• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Spin transport characteristics modulated by the GeBi interlayer in Y3Fe5O12/GeBi/Pt heterostructures

    2024-02-29 09:19:22MingmingLi李明明LeiZhang張磊LichuanJin金立川andHaizhongGuo郭海中
    Chinese Physics B 2024年2期
    關鍵詞:張磊

    Mingming Li(李明明), Lei Zhang(張磊), Lichuan Jin(金立川), and Haizhong Guo(郭海中),3,?

    1Key Laboratory of Materials Physics,Ministry of Education,School of Physics and Microelectronics,Zhengzhou University,Zhengzhou 450052,China

    2State Key Laboratory of Electronic Thin Films&Integrated Devices,University of Electronic Science and Technology of China,Chengdu 610054,China

    3Institute of Quantum Materials and Physics,Henan Academy of Sciences,Zhengzhou 450046,China

    Keywords: spin current,Y3Fe5O12/GeBi/Pt heterostructures,spin pumping,inverse spin Hall effect

    For the past few years, germanium-based semiconductor spintronics has attracted considerable interest because of its potential for integration into mainstream semiconductor technology.[1,2]The main challenges in the development of modern semiconductor spintronics are the generation, detection, and manipulation of spin currents.[3–10]The manipulation of a pure spin current results in low-cost energy and high-efficiency electronics.Compared with the traditional spin-injection method that introduces a spin-polarized charge current,[11–15]in a ferromagnet(FM)/nonmagnetic(NM)material structure, ferromagnetic resonance (FMR)-driven spin pumping can generate a pure spin current without a charge current via the angular momentum transfer from FM to NM material.[16–20]This dynamic coupling process is generally understood as the exchange interaction between the precessing magnetization of the ferromagnet and the conduction electrons of the normal metal at the interface region.[21,22]

    Inverse spin Hall effect(ISHE)measurements are widely employed to detect the change in the spin current from the extracted dc inverse spin Hall voltage.The efficiency of spin pumping is quantified by the spin-mixing conductance parameter.[23]Modulation of spin transport in semiconductors and the fabrication of advanced spintronic devices have always been the focus of semiconductor spintronics research.Cerqueiraet al.reported the important role played by the localized states at the MgO–Si interface for the generation of spin currents in hybrid metal–silicon–metal vertical structures.[4]Kalappattilet al.reported an enhancement in the spin current through an interface organic semiconductor in a Y3Fe5O12(YIG)/C60/Pt heterostructure.The presence of C60not only decreases the conductivity mismatch between YIG and Pt, but also reduces the surface perpendicular magnetic anisotropy of YIG.[24]However,the underlying mechanism of spin-current transmission in semiconductors is not fully understood and needs further clarification.

    By considering the integration of spintronic devices into traditional semiconductor mainstream technology, we have fabricated a series of Ge1-xBix(x=0.04,0.07,0.11,and 0.15)films and investigated the transport characteristics of the spin current in Y3Fe5O12/GeBi/Pt heterostructures.The extracted inverse spin Hall voltage shows an exponential decay with the increase in the semiconductor barrier thickness.Different Bi concentrations could be used to tune the band gap and the spin decay length of GeBi films.Furthermore, the spin-injection efficiency is also dependent on the band gap of the GeBi barrier.Our results will provide an efficient method to improve the spin-injection efficiency in semiconductor materials.

    High-quality YIG single-crystal films were epitaxially grown on (111) Gd3Ga5O12substrates with a thickness of 200 nm by liquid phase epitaxy.The Ge1-xBixfilms were deposited using molecular beam epitaxy at a basic vacuum pressure of 4×10-9Torr.The Ge source temperature was fixed at 1200?C.The Bi source temperatures were maintained at 425?C, 450?C, 475?C, and 485?C, and the corresponding Bi concentrations were 4%, 7%, 11%, and 15%.During the growth of GeBi films,the substrate temperature was maintained at 150?C to allow Bi atom incorporation in the Ge lattices without Bi precipitation or agglomeration.Figure 1(a)shows the x-ray photoelectron spectroscopy (XPS) full spectrum of GeBi films.The main elements are found to be Ge,Bi,and C.The presence of carbon(C)is inevitable and was used for data calibration.Moreover, the element proportion of the film was determined by fitting the peak area of Bi 4f and Ge 3d.The phase formation of GeBi films with different Bi content was characterized by x-ray diffraction (XRD), as shown in Fig.1(b).There are two diffraction peaks corresponding to GeBi along the(012)direction around 27.1?and the(104)direction around 38.2?.It is well known that the atomic radius of Bi is bigger than that of Ge.When the content of Bi increased from 4%to 15%,the diffraction peak of GeBi moved towards a lower diffraction angle, which means the Bi atom was incorporated into the Ge lattice.The transmission electron microscopy(TEM)results of the interfacial region in the YIG/Ge0.85Bi0.15bilayer are shown in Fig.1(c).It is observed that the interface is atomically sharp.Figure 1(d) shows the distribution of Fe,Ge,and Bi elements at the interface region.There is no element diffusion at the interface.

