• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    lncluding predator presence in a refined model for assessing resistance of alfalfa cultivar to aphids

    2018-02-05 07:10:51TUXiongbingFANYaoliMarkMcNeillZHANGZehua
    Journal of Integrative Agriculture 2018年2期

    TU Xiong-bing, FAN Yao-li, Mark McNeill, ZHANG Ze-hua

    1 State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R.China

    2 AgResearch, Canterbury 8140, New Zealand

    1. lntroduction

    Aphids are widespread throughout the world and cause severe damage to a variety of economically important crops(Gutierrez and Ponti 2013; Yang 2013). For this reason,control of aphids using plant resistance and biological control as part of integrated pest management (IPM) programmes has been the focus of extensive and ongoing research in many economically important crops (Smith and Clement 2012). Statistical models of pest population density are widely used to evaluate variety resistance in IPM strategies(Luginbill 1969). Numerous researchers have worked to improve the accuracy of such models over the years.For example, Rana (1999) suggested that aphid quantity on plants could be used to estimate cultivar resistance toSitobion avenae(Fabricius). Havlí?ková (1997) analyzed tolerance differences of five winter wheat cultivars to cereal aphids using aphid population density. Thackrayet al.(1990) evaluated wheat cultivar tolerance toRhopalosiphum padiL. using the intrinsic growth rate of populations on the plants, while Souzaet al.(1991) proposed an aphid damage index to evaluate wheat cultivar tolerance toDiuraphis noxiaMordvilko. More complex evaluations, such as that undertaken by He and Zhang (2006), have evaluated alfalfa(Medicago sativaL.) resistance to aphids using an aphid damage index and plant infestation index. Hesleret al.(1999) proposed a method to study resistance differences of wheat cultivars toR.padiusing aphid quantity, aphid development duration, and intrinsic growth rate. All of these authors made important contributions to the methods of evaluating crop variety resistance to aphids. However,the accuracy of these models is limited mainly due to plant variety and different levels of resistance (Chenet al.1997).

    In an effort to provide a more robust assessment ofM.sativaresistance to aphids, the aphid quantity ratio (AQR)model was developed in China. AQR has been used in theoretical and applied research on resistance to plant pests(Sun 2006; Quet al.2012), including studies of aphids onM.sativa(Huang 2007) and oat bird-cherry aphids on wheat cultivars (Li and Ye 2002). Chen (2005) evaluated 12 goat weed resistance toS. avenaeusing a combination of the AQR model, weight loss of plants, and changes in chlorophyll content. The AQR model has played an important role in assessing plant resistance to pests, but it does not indicate which factor produced resistance of the cultivars (Farmer 2001; Schneeet al.2006; Shiojiriet al.2006; Zeng 2008).Natural enemies affect pest population dynamics, but they are only a part of the intrinsic components of crop resistance to pests, and the relationship between natural enemies and pests is not entirely clear (Huanget al.2008; Fanget al.2010). For example, host plant resistance has been clearly defined as inherited qualities that result in less damage by pests (Souzaet al.1991). Therefore, evaluation methods should explore parameters, including natural enemies that reflect inherent traits of the plant.

    Unfortunately, the current AQR model leads to incorrect conclusions about plant susceptibility to aphid pests,with discrepancies between the predictedvs. actual field observation of plant species resistance (Temueret al.2005; Chenget al.2009; Liuet al.2012). In this paper,we investigated the value of a modified AQR model for evaluating resistance ofM.sativavarieties to aphids by monitoring populations of aphids and their predators over growing seasons in two consecutive years.

    2. Materials and methods

    2.1. Region description and cultivar source

    The field experiment was conducted at Cangzhou City,Hebei Province, China (39°37′N, 98°30′E, 40 m above sea level) from May 2013 to August 2014. The site was on cultivated farmland, with a saline-alkali soil (Bohai alkaline moisture soil) and it was unirrigated. The plots were sown in May 2012 using a precision seeder, with N, P, K fertilizer applied once prior to sowing and once after sowing. The experiment used a randomized complete block design and evaluated 28M.sativacultivars (Table 1) with three replications per cultivar. Each plot measured 4 m by 5 m,with the seed planted at a rate of 15 kg ha–1, a seeding depth of 2 cm and a between-row spacing of 20 cm. There was a 1-m spacing between plots which was kept clear of weedsby regular surface cultivation or herbicide application. No insecticides were used over the period of the experiment.

