月欧美| 男人舔奶头视频| 国产黄a三级三级三级人| 91国产中文字幕| 国产精品永久免费网站| 777久久人妻少妇嫩草av网站| 丁香欧美五月| av超薄肉色丝袜交足视频| 精品欧美一区二区三区在线| 成人国产综合亚洲| av中文乱码字幕在线| www.999成人在线观看| 老鸭窝网址在线观看| 免费看日本二区| 中文资源天堂在线| 国产av在哪里看| 国产精品日韩av在线免费观看| 一本一本综合久久| 国产1区2区3区精品| 黄色 视频免费看| 1024香蕉在线观看| 两性夫妻黄色片| 久久人妻av系列| 黄网站色视频无遮挡免费观看| 久久精品国产清高在天天线| 亚洲人成77777在线视频| 欧美激情 高清一区二区三区| 啦啦啦观看免费观看视频高清| www国产在线视频色| 成熟少妇高潮喷水视频| 欧美久久黑人一区二区| 麻豆一二三区av精品| 欧美乱色亚洲激情| 一级黄色大片毛片| 亚洲精品中文字幕在线视频| 女人高潮潮喷娇喘18禁视频| 国产在线观看jvid| 久久中文看片网| 露出奶头的视频| 欧美在线一区亚洲| 久99久视频精品免费| 午夜成年电影在线免费观看| 人妻丰满熟妇av一区二区三区| 搞女人的毛片| 午夜福利高清视频| 一级a爱片免费观看的视频| 国内毛片毛片毛片毛片毛片| www.精华液| 曰老女人黄片| av欧美777| 啪啪无遮挡十八禁网站| 精品第一国产精品| 不卡一级毛片| 嫩草影院精品99| 免费在线观看成人毛片| 成人国产综合亚洲| 99精品欧美一区二区三区四区| 桃红色精品国产亚洲av| 亚洲精品av麻豆狂野| 久久久久久人人人人人| 制服丝袜大香蕉在线| 亚洲成国产人片在线观看| 亚洲va日本ⅴa欧美va伊人久久| 欧美av亚洲av综合av国产av| 中国美女看黄片| 天堂影院成人在线观看| 国产高清视频在线播放一区| 欧美激情高清一区二区三区| 欧美成人免费av一区二区三区| 欧美激情久久久久久爽电影| 欧美黄色片欧美黄色片| 亚洲人成伊人成综合网2020| 久久精品亚洲精品国产色婷小说| 香蕉av资源在线| a在线观看视频网站| 日韩欧美在线二视频| 亚洲欧美精品综合一区二区三区| 亚洲熟妇中文字幕五十中出| 国产亚洲欧美98| 又黄又粗又硬又大视频| 一进一出好大好爽视频| bbb黄色大片| 午夜日韩欧美国产| 亚洲国产精品999在线| av视频在线观看入口| 99久久综合精品五月天人人| 中文亚洲av片在线观看爽| 美女高潮喷水抽搐中文字幕| 欧美色欧美亚洲另类二区| 中文字幕精品免费在线观看视频| av欧美777| www.www免费av| 日本一本二区三区精品| 欧美+亚洲+日韩+国产| 黄色视频,在线免费观看| 老司机午夜福利在线观看视频| 岛国在线观看网站| 天堂动漫精品| 久久久久国产一级毛片高清牌| 色老头精品视频在线观看| 日韩欧美一区视频在线观看| 女警被强在线播放| av电影中文网址| 18禁黄网站禁片免费观看直播| 99国产精品一区二区蜜桃av| 99精品在免费线老司机午夜| 美女免费视频网站| 男女视频在线观看网站免费 | 亚洲成国产人片在线观看| 欧美不卡视频在线免费观看 | 视频在线观看一区二区三区| 日韩欧美国产在线观看| 波多野结衣高清无吗| 国产亚洲精品久久久久5区| 午夜福利成人在线免费观看| 亚洲一区二区三区色噜噜| 国产亚洲欧美在线一区二区| 日本撒尿小便嘘嘘汇集6| 91大片在线观看| 免费看美女性在线毛片视频| 亚洲中文av在线| 国产精品自产拍在线观看55亚洲| 午夜日韩欧美国产| 