    Fig.1.The XPS, XRD and TEM results of GeBi (100 nm) in the YIG/GeBi bilayer.(a) The XPS full spectrum of Ge0.85Bi0.15 in the YIG/Ge0.85Bi0.15 bilayer.(b) The XRD scans of GeBi films with different Bi contents.(c) The TEM image of the interfacial region in the YIG/Ge0.85Bi0.15 bilayer.(d)The distribution of Fe,Ge,and Bi elements at the interface region.

    We investigated the spin-pumping efficiency of the Y3Fe5O12/GeBi/Pt heterostructures using a wideband ferromagnetic resonance (FMR) system.The microwave power was fixed at 10 dBm to avoid the influence of nonlinear effects that may appear under high power.The microwave frequency ranged from 2 GHz to 15 GHz to ensure the reliability of our data fitting.The FMR measurements were carried out using a coplanar waveguide(CPW)at room temperature with in-plane field sweeping.The magnetization dynamics of YIG can be described by the Landau–Lifshitz–Gilbert equation[23]

    whereMis the magnetization vector ofMsandnis the unit vector parallel toM.Here,γis the gyromagnetic ratio,Heffis the sum of internal and externalHfields andαis the Gilbert damping constant.In these conditions,the spin current is generated at the YIG/GeBi interface, while the precessing magnetization of YIG acts as a peristaltic spin pump.This results in dynamic spin accumulation diffusing away from the interface.Moreover, the generation of a spin current is directly reflected as damping enhancement of YIG.We measured the FMR linewidth(?H)as a function of the microwave frequency(f) of bare YIG, YIG/Pt and YIG/Ge1-xBix/Pt samples, as shown in Fig.2(a)and fitted according to[25–28]

    where g,μB, andtYIGrepresent the Lande factor, the Bohr magneton, and the thickness of the YIG layer, respectively.The damping constant for bare YIG (αYIG) is 1.1×10-4.The calculated effective damping constant and effective spinmixing conductance are shown in Fig.2(b).The damping constant increases gradually to 5.6×10-4in the YIG/Ge1-xBix/Pt samples when the Bi content reaches 15% (x=0.15).The effective spin-mixing conductance also shows similar trends.The spin-injection efficiency is about three times when the Bi content increases from 4% to 15%.Low spin-injection efficiency has always been the main factor that limits the applications of semiconductor spintronic devices.The effective spinmixing conductance in YIG/Ge0.85Bi0.15/Pt is 8.3×1018m-2,which is close to that in YIG/Pt(9.2×1018m-2).We achieved efficient spin injection at the FM/semiconductor interface by tuning the doping content of Bi in the GeBi films.

    Fig.2.(a)The FMR linewidth as a function of the microwave frequency of bare YIG, YIG/Pt and YIG/Ge1-xBix/Pt samples.(b) The calculated effective damping constant and effective spin-mixing conductance of YIG/Ge1-xBix/Pt samples.

    The inverse spin Hall effect directly reflects the amount of spin current injected into the Pt layer and is easy to measure.Normal metal like Pt has strong spin–orbit coupling and a large spin Hall angle (θSH), in which the pumped spin current is converted into a DC charge current by the inverse spin Hall effect.To determine the underlying mechanisms in the spin transport characteristics in the GeBi semiconductor, we measured the inverse spin Hall effect of the YIG/Ge1-xBix/Pt samples.Figure 3(a) shows a schematic of the inverse spin Hall effect measurement setup.Similar to the FMR measurements, the inverse spin Hall voltage (VISHE) was measured at room temperature with in-plane field sweeping.The rf fieldhrfis perpendicular to the coplanar waveguide signal line.Here,θHis the angle between the external magnetic fieldHand the measuredVISHE.WhenθH=90?the measured inverse spin Hall voltage can be expressed as[22,31,32]