    Table 1 Origin of alfalfa cultivars assessed in the experiment to evaluate aphid resistance

    2.2. Data collection and organisms

    Data on populations of aphids and their natural enemies were monitored to identify the best time within a growing season to carry out field evaluations that would be used in the modified AQR model. To assess aphids and their predators, we selected five points randomly within each plot, and 20 stems were collected at each point. Stems were carefully cut at ground level and placed into a separate plastic bag. The natural enemy complex was sampled by taking 10 sweeps in each plot using a 50-cm sweep net,following the protocols of Cuperus and Radcliffe (1982) and Girousseet al.(2003). All samples were returned to the laboratory, frozen to kill them, then counted and identified under a stereo microscope. Aphids and predators were identified using arthropod keys (Feng 1990; Qiao 2009).Parasitoids were not collected in this study. The mean number of aphids per plot and numbers of predators per plot and per cultivar were determined.

    2.3. Evaluation of period selection

    Generally,M.sativais harvested four times per year in Cangzhou City, with cuttings taken in spring (May), early summer (June), mid-summer (August) and early autumn(September). In this study, insect sampling commenced 10 May and continued through to 30 August for both 2013 and 2014. This covered the second (10 May to 10 June), third(1–30 July) and fourth (1–30 August) harvests. Samples were taken every 7 days, which permitted a census of insect species across the growing season covering the vegetative growth stage to the full bloom stage.

    2.4. Predator, aphid, and cultivar correlation analysis

    It is known that different numbers of predators can be found in different types of crops, and that the number of predators can also be described as a function of host availability (McLaren and Craven 2008). For this study,aphid and predator numbers and their diversity in each of the 28 cultivars were analyzed to assess the main influential factor on aphid population dynamics over theM.sativagrowing season. To determine the role of each factor, we re-estimated the correlation between aphids, their predators andM.sativacultivar.

    2.5. Statistical analysis

    The AQR model for 28 cultivars was determined using the approaches of Tonget al.(1991) and Liet al.(1998). The improved AQR model differed from the AQR because it allowed for assessment of the abundance of the predators associated with each plot and therefore provided a correction factor to estimate resistance of the 28 cultivars to aphids.AQR, α, and improved AQR were calculated as follows:

    We defined the predator ratio, ‘α’, as the predator quantity on each cultivar divided by the predator quantity on all cultivars.

    The improved AQR (αAQR) is the two original components multiplied (AQR×α). To determine an optimal period to estimate aphid resistance, the AQR values for the second,third, and fourthM.sativaharvests were calculated and the standard errors (SE) of each period were compared.To further determine the appropriate period to carry out an evaluation, we also compared the SE of each period using the αAQR model. Pearson correlation analysis and the median clustering method were used to compare/correlate the aphid and predator numbers among cultivars, then the median clustering method was also used to divide the cultivars into different groups (Tuet al.2016). Grey correlation analysis of standardization and distinguishing the coefficient at the 0.1 level were used to compare the contribution of each predator to the calculation of aphid cultivar resistance (Wanget al.1993). Analysis was performed using SAS (ver. 8.0)statistical software package.