在线国产一区二区在线| 侵犯人妻中文字幕一二三四区| 欧美日本亚洲视频在线播放| 成人免费观看视频高清| 国产精华一区二区三区| 美女扒开内裤让男人捅视频| 亚洲国产欧美网| 欧美日韩黄片免| 婷婷六月久久综合丁香| 少妇裸体淫交视频免费看高清 | 欧美黑人欧美精品刺激| 中亚洲国语对白在线视频| 欧美一级毛片孕妇| 欧美乱码精品一区二区三区| 成人av一区二区三区在线看| 在线免费观看的www视频| 天堂√8在线中文| 欧美黄色片欧美黄色片| 欧美日韩亚洲综合一区二区三区_| 大香蕉久久成人网| 欧美中文综合在线视频| 国产亚洲精品一区二区www| 国产高清视频在线播放一区| 日本精品一区二区三区蜜桃| 精品久久久久久久末码| 欧美一级毛片孕妇| 亚洲一区二区三区不卡视频| 欧美一区二区精品小视频在线| 免费av毛片视频| 欧美在线一区亚洲| 老司机午夜福利在线观看视频| 搡老熟女国产l中国老女人| 97碰自拍视频| 女性生殖器流出的白浆| 可以在线观看的亚洲视频| 亚洲 欧美一区二区三区| 国产精品99久久99久久久不卡| 丝袜在线中文字幕| 久久国产乱子伦精品免费另类| 亚洲精品久久成人aⅴ小说| 90打野战视频偷拍视频| 最近在线观看免费完整版| 中文在线观看免费www的网站 | 久热爱精品视频在线9| 久久国产精品男人的天堂亚洲| 久久久精品欧美日韩精品| 亚洲成人久久爱视频| 欧美最黄视频在线播放免费| 欧美三级亚洲精品| 90打野战视频偷拍视频| 国产精品 欧美亚洲| 久久久久久九九精品二区国产 | 老司机福利观看| 国产午夜福利久久久久久| 亚洲狠狠婷婷综合久久图片| 久久热在线av| 巨乳人妻的诱惑在线观看| 香蕉国产在线看| 中文字幕精品免费在线观看视频| 在线天堂中文资源库| 国产亚洲欧美98| 国产亚洲精品久久久久久毛片| 久久久久久大精品| 淫妇啪啪啪对白视频| 色在线成人网| 一区二区三区精品91| 香蕉久久夜色| 啦啦啦 在线观看视频| 精品午夜福利视频在线观看一区| 久久婷婷成人综合色麻豆| 一夜夜www| 观看免费一级毛片| www日本黄色视频网| 成人手机av| 欧美绝顶高潮抽搐喷水| 国产一区二区激情短视频| 色av中文字幕| 男女午夜视频在线观看| 国产真实乱freesex| 欧美国产精品va在线观看不卡| 亚洲,欧美精品.| 性欧美人与动物交配| 在线观看www视频免费| 欧美性猛交╳xxx乱大交人| 观看免费一级毛片| 日韩 欧美 亚洲 中文字幕| 久9热在线精品视频| 激情在线观看视频在线高清| 他把我摸到了高潮在线观看| 桃红色精品国产亚洲av| www日本在线高清视频| 亚洲国产精品999在线| 欧美在线一区亚洲| 色综合婷婷激情| 免费av毛片视频| 久久久久久亚洲精品国产蜜桃av| 91字幕亚洲| 久久天躁狠狠躁夜夜2o2o| 热re99久久国产66热| 丰满的人妻完整版| 亚洲成国产人片在线观看| 国产成人欧美| 亚洲五月婷婷丁香| 亚洲av五月六月丁香网| 成人免费观看视频高清| 看免费av毛片| 日韩欧美三级三区| 99久久综合精品五月天人人| 亚洲真实伦在线观看| 高清毛片免费观看视频网站| 亚洲午夜精品一区,二区,三区| 亚洲精品粉嫩美女一区| 黄片播放在线免费| 在线永久观看黄色视频| 欧美日韩亚洲国产一区二区在线观看| 欧美日本亚洲视频在线播放| 国产成人一区二区三区免费视频网站| 12—13女人毛片做爰片一| cao死你这个sao货| 人人妻人人看人人澡| 欧美黄色片欧美黄色片| 日本三级黄在线观看| 神马国产精品三级电影在线观看 | 成人18禁高潮啪啪吃奶动态图| 丁香欧美五月| 成人国语在线视频| 婷婷精品国产亚洲av在线| 成年人黄色毛片网站| 日本熟妇午夜| 国产亚洲精品久久久久5区| 人妻丰满熟妇av一区二区三区| 久久精品夜夜夜夜夜久久蜜豆 | 亚洲国产精品久久男人天堂| 国产野战对白在线观看| aaaaa片日本免费| 麻豆久久精品国产亚洲av| 欧美在线一区亚洲| 欧美精品啪啪一区二区三区| 99热这里只有精品一区 | 国产成人精品久久二区二区免费| 啦啦啦 在线观看视频| 伦理电影免费视频| 久久国产精品男人的天堂亚洲| bbb黄色大片| 国产精品免费视频内射| 少妇裸体淫交视频免费看高清 | 亚洲av五月六月丁香网| 成人午夜高清在线视频 | 最近最新免费中文字幕在线| 美女国产高潮福利片在线看| 午夜亚洲福利在线播放| 久久精品亚洲精品国产色婷小说| 国产精品精品国产色婷婷| 脱女人内裤的视频| 国产精品二区激情视频| 午夜成年电影在线免费观看| 国产一区在线观看成人免费| 亚洲一区高清亚洲精品| 久久人人精品亚洲av| 国产极品粉嫩免费观看在线| 日韩精品中文字幕看吧| 亚洲,欧美精品.| 桃红色精品国产亚洲av| 国产精品二区激情视频| 日本撒尿小便嘘嘘汇集6| 亚洲色图av天堂| 国产私拍福利视频在线观看| 欧美色视频一区免费| 亚洲午夜理论影院| 97人妻精品一区二区三区麻豆 | 三级毛片av免费| 一本大道久久a久久精品| 亚洲精品久久成人aⅴ小说| 国产亚洲av嫩草精品影院| 国产亚洲精品av在线| 韩国精品一区二区三区| 午夜亚洲福利在线播放| 中文在线观看免费www的网站 | 欧美一区二区精品小视频在线| 叶爱在线成人免费视频播放| 日本在线视频免费播放| 久久久久久人人人人人| 亚洲av第一区精品v没综合| 精品久久久久久久久久免费视频| 波多野结衣高清无吗| 亚洲精华国产精华精| 黄色毛片三级朝国网站| 亚洲国产欧美网| 每晚都被弄得嗷嗷叫到高潮| 少妇裸体淫交视频免费看高清 | 亚洲av电影在线进入| 亚洲国产精品久久男人天堂| 精品一区二区三区视频在线观看免费| 精品乱码久久久久久99久播| 人人妻人人澡人人看| 婷婷精品国产亚洲av| 哪里可以看免费的av片| 成人亚洲精品av一区二区| 久久香蕉精品热| 俄罗斯特黄特色一大片| АⅤ资源中文在线天堂| 亚洲成a人片在线一区二区| 妹子高潮喷水视频| 亚洲人成77777在线视频| svipshipincom国产片| 欧美一区二区精品小视频在线| 欧美性猛交╳xxx乱大交人| √禁漫天堂资源中文www| ponron亚洲| av超薄肉色丝袜交足视频| 丁香六月欧美| 久久精品夜夜夜夜夜久久蜜豆 | 老鸭窝网址在线观看| 一级毛片精品| 亚洲国产看品久久| 99在线视频只有这里精品首页| 日韩国内少妇激情av| 国产成年人精品一区二区| 欧美黄色淫秽网站| 久久精品91蜜桃| 中文字幕另类日韩欧美亚洲嫩草| 观看免费一级毛片| 久久人人精品亚洲av| 欧美色欧美亚洲另类二区| 午夜福利在线在线| 十分钟在线观看高清视频www| 人人妻,人人澡人人爽秒播| 三级毛片av免费| 97碰自拍视频| 欧美黄色淫秽网站| 美女午夜性视频免费| 成人三级做爰电影| 国产蜜桃级精品一区二区三区| 99热这里只有精品一区 | 国产亚洲av高清不卡| 在线观看午夜福利视频| 999久久久精品免费观看国产| 91国产中文字幕| 国产一级毛片七仙女欲春2 | 精华霜和精华液先用哪个| 国产精品亚洲av一区麻豆| 日韩成人在线观看一区二区三区| 