    whereeis the electron charge,andρ,wandλSDare the resistivity of the Pt layer,the spin Hall angle,the CPW signal line width and the spin diffusion length,respectively.Here,dis the thickness of the Pt layer,which is fixed at 10 nm;θis the magnetization precession cone angle,as shown in Fig.3(a);andPis the ellipticity correction factor arising from the ellipticity of the magnetization precession.The microwave frequency and power were set at 5 GHz and 10 dBm,respectively.Figure 3(b)shows the measuredVISHEaround the resonance field of the YIG/Ge0.85Bi0.15(0.5 nm)/Pt(10 nm)sample.The measured voltage curves are Lorentz symmetric, and we also reversed the magnetic field to avoid interference from thermal effects.We also studied the effects of the Bi content on the inverse spin Hall voltage, as shown in Fig.3(c).TheVISHEincreases almost linearly when the Bi content increases from 4%to 15%in GeBi films.We investigated the spin transport characteristics through the GeBi layer by changing the thickness of the GeBi barrier layer.We measured the inverse spin Hall voltage as a function of the Ge1-xBixthickness, which ranges from 0.5 nm to 4 nm,as shown in Fig.4(d),and the curves here are the fitting results using the following function(5).For a given Bi content,the inverse spin Hall voltage decays exponentially with the increase in the GeBi thickness.

    To establish the exponential decay model of the spin current in the semiconductor layer, we introduced the parameter decay length(λ).The inverse spin Hall voltage as a function of the GeBi thickness(dGeBi)is expressed as

    whereVISHE(dGeBi= 0) is the inverse spin Hall voltage of the YIG/Pt sample.The fitted decay length parameters as a function of the Bi content are shown in Fig.4(a).The Bi content shows a strong modulation effect on the decay length,i.e.,the spin transmission characteristics within the semiconductor barrier.We obtained a decay length of 1.98 nm in Ge0.85Bi0.15;however,the decay length reduces to 0.80 nm in Ge0.96Bi0.04.A higher Bi content is favorable for spin transport in GeBi films.Combined with the results of the above spin-pumping measurements, we found that both the calculated spin decay length and effective spin-mixing conductance increased with the Bi content.Figure 4(b)further shows the relationship between the spin decay length and damping enhancement,which indicates that the spin transfer inside the semiconductor is also related to the spin injection through the YIG/semiconductor interface.

    When we consider the characteristics of the spin-pumping mode and the YIG’s insulating properties, the spin current in the YIG/GeBi/Pt structures is expected to come from the exchange interaction between the conduction electrons of Pt and the processing magnetization of YIG.Thus, the spin transport characteristics are sensitive to the band gap of the semiconductor barrier.[33]The near-infrared properties of the YIG/Ge1-xBixsamples with different Bi content were used to identify the band gap of the doped semiconductor thin films.The absorption spectra for Ge1-xBixfilm, as shown in Fig.4(c), was transformed from the diffuse reflectance(R)spectra using the Kubelka–Munk function[33]

    Fig.3.(a)A schematic of the inverse spin Hall effect measurement.(b)The VISHE around the resonance field of the YIG/Ge0.85Bi0.15(0.5 nm)/Pt(10 nm) sample.(c) The VISHE as a function of the Bi content in YIG/Ge1-xBix/Pt samples, and (d) the VISHE as a function of the Ge1-xBix barrier thickness.

    Fig.4.(a)The fitted spin decay length as a function of the Bi content.(b)The relationship between the spin decay length and damping enhancement.(c)The absorption spectra of Ge1-xBix film.(d)The spin decay length as a function of the band gap in YIG/Ge1-xBix/Pt structures.

    The band gap was extracted at the intersection of the linear fit and photon energy axis.The enhancement of doped Bi causes a decrease in the band-gap of Ge1-xBixfilms,which is similar to the results presented in a previous study of GeSn, another Ge-based semiconductor.[34]The band gap of Ge0.96Bi0.04is found to be 0.65 eV and subsequently reduced to 0.55 eV in Ge0.85Bi0.15films.Figure 4(d)shows the spin decay length as a function of the band gap in the YIG/Ge1-xBix/Pt structures.The smaller barrier band gap corresponds to the longer spin decay length.Furthermore,one may notice that both the characteristics of spin transfer inside the semiconductor(Fig.4(a))and the spin injection through the interface (Fig.4(b)) for Ge0.85Bi0.15have more significant changes compared to those with low Bi content (4% to 11%).This may be due to the change in the band-gap type.Ge itself is an indirect band gap semiconductor and gets converted into a direct bandgap material when the Sn doping reaches a certain doping concentration.[35]A similar transformation might have occurred in the GeBi films.