    3. Results

    3.1. Data from both growing seasons

    Overall, in 2013, aphid numbers across all plots peaked in late July, while the number of natural enemies peaked in early August. In 2014, aphid and predator numbers both peaked in August. Of the four species of aphids collected across both years, 80% wereTherioaphis trifoliiand the remaining 20% were a mix ofAcyrthosiphon craccivoraKoch,Acyrthosiphon pisum(Harris), andAcyrthosiphon kondoiShinji et Kondo (Table 2). The aphid predator complex consisted of several taxa, including four species of Coccinellidae (Coccinella septempunctataL.,Adalia bipunctataL.,Propylaea japonicaThunberg, andHarmonia axyridisPallas), two species of Chrysopidae (Chrysoperla sinicaTjeder,Chrysopa pallensRambur) and one species of Anthocoridae (Orius minutusL.). Spiders were the most abundant taxa collected (Table 2) and were represented by five species:Pardosa astrigeraL. Koch,Misumenopos tricuspidataFahricius,Xysticus croceusFox,Singa hamataClerck, andErigonidium graminicolumSundevall.

    Table 2 Mean (±SE) number of individuals collected per sampling occasion, and total number of individuals collected across all the 28 alfalfa plots in 2013 and 20141)

    3.2. Selection of the appropriate period to estimate aphid resistance of alfalfa cultivars

    When the AQR and αAQR for the pre-period, mid-period,and late-period for both years were calculated, and the SE of each period was compared (Table 3, Appendices A and B), results indicated that the SE for the AQR and αAQR was the lowest at the start of the season (F=3.17,P=0.0475 andF=6.48,P=0.0024, respectively). Hence, the early stage(May to June) of the year was considered the most suitable period for analyzing cultivar resistance to aphids.

    3.3. Resistance of alfalfa cultivars to aphids using the AQR model

    Results showed that the 28 alfalfa cultivars could be clustered into three broad resistance categories, including resistant, tolerant and susceptible cultivars using the AQR model (Fig. 1). Seven resistant cultivars were subdivided into four subgroups: (1) Zhongmu 1; (2) WL354HQ and Sanditi; (3) Gongnong 2 and WL440HQ; (4) SARDI 10 and SARDI 5. Ten cultivars assessed as tolerant were part of one group: SARDI 7, Cangzhou, WL319HQ, Queen, Sitel,WL343HQ, Apex, Zhongmu 3, 53HR and WL363HQ. Eleven susceptible cultivars were divided into four sub groups: (1)Gongnong 1, Farmers Treasure, and WL323; (2) WL168HQ and Derby; (3) Zhongmu 2, Algonquin, and FD 4. and (4)KRIMA, SARDI 10, and Alfaking (Fig. 1).

    3.4. Contributions of predators to cultivar resistance to aphids

    Grey correlation analysis was used to investigate the contributions of each predator to control aphids, and found that spiders were the most significant predator across the plots (correlation coefficient value of 0.4200), followed in decreasing order by Chrysopidae (0.3923), Coccinellidae(0.3738) andO.minutus(0.3482) (Table 4, Appendix C).This information also indicated predators of aphids are present in high numbers across the growing season, and are assumed to have an important role in controlling aphid populations.

    3.5. lmprovement of the AQR model to assess alfalfa cultivar resistance to aphids

    The correlation analysis between the predator complex and aphid populations for each cultivar showed that the predator population is an important control factor in decreasing aphid population density. The αAQR model that included predators showed that the 28 cultivars could be clustered into three broad resistance categories (resistant,tolerant and susceptible) and eight sub groups. The resistant class comprised three groups: (1) Zhongmu 1; (2)WL354HQ, Zhongmu 3, and Gongnong 2; (3) Gongnong 1,WL343HQ, WL440HQ, SARDI 5, and Queen. The tolerant class consisted of only one group, including Cangzhou,WL319HQ, Sanditi, Apex, SARDI 10, 53 HR, Sitel, SARDI 7,and WL363HQ. The susceptible class again included four groups: (1) Farmers Treasure, Zhongmu 2, Algonquin, and WL168HQ; (2) KRIMA; (3) FD 4, WL323 and Derby; (4)Alfaking and SOCA (Fig. 2).