精品欧美一区二区三区在线| 日韩欧美一区视频在线观看| 正在播放国产对白刺激| 国产精品一区二区三区四区久久 | 草草在线视频免费看| 国产精品 欧美亚洲| 国产精品久久久久久精品电影 | 国产精品日韩av在线免费观看| 国产1区2区3区精品| 久久久久久大精品| 一本大道久久a久久精品| 18禁美女被吸乳视频| 超碰成人久久| 男女视频在线观看网站免费 | 久久中文看片网| 精品一区二区三区av网在线观看| 亚洲熟妇熟女久久| 精品卡一卡二卡四卡免费| av在线天堂中文字幕| 好看av亚洲va欧美ⅴa在| 中文字幕另类日韩欧美亚洲嫩草| 激情在线观看视频在线高清| 国产成人影院久久av| 精品国产超薄肉色丝袜足j| 麻豆国产av国片精品| 男人舔女人的私密视频| 亚洲成国产人片在线观看| 美女午夜性视频免费| √禁漫天堂资源中文www| 精品国产美女av久久久久小说| 成人18禁高潮啪啪吃奶动态图| 深夜精品福利| 亚洲av中文字字幕乱码综合 | 国产精品一区二区精品视频观看| 午夜福利视频1000在线观看| 亚洲专区中文字幕在线| 首页视频小说图片口味搜索| av在线播放免费不卡| 国产av一区在线观看免费| 久久精品国产亚洲av香蕉五月| 级片在线观看| 国产欧美日韩精品亚洲av| 可以在线观看毛片的网站| 一个人免费在线观看的高清视频| 欧美国产精品va在线观看不卡| 夜夜爽天天搞| 国产一区二区三区视频了| av福利片在线| 欧美日本亚洲视频在线播放| 国产精品久久电影中文字幕| 男女床上黄色一级片免费看| 国产激情偷乱视频一区二区| 国产伦人伦偷精品视频| 精品福利观看| 制服诱惑二区| 精品人妻1区二区| 久久久国产成人精品二区| 这个男人来自地球电影免费观看| 精品一区二区三区视频在线观看免费| 三级毛片av免费| 波多野结衣av一区二区av| 色av中文字幕| 亚洲男人天堂网一区| 脱女人内裤的视频| 欧美日韩亚洲综合一区二区三区_| 国产精品国产高清国产av| 最近最新免费中文字幕在线| 悠悠久久av| 国产视频内射| av欧美777| 成人三级做爰电影| 国产精品,欧美在线| 啦啦啦观看免费观看视频高清| 国产精品爽爽va在线观看网站 | 国产亚洲欧美在线一区二区| 超碰成人久久| 黄片大片在线免费观看| 亚洲全国av大片| 首页视频小说图片口味搜索| 免费av毛片视频| 精品国内亚洲2022精品成人| 国内毛片毛片毛片毛片毛片| 亚洲专区国产一区二区| 国产熟女午夜一区二区三区| 免费看a级黄色片| 亚洲熟妇中文字幕五十中出| 国产aⅴ精品一区二区三区波| 亚洲男人天堂网一区| 国产激情偷乱视频一区二区| 久久精品国产亚洲av高清一级| 亚洲午夜精品一区,二区,三区| 亚洲五月婷婷丁香| 婷婷精品国产亚洲av在线| 一卡2卡三卡四卡精品乱码亚洲| 欧美激情 高清一区二区三区| 黄色毛片三级朝国网站| 最近最新中文字幕大全免费视频| 动漫黄色视频在线观看| 很黄的视频免费| avwww免费| 国内精品久久久久精免费| 女性生殖器流出的白浆| 亚洲午夜精品一区,二区,三区| 国产色视频综合| 久久欧美精品欧美久久欧美| 欧美日韩亚洲国产一区二区在线观看| 天堂动漫精品| 亚洲自偷自拍图片 自拍| 最近最新免费中文字幕在线| 精品电影一区二区在线| 婷婷丁香在线五月| 亚洲成av片中文字幕在线观看| 亚洲国产日韩欧美精品在线观看 | 午夜福利高清视频| 成人亚洲精品av一区二区| 亚洲成av片中文字幕在线观看| 韩国av一区二区三区四区| 欧美在线一区亚洲| 