    In conclusion,we manipulated the band gap of Ge1-xBixfilms by changing the doping concentration of Bi and investigated the spin transport characteristics in YIG/Ge1-xBix/Pt structures.The spin current through the semiconductor barrier showed an exponential decay with the increase in the barrier thickness.The spin-injection efficiency at the YIG/Ge1-xBixinterface increased with the Bi content.We identified the band gap of Ge1-xBixfilms and found that the band gap of the semiconductor barrier plays an important role in the spin-injection efficiency through the YIG/semiconductor interface and also the transportation within the semiconductor barrier.Our findings provide a method to improve spin-injection efficiency at the FM/semiconductor interface and offer potential guidance for the combination of mainstream semiconductor technology and spintronics.

    Acknowledgments

    Project supported by the National Key Research and Development Program of China(Grant No.2021YFA0718701),the China Postdoctoral Science Foundation (Grant No.2022M722888), and the National Natural Science Foundation of China(Grant Nos.12174347 and 12004340).

    猜你喜歡
    張磊
    張磊治療反流性食管炎經(jīng)驗
    Temperature and doping dependent flat-band superconductivity on the Lieb-lattice?
    風雨中逆行的抗“疫”巾幗戰(zhàn)士——記呼吸科副主任張磊
    北極光(2020年1期)2020-07-24 09:04:06
    THE GLOBAL ATTRACTOR FOR A VISCOUS WEAKLY DISSIPATIVE GENERALIZED TWO-COMPONENT μ-HUNTER-SAXTON SYSTEM?
    “口”“ㄙ”偏旁混用趣談
    北方文學(2018年2期)2018-01-27 13:54:48
    “好聲音”冠軍張磊:哦,我的田螺姑娘
    幸福(2016年6期)2016-12-01 03:07:57
    什么是四輪驅(qū)動?
    車迷(2015年6期)2015-03-20 02:43:54
    配型
    張磊老師的大醫(yī)情懷和大家風范
    張磊教授治療頭痛驗案3則