    3.6. Standard evaluation method for alfalfa cultivar resistance to aphids based on the αAQR model

    Comparing the AQR model and the αAQR model, we found that values of the αAQR were near the numerical value‘1’. Most importantly, it was found that the tolerant class divided by the αAQR consisted of the middle branch (Fig. 2).Hence, we defined the numerical value from (1–0.1)≤(αAQR)≤(1+0.1) as the tolerant class, then took the numerical value‘0.1’ as an index to divide the resistant and susceptible classes into four groups. Based on this new method, 17

    cultivars were reassigned from one resistant classification to another compared with the AQR value (Table 5, Appendix D). Zhongmu 1 was re-classified as highly resistant (HR);WL354HQ as resistant (R); Zhongmu 3, Cangzhou, and Gongnong 2 as moderately resistant (MR); and Gongnong 1,WL343HQ, WL440HQ, SARDI 5, Sanditi, and Queen as the low resistant group (LR); these four groups belong to the resistant class (Table 5, Appendix D). WL319HQ,Apex, SARDI 10, 53HR, Sitel, SARDI 7, and WL363HQ were classified as tolerant (M), which was the same as the classification by the improved AQR model and only included one group (Table 5, Appendix D). The susceptible class including four groups, WL168HQ, WL323, Zhongmu 2,and Farmers Treasure, was classified as low susceptible(LS); Algonquin and Derby as moderately susceptible (MS);KRIMA and FD 4 as susceptible (S); and Alfaking and SOCA as highly susceptible (HS) (Table 5, Appendix D).

    Table 3 Standard error (SE) associated with the aphid quantity ratio (AQR) and improved AQR (αAQR) in three different stages of alfalfa harvest during over one growing season in 2014 northern China

    Fig. 1 Estimated cultivar resistance to aphids by aphid quantity ratio (AQR) model. Twenty-eight alfalfa cultivar varieties are as follows:var1, FD4; var2, SARDI 10; var3, SARDI 7; var4, 53HR; var5, Zhongmu 1; var6, Alfaking; var7, Farmers Treasure; var8, WL319HQ;var9, Algonquin; var10, Sanditi; var11, Zhongmu 3; var12, WL354HQ; var13, WL343HQ; var14, KRIMA; var15, Gongnong 1;var16, WL363HQ; var17, WL440HQ; var18, Sitel; var19, WL168HQ; var20, Zhongmu 2; var21, Derby; var22, Cangzhou; var23,WL323; var24, Apex; var25, Queen; var26, SARDI 5; var27, Gongnong 2; var28, SOCA.

    Fig. 2 Improved aphid quantity ratio (AQR) model to estimate cultivar resistance to aphids. Resistant class, tolerant class, and susceptible class include 9, 9, and 10 cultivars, respectively by median clustering method. Twenty-eight alfalfa cultivar varieties are as follows: var1, FD4; var2, SARDI 10; var3, SARDI 7; var4, 53HR; var5, Zhongmu 1; var6, Alfaking; var7, Farmers Treasure;var8, WL319HQ; var9, Algonquin; var10, Sanditi; var11, Zhongmu 3; var12, WL354HQ; var13, WL343HQ; var14, KRIMA; var15,Gongnong 1; var16, WL363HQ; var17, WL440HQ; var18, Sitel; var19, WL168HQ; var20, Zhongmu 2; var21, Derby; var22,Cangzhou; var23, WL323; var24, Apex; var25, Queen; var26, SARDI 5; var27, Gongnong 2; var28, SOCA.

    Table 4 Contributions of each natural enemy in the cultivar resistance to aphids by gray correlation analysis

    4. Discussion

    Previous methods assessingM.sativaresistance to aphids only considered aphid population density as a reference parameter to evaluate resistance (Rana 1999; He and Zhang 2006). In contrast, the method described in this paper considered not only the aphid density but also aphid predator density (Table 4). We considered several key factors in this study. The first was how to select the appropriate period to estimate aphid resistance. Because the aphid population numbers were more uniform across all cultivars early in the season (May to June), this was deemed a suitable time for assessing cultivar resistance differences (Wuet al.2007). It is possible that different developmental stages(e.g., three-leaf, six-leaf and flowering) may vary for each cultivar, which in turn could influence aphid colonisation, and therefore predator aggregation (Wuet al.2007, 2012). In this paper, we focused on cultivar development dynamics from the three-leaf to the flowering stage, but it may be helpful to eliminate differences among developmental stages(Geet al.2011).