国产精品综合久久久久久久免费| 狂野欧美激情性xxxx| 国产欧美日韩一区二区三| 丁香六月欧美| 免费搜索国产男女视频| 午夜福利高清视频| 99热这里只有精品一区 | 嫩草影视91久久| 99久久综合精品五月天人人| 亚洲久久久国产精品| 欧美日本视频| 十八禁人妻一区二区| 欧美又色又爽又黄视频| 亚洲国产精品久久男人天堂| 女性生殖器流出的白浆| av免费在线观看网站| 亚洲一卡2卡3卡4卡5卡精品中文| 美女午夜性视频免费| 人妻丰满熟妇av一区二区三区| 欧美日韩乱码在线| 日韩中文字幕欧美一区二区| av片东京热男人的天堂| 国产精品免费一区二区三区在线| 午夜日韩欧美国产| 久久久久国内视频| 国产精品久久久久久亚洲av鲁大| 国产av一区在线观看免费| 久久久国产精品麻豆| 国产精品一区二区精品视频观看| bbb黄色大片| 国产高清激情床上av| 国产激情偷乱视频一区二区| 老鸭窝网址在线观看| 大型黄色视频在线免费观看| 日本在线视频免费播放| 国产一区二区三区在线臀色熟女| 亚洲精品一卡2卡三卡4卡5卡| 黄色片一级片一级黄色片| 在线观看一区二区三区| 真人做人爱边吃奶动态| 精品久久久久久久末码| 男人舔奶头视频| 国产片内射在线| 欧美性猛交黑人性爽| 中文资源天堂在线| 性色av乱码一区二区三区2| 99国产精品99久久久久| 久久午夜综合久久蜜桃| 一进一出好大好爽视频| www.熟女人妻精品国产| 岛国视频午夜一区免费看| 久久 成人 亚洲| 久久久精品欧美日韩精品| 91在线观看av| 亚洲av日韩精品久久久久久密| 波多野结衣巨乳人妻| 天天添夜夜摸| 成人永久免费在线观看视频| 久久久精品欧美日韩精品| 亚洲 欧美一区二区三区| 成人三级黄色视频| 国产精品亚洲av一区麻豆| 18禁黄网站禁片免费观看直播| 男人操女人黄网站| 日本成人三级电影网站| 嫁个100分男人电影在线观看| 亚洲精品在线美女| 欧美色视频一区免费| 成人国产一区最新在线观看| aaaaa片日本免费| 亚洲第一av免费看| 成人18禁在线播放| 国产精品一区二区三区四区久久 | 侵犯人妻中文字幕一二三四区| 国产精华一区二区三区| 国内少妇人妻偷人精品xxx网站 | 午夜亚洲福利在线播放| 黄色 视频免费看| 亚洲国产中文字幕在线视频| 国产一区二区三区在线臀色熟女| 亚洲国产高清在线一区二区三 | 大型黄色视频在线免费观看| 级片在线观看| 男女之事视频高清在线观看| 午夜福利高清视频| 中文字幕最新亚洲高清| 黄频高清免费视频| 午夜福利高清视频| 天堂影院成人在线观看| 国产伦人伦偷精品视频| 国内少妇人妻偷人精品xxx网站 | 国产亚洲欧美精品永久| 久久久久久大精品| 精品国产亚洲在线| 亚洲男人的天堂狠狠| 日韩视频一区二区在线观看| 999久久久精品免费观看国产| 校园春色视频在线观看| 淫秽高清视频在线观看| 麻豆成人av在线观看| 首页视频小说图片口味搜索| 亚洲精品粉嫩美女一区| 国产精品亚洲一级av第二区| 首页视频小说图片口味搜索| 欧美激情极品国产一区二区三区| 又紧又爽又黄一区二区| 成年女人毛片免费观看观看9| 久久久久久国产a免费观看| 熟女电影av网| 色av中文字幕| 听说在线观看完整版免费高清| 999精品在线视频| 色尼玛亚洲综合影院| 露出奶头的视频| 欧美日韩黄片免| 日本在线视频免费播放| 免费女性裸体啪啪无遮挡网站| 男人舔女人的私密视频| 欧美久久黑人一区二区| 夜夜爽天天搞| 在线视频色国产色| 麻豆一二三区av精品|