    久久精品人妻少妇| 亚洲av电影在线进入| 精品久久久久久久末码| 亚洲第一电影网av| 日韩国内少妇激情av| 精品国产亚洲在线| 国产精品久久久久久亚洲av鲁大| 美女高潮喷水抽搐中文字幕| 欧美成人性av电影在线观看| 亚洲久久久久久中文字幕| 制服人妻中文乱码| 国产乱人伦免费视频| 91av网一区二区| 露出奶头的视频| 日韩亚洲欧美综合| 亚洲不卡免费看| 国产精品乱码一区二三区的特点| 在线视频色国产色| 国产三级黄色录像| 午夜激情欧美在线| 亚洲av中文字字幕乱码综合| 欧美又色又爽又黄视频| 99国产综合亚洲精品| 熟女人妻精品中文字幕| 9191精品国产免费久久| 精品人妻偷拍中文字幕| 90打野战视频偷拍视频| 久久性视频一级片| 看免费av毛片| 12—13女人毛片做爰片一| 亚洲av美国av| 国产精品嫩草影院av在线观看 | 久久婷婷人人爽人人干人人爱| 日本免费a在线| 久久久久性生活片| 国产亚洲精品综合一区在线观看| 亚洲美女黄片视频| 69人妻影院| 久久久久久久久久黄片| 一本久久中文字幕| 国产高潮美女av| 国产色爽女视频免费观看| 麻豆国产av国片精品| 亚洲av熟女| 综合色av麻豆| 国产精品av视频在线免费观看| 免费在线观看影片大全网站| 老熟妇乱子伦视频在线观看| 久久久久久久久中文| av黄色大香蕉| 久久精品国产99精品国产亚洲性色| 免费看十八禁软件| 国产一区二区激情短视频| 免费观看的影片在线观看| 99久国产av精品| 在线播放无遮挡| 国内精品美女久久久久久| 一进一出好大好爽视频| 欧美xxxx黑人xx丫x性爽| 午夜福利成人在线免费观看| 网址你懂的国产日韩在线| 美女免费视频网站| 噜噜噜噜噜久久久久久91| 久99久视频精品免费| 高潮久久久久久久久久久不卡| 国产精品亚洲一级av第二区| 婷婷六月久久综合丁香| 久久久久久久精品吃奶| 国产精品嫩草影院av在线观看 | 夜夜看夜夜爽夜夜摸| 日本 av在线| 两个人视频免费观看高清| 久久久国产成人精品二区| 国产伦精品一区二区三区四那| 一区二区三区免费毛片| 亚洲av一区综合| 国产中年淑女户外野战色| 中文字幕人妻熟人妻熟丝袜美 | 性色avwww在线观看| 精品日产1卡2卡| 国产成+人综合+亚洲专区| 午夜免费成人在线视频| 51午夜福利影视在线观看| 首页视频小说图片口味搜索| 欧美国产日韩亚洲一区| 日韩国内少妇激情av| 亚洲成人精品中文字幕电影| 久久精品国产亚洲av涩爱 | 国产精品久久久人人做人人爽| 狠狠狠狠99中文字幕| 免费看日本二区| 无限看片的www在线观看| 男女午夜视频在线观看| 丝袜美腿在线中文| 国产aⅴ精品一区二区三区波| 免费av不卡在线播放| 亚洲美女视频黄频| 久久亚洲真实| 国产色爽女视频免费观看| 亚洲 欧美 日韩 在线 免费| 女生性感内裤真人,穿戴方法视频| 亚洲人成电影免费在线| 好看av亚洲va欧美ⅴa在| 人人妻人人澡欧美一区二区| 女人十人毛片免费观看3o分钟| 精品午夜福利视频在线观看一区| 亚洲精品一卡2卡三卡4卡5卡| 搡女人真爽免费视频火全软件 | 搞女人的毛片| 日本 av在线| 亚洲精华国产精华精| 丝袜美腿在线中文| 久久久久久久午夜电影| 麻豆国产av国片精品| 国产av麻豆久久久久久久| 91字幕亚洲| 亚洲无线在线观看| 99久国产av精品| 国产毛片a区久久久久| eeuss影院久久| 69av精品久久久久久| 国产精品久久电影中文字幕| 亚洲 欧美 日韩 在线 免费| 精品久久久久久久毛片微露脸| 国内精品久久久久久久电影| 免费无遮挡裸体视频| avwww免费| 国产精品久久视频播放| 国产精品电影一区二区三区| 欧美av亚洲av综合av国产av| 啪啪无遮挡十八禁网站| 亚洲av成人精品一区久久| 麻豆久久精品国产亚洲av| 有码 亚洲区| 在线免费观看不下载黄p国产 | 亚洲av成人精品一区久久| 12—13女人毛片做爰片一| 亚洲av日韩精品久久久久久密| 亚洲欧美激情综合另类| 成年版毛片免费区| 变态另类丝袜制服| 久久久国产成人精品二区| 国产毛片a区久久久久| 久久久成人免费电影| 俺也久久电影网| 国内精品久久久久精免费| 日韩免费av在线播放| 精品久久久久久久毛片微露脸| 性欧美人与动物交配| 又黄又爽又免费观看的视频| 亚洲精品美女久久久久99蜜臀| 99精品久久久久人妻精品| 亚洲国产日韩欧美精品在线观看 | 高清在线国产一区| 在线观看av片永久免费下载| 一个人免费在线观看电影| 欧美另类亚洲清纯唯美| 精品一区二区三区人妻视频| 国产伦人伦偷精品视频| xxx96com| 欧美+亚洲+日韩+国产| 亚洲狠狠婷婷综合久久图片| 成人18禁在线播放| 97碰自拍视频| 亚洲五月天丁香| 日本一本二区三区精品| 无遮挡黄片免费观看| 