    Table 5 Grade division of 28 cultivars by the new standard of median value (1±0.1) and equal difference (0.1)1)

    Second, there have been some deviations in evaluating resistance in the same cultivar, even within the same region.For example, Sanditi was a susceptible variety according to He and Zhang (2006), but research by Huang (2007) and our results indicated that the cultivar could be classified as resistant. Conversely, Gongnong 1, an important cultivar in high-latitude region of northern China, has been classified as resistant (Wuet al.2007, 2012), but it was a susceptible cultivar (Fig. 1) based on the AQR value (Table 5). While the AQR is useful, there were questions concerning validity of the results because of the confounding effects caused by the presence of predators. In other words, plants that were attacked by low numbers of aphids may be classified as resistant, but the low aphid counts may simply be a factor of abundance of predators that suppress the population.As a consequence, a seemingly resistant plant may be susceptible. Natural enemies, especially spiders, may play an active role in decreasing aphid populations (Table 4),and these diverse species would provide a valuable role in aphid biocontrol (Zhuet al.2000). These results may be related to crop resistance or pest-induced resistance.Studies have demonstrated that aggregation of predators and parasitoids can be attributed to volatiles from the crop itself and from pest damage to host plants (Kapperset al.2005; Geet al.2011), as well as semio-chemicals from pests such as kairomones (Vet and Dicke 1992), allomones and synomones (Lin and Chen 2009). Thus, we introduced a natural enemy ratio, ‘α’, to construct a new model and reevaluate cultivar resistance to aphids (Fig. 2; Table 4).Compared to the AQR model, the αAQR model implied an interesting grade division, as differences between grades were all 0.1. The format of the new model was similar to the aphid damage index (ADI), another important method used to evaluate cultivar resistance. However, the ADI requires investigation of the leaf damage index and damage grades due to aphid infestation by artificial tests, including more uncertain factors and requiring more time to collect data(Wuet al.2007, 2012). The new model considered the natural ecosystem effect and allowed data to be obtained more easily than the ADI, and it is also more convincing than the AQR model. Hence, the new model, αAQR, with its tolerant value of 1±0.1 and equal difference of 0.1 would be a suitable method for examining cultivar resistance to aphids in field studies. However, the αAQR model has been used to evaluate alfalfa resistance only in northern China, and more attention should be paid when using it in different locations in future work. Also environmental factors such as temperature, precipitation, etc. vary greatly in different locations. Although these factors would not change the intrinsic resistance of crops, they play a vital role in decreasing aphid population density (Luoet al.2014). In addition, we did not evaluate parasitoids such as parasitoid wasps in this study, even though we recognized that the parasitoids may be also important as the predators on aphid control (Liet al.2013). We also have not displayed the different roles of all natural enemies in this paper.For example, some other invertebrate predators such as syrphid flies may decrease aphid population dramatically(Nelsonet al.2012). For the invertebrate predators we did include, we only displayed the correlation coefficient and rank ordering of four natural enemies, but the role of each species has not been illustrated. For example, if we counted the same number of ladybugs of different species, ladybugs with larger body sizes would affect the aphid population more than ladybugs with smaller body sizes (Jaro?íket al.2003).These considerations should be included when discussing crop resistance to pests in future studies.

    5. Conclusion

    In this report, we studied three periods during the alfalfa growing season in the Cangzhou, Hebei Province, China.Results showed that the earlyM.sativagrowing season(May to June) was the most suitable stage for assessing cultivar resistance because insect populations were at their most uniform across all plots. Moreover, we found that predator population density had a significant negative correlation with aphid population density during May to June of each year, although we had not revealed the roles of all predators in this study. Comparing the AQR model with the αAQR model, we found that 17 of the 28 cultivars (61%) were reassigned to resistant, tolerant, and susceptible groups.The αAQR model enhanced the accuracy of the resistance comparison based on the median clustering method. A standard graduated scale to rank cultivar resistance to aphids is suggested based on the median value of 1±0.1.The new standard is consistent with the αAQR model, and retrospective allocation of the cultivars produced consistent outcomes.