亚洲aⅴ乱码一区二区在线播放| 国产高清videossex| 亚洲一区二区三区色噜噜| 午夜福利免费观看在线| 欧美日韩亚洲国产一区二区在线观看| 老汉色∧v一级毛片| 亚洲狠狠婷婷综合久久图片| 日韩欧美国产在线观看| 最好的美女福利视频网| a在线观看视频网站| 国产欧美日韩精品一区二区| 午夜福利欧美成人| 国产精品嫩草影院av在线观看 | 国产亚洲欧美98| 老熟妇乱子伦视频在线观看| 噜噜噜噜噜久久久久久91| 欧洲精品卡2卡3卡4卡5卡区| 人人妻人人澡欧美一区二区| tocl精华| 成人高潮视频无遮挡免费网站| 18禁国产床啪视频网站| 欧美一级毛片孕妇| 大型黄色视频在线免费观看| 成人无遮挡网站| 99久久精品一区二区三区| 18禁黄网站禁片免费观看直播| 日本一二三区视频观看| 国产伦一二天堂av在线观看| 少妇的逼好多水| 特大巨黑吊av在线直播| 好男人电影高清在线观看| 男女之事视频高清在线观看| 可以在线观看毛片的网站| 精华霜和精华液先用哪个| 男插女下体视频免费在线播放| 欧美日本视频| 18禁国产床啪视频网站| 免费在线观看成人毛片| 午夜老司机福利剧场| 亚洲欧美日韩高清在线视频| 久久精品夜夜夜夜夜久久蜜豆| 1024手机看黄色片| 天天一区二区日本电影三级| 欧美黄色片欧美黄色片| 熟女少妇亚洲综合色aaa.| 欧美日韩精品网址| 欧美bdsm另类| 天天添夜夜摸| 亚洲欧美日韩东京热| 亚洲美女视频黄频| 1024手机看黄色片| 国产精品一区二区免费欧美| 亚洲乱码一区二区免费版| 久久婷婷人人爽人人干人人爱| 给我免费播放毛片高清在线观看| 高潮久久久久久久久久久不卡| 国产三级中文精品| 欧美性猛交╳xxx乱大交人| 美女 人体艺术 gogo| 国产在视频线在精品| 欧美乱色亚洲激情| 亚洲av成人不卡在线观看播放网| 精品乱码久久久久久99久播| 日韩高清综合在线| 国内久久婷婷六月综合欲色啪| 久久久久国产精品人妻aⅴ院| 精品久久久久久,| 亚洲无线在线观看| 最近在线观看免费完整版| 啦啦啦观看免费观看视频高清| 午夜福利在线观看免费完整高清在 | 嫁个100分男人电影在线观看| e午夜精品久久久久久久| www日本在线高清视频| 长腿黑丝高跟| 精品久久久久久久久久久久久| 国产av在哪里看| 午夜免费激情av| 久久精品亚洲精品国产色婷小说| 99热这里只有是精品50| 婷婷六月久久综合丁香| 色av中文字幕| 国产爱豆传媒在线观看| tocl精华| 国产亚洲精品久久久久久毛片| 国产精品女同一区二区软件 | 亚洲av不卡在线观看| 99久久久亚洲精品蜜臀av| 男女视频在线观看网站免费| 搡老熟女国产l中国老女人| www.999成人在线观看| 亚洲av不卡在线观看| 欧美+亚洲+日韩+国产| 男人的好看免费观看在线视频| 特级一级黄色大片| or卡值多少钱| 看片在线看免费视频| 精品国产美女av久久久久小说| xxxwww97欧美| 91字幕亚洲| 亚洲五月婷婷丁香| 日本成人三级电影网站| 欧美在线一区亚洲| 99国产精品一区二区三区| 亚洲熟妇熟女久久| 亚洲第一电影网av| 精品国产三级普通话版| 成人亚洲精品av一区二区| 好男人电影高清在线观看| 日本一二三区视频观看| 99视频精品全部免费 在线| 69人妻影院| 免费av观看视频| 男女床上黄色一级片免费看| 午夜久久久久精精品| 亚洲成人中文字幕在线播放| 国产精品亚洲av一区麻豆| 国产爱豆传媒在线观看| 午夜精品久久久久久毛片777| av福利片在线观看| 亚洲五月天丁香| 搞女人的毛片| 制服丝袜大香蕉在线| 国产伦精品一区二区三区四那| 丰满人妻一区二区三区视频av | 午夜福利在线在线| 国产成人aa在线观看| 日韩中文字幕欧美一区二区| 久久天躁狠狠躁夜夜2o2o| 老司机深夜福利视频在线观看| 国产一区二区在线av高清观看| 级片在线观看| 他把我摸到了高潮在线观看| www国产在线视频色| 国产三级中文精品| 性色avwww在线观看| 精品久久久久久久久久免费视频| 国内少妇人妻偷人精品xxx网站| 最近最新中文字幕大全免费视频| 内射极品少妇av片p| 九九热线精品视视频播放| 天堂网av新在线| 香蕉av资源在线| 校园春色视频在线观看| av国产免费在线观看| 亚洲欧美激情综合另类| av中文乱码字幕在线| 在线观看日韩欧美| 午夜福利高清视频| 18禁黄网站禁片午夜丰满| 我的老师免费观看完整版| 嫁个100分男人电影在线观看| h日本视频在线播放| 亚洲欧美一区二区三区黑人| 日韩国内少妇激情av| 叶爱在线成人免费视频播放| 久久精品国产综合久久久| 亚洲精品国产精品久久久不卡| 国产又黄又爽又无遮挡在线| 高清日韩中文字幕在线| 九色国产91popny在线| av欧美777| 亚洲精品456在线播放app | 12—13女人毛片做爰片一| 禁无遮挡网站| 亚洲精品在线美女| 国产亚洲精品久久久com| 国产老妇女一区| 男女视频在线观看网站免费| 波野结衣二区三区在线 | 91九色精品人成在线观看| 女生性感内裤真人,穿戴方法视频| 亚洲欧美日韩高清在线视频| 国产国拍精品亚洲av在线观看 | 黄色女人牲交| 欧美国产日韩亚洲一区| 午夜免费观看网址| 国产在线精品亚洲第一网站| 88av欧美| 99精品在免费线老司机午夜| 国产亚洲欧美在线一区二区| 免费av观看视频| 九九热线精品视视频播放| 免费一级毛片在线播放高清视频| 九九热线精品视视频播放| 天堂av国产一区二区熟女人妻| 国产黄a三级三级三级人| 亚洲av成人精品一区久久| 国产精品免费一区二区三区在线| 久久伊人香网站| 午夜a级毛片| 久久久久性生活片| 亚洲精品在线美女| 舔av片在线| 国产av一区在线观看免费| 伊人久久大香线蕉亚洲五| 国模一区二区三区四区视频| 看片在线看免费视频| 国产真人三级小视频在线观看| 国产精华一区二区三区| 韩国av一区二区三区四区| 丰满的人妻完整版| 国产v大片淫在线免费观看| 亚洲电影在线观看av| 香蕉丝袜av| 中文在线观看免费www的网站| 婷婷精品国产亚洲av在线| 丰满的人妻完整版| 美女 人体艺术 gogo| 欧美最新免费一区二区三区 | 亚洲美女黄片视频| a在线观看视频网站| 欧美乱码精品一区二区三区| АⅤ资源中文在线天堂| 国产成人a区在线观看| 精品乱码久久久久久99久播| 99热精品在线国产| 一个人免费在线观看的高清视频| 国产午夜精品论理片| 欧美日韩乱码在线| 国产毛片a区久久久久| 日韩av在线大香蕉| 三级男女做爰猛烈吃奶摸视频| 夜夜爽天天搞| 一区二区三区激情视频| 99精品久久久久人妻精品| 精品电影一区二区在线| 国产亚洲欧美98| 国产真实伦视频高清在线观看 | 别揉我奶头~嗯~啊~动态视频| 成年女人看的毛片在线观看| 在线观看日韩欧美| av中文乱码字幕在线| 首页视频小说图片口味搜索| 久久精品夜夜夜夜夜久久蜜豆| 欧美国产日韩亚洲一区| 深夜精品福利| 日日摸夜夜添夜夜添小说| 久久精品综合一区二区三区| 久久精品亚洲精品国产色婷小说| 亚洲黑人精品在线| 99视频精品全部免费 在线| 日本一二三区视频观看| 日本免费一区二区三区高清不卡| 日本黄色片子视频| 一a级毛片在线观看| 日韩欧美在线二视频| 一进一出好大好爽视频| 脱女人内裤的视频| 天天添夜夜摸| 少妇高潮的动态图| 桃红色精品国产亚洲av| 精品电影一区二区在线| 又爽又黄无遮挡网站| eeuss影院久久| 久久伊人香网站| 黄片小视频在线播放| 日韩大尺度精品在线看网址| 欧美日韩中文字幕国产精品一区二区三区| 好看av亚洲va欧美ⅴa在| 亚洲七黄色美女视频| 国语自产精品视频在线第100页| 亚洲精品久久国产高清桃花| 日韩欧美 国产精品| 黄色片一级片一级黄色片| 欧美日本亚洲视频在线播放| 欧美中文综合在线视频| 88av欧美| 日韩欧美在线乱码| 亚洲欧美一区二区三区黑人| 99视频精品全部免费 在线| 精品欧美国产一区二区三| 成人国产一区最新在线观看| 免费看日本二区| 婷婷六月久久综合丁香| 一级毛片女人18水好多| 国产一区二区三区在线臀色熟女| 亚洲国产精品合色在线| 美女cb高潮喷水在线观看| 成人av一区二区三区在线看| 两人在一起打扑克的视频| 一个人免费在线观看电影| 又黄又粗又硬又大视频| 色精品久久人妻99蜜桃| 99久久久亚洲精品蜜臀av| xxxwww97欧美| 亚洲美女视频黄频| 免费在线观看日本一区| 免费大片18禁| 国产精品99久久99久久久不卡| 久久性视频一级片| 国产精品影院久久| 熟女少妇亚洲综合色aaa.| 宅男免费午夜| 啦啦啦韩国在线观看视频| 中文字幕熟女人妻在线| 成人国产综合亚洲| 久久久色成人| 村上凉子中文字幕在线| 国产高清videossex| АⅤ资源中文在线天堂| 又黄又粗又硬又大视频| 18禁裸乳无遮挡免费网站照片| 亚洲成人久久性| 日本黄色片子视频| 一进一出好大好爽视频| 成人精品一区二区免费| 亚洲aⅴ乱码一区二区在线播放| 一区二区三区激情视频| 老司机午夜十八禁免费视频| 男人舔女人下体高潮全视频| 怎么达到女性高潮| 18禁在线播放成人免费| 在线观看免费视频日本深夜| 熟女人妻精品中文字幕| 国产一区在线观看成人免费| 真实男女啪啪啪动态图| 黄色视频,在线免费观看| 日韩精品中文字幕看吧| 久久午夜亚洲精品久久| 村上凉子中文字幕在线| 中文在线观看免费www的网站| 国产一区二区亚洲精品在线观看| 亚洲最大成人中文| 午夜免费激情av| 亚洲av成人不卡在线观看播放网| 国产成人啪精品午夜网站| 国产欧美日韩精品亚洲av| 国产伦在线观看视频一区| 一区二区三区免费毛片| 亚洲 国产 在线| 午夜福利成人在线免费观看| 十八禁网站免费在线| 韩国av一区二区三区四区| 亚洲五月天丁香| 久久久久久九九精品二区国产| 亚洲第一欧美日韩一区二区三区| 亚洲精品色激情综合| 中文资源天堂在线| 一区二区三区免费毛片| 男人舔奶头视频| 欧美中文综合在线视频| 成年女人永久免费观看视频| 色老头精品视频在线观看| 亚洲成av人片免费观看| 亚洲精品一区av在线观看| 亚洲国产精品久久男人天堂| 久久久久久久午夜电影| h日本视频在线播放| 久99久视频精品免费| 国产一区二区在线观看日韩 | 最新中文字幕久久久久| 免费人成在线观看视频色| 搡老妇女老女人老熟妇| 一区二区三区激情视频| 欧美丝袜亚洲另类 | 午夜影院日韩av| 精品久久久久久久久久久久久| 欧美性猛交黑人性爽| 欧美不卡视频在线免费观看| 别揉我奶头~嗯~啊~动态视频| 啦啦啦免费观看视频1| 怎么达到女性高潮| 两个人视频免费观看高清| 国产免费一级a男人的天堂| 欧美中文日本在线观看视频| 国产高清视频在线观看网站| 亚洲最大成人中文| 午夜精品久久久久久毛片777| 午夜福利欧美成人| 丁香六月欧美| 久久亚洲真实| 97碰自拍视频| 天堂影院成人在线观看| 黄色视频,在线免费观看| 国产精品亚洲一级av第二区| e午夜精品久久久久久久| 国产精品免费一区二区三区在线| 国产伦在线观看视频一区| 日本一二三区视频观看| 少妇人妻一区二区三区视频| 一级毛片女人18水好多| 欧美激情在线99| 国内少妇人妻偷人精品xxx网站| 亚洲久久久久久中文字幕| 久久久久久久午夜电影| 久久国产精品影院| 色视频www国产| 99热只有精品国产| 免费看光身美女| 午夜精品在线福利| 在线视频色国产色| 99精品在免费线老司机午夜| 久久亚洲真实| 午夜福利在线在线| 真实男女啪啪啪动态图| 51午夜福利影视在线观看| 亚洲成人久久性| 内地一区二区视频在线| 亚洲狠狠婷婷综合久久图片| 夜夜看夜夜爽夜夜摸| 亚洲精品456在线播放app | 一进一出好大好爽视频| 国产亚洲精品一区二区www| 亚洲成av人片免费观看| 久久精品国产自在天天线| 天堂av国产一区二区熟女人妻| 欧美xxxx黑人xx丫x性爽| 国产野战对白在线观看| 亚洲欧美日韩高清在线视频| 亚洲国产精品成人综合色| 日韩人妻高清精品专区| svipshipincom国产片| a级毛片a级免费在线| 国产亚洲精品久久久久久毛片| 又爽又黄无遮挡网站| 九色成人免费人妻av| 亚洲av五月六月丁香网| 午夜激情欧美在线| 99热只有精品国产| 色老头精品视频在线观看| 两个人看的免费小视频| 搡老妇女老女人老熟妇| 精品人妻偷拍中文字幕| 国产在视频线在精品| 国产黄色小视频在线观看| 欧美一区二区精品小视频在线| 在线播放国产精品三级| 免费观看人在逋| 国产极品精品免费视频能看的| 熟女少妇亚洲综合色aaa.| 中文字幕熟女人妻在线| 日本黄大片高清| 亚洲男人的天堂狠狠| av在线天堂中文字幕| 1000部很黄的大片| 国产精品永久免费网站| 免费观看人在逋| 精品电影一区二区在线| 最近最新中文字幕大全电影3| 搡老妇女老女人老熟妇| 大型黄色视频在线免费观看| 九色国产91popny在线| 99国产精品一区二区蜜桃av| 午夜福利在线在线| 中文字幕久久专区| 中国美女看黄片| 美女免费视频网站|