    Acknowledgements

    The study was funded by the earmarked fund for China Agriculture Research System (CARS-34-07) and the National Department of Public Benefit Research Foundation,China (201303057).

    Appendices associated with this paper can be available on http://www.ChinaAgriSci.com/V2/En/appendix.htm

    Chen G M. 2005. Evaluation ofAegilopsresources for resistance toSitobion avenaeand biochemical mechanism of aphid resistance. MSc thesis, Sichuan Agricultural University, Chengdu. (in Chinese)

    Chen J L, Sun J R, Ding H J, Ni H X, Li X F. 1997. The resistant patterns and mechanism of biochemical resistance in various wheat cultivars.Acta Entomologica Sinica, 40,190–195. (in Chinese)

    Cheng L, He C G, Hu G X, Wang S S, Zhu Y L. 2009. The effects ofTherioaphis trifoliion the activities of PAL, POD and PPO in five alfalfa varieties.Plant Protection, 35, 87–90.(in Chinese)

    Cuperus G W, Radcliffe E B. 1982. Economic injury levels and economic thresholds for pea aphid,Acyrthosiphon pisum(Harris), on alfalfa.Crop Protection, 1, 453–463.

    Fang Q, Wang L, Zhu J Y, Li Y M, Song Q S, Stanley D W,Akhtar Z R, Ye G Y. 2010. Expression of immune reponse genes in lepidopteran host is suppressed by venom from an endoparasitoid,Pteromalus puparum.BMC Genomics,11, 484.

    Farmer E E. 2001. Surface-to-air signals.Nature, 411, 854–856.

    Feng Z Q. 1990. Color handbook of spiders in China. Hunan Science and Technology Press, Changsha. (in Chinese).

    Ge F, Wu K M, Chen X X. 2011. Major advance on the interaction mechanism among plants, pest insects and natural enemies in China.Chinese Journal of Applied Entomology, 48, 1–6. (in Chinese)

    Girousse C, Faucher M, Kleinpeter C, Bonnermain J L. 2003.Dissection of the effects of the pea aphidAcyrthosiphon pisumfeeding on assimilate partitioning inMedicago sativa.New Phytologist, 157, 83–92.

    Gutierrez A P, Ponti L. 2013. Deconstructing the control of the spotted alfalfa aphidTherioaphis maculate.Agricultural and Forest Entomology, 15, 272–284.

    Havlí?ková H. 1997. Differences in level of tolerance to cereal aphids in five winter wheat cultivars.Rostlinná Vyroba, 43,593–596.

    He C G, Zhang X G. 2006. Field evaluation of Lucerne(Medicago sativaL.) for resistance to aphids in northern China.Australian Journal of Agricultural Research, 57,471–475.

    Hesler L S, Riedell W E, Kieckhefer R W, Haley S D, Collins R D. 1999. Resistance toRhopalosiphum padi(Homoptera,Aphididae) in wheat germplasm accessions.Journal of Economic Entomology, 92, 1234–1238.

    Huang F, Shi M, Chen Y F, Cao T T, Chen X X. 2008. Oogenesis ofDiadegma secularism(Hymenoptera: Ichneumonidae)and its associated polydnavirus.Microscopy Research and Technique, 71, 676–683. (in Chinese)

    Huang W. 2007. Evalution of the resistance to aphid of alfalfa varieties and preliminary studies on the resistance mechanism. MSc thesis, Northwest A&F University,Yangling. (in Chinese)

    Jaro?ík V, Honěk A, Dixon A F G. 2003. Natural enemy ravine revisited, the importance of sample size for determining population growth.Ecological Entomology, 28, 85–91.

    Kappers I F, Aharoni A, van Herpen T W, Luckerhoff L L,Dicke M, Bouwmeester H J. 2005. Genetic engineering of terpenoid metabolism attracts bodyguards toArabidopsis.Science, 309, 2070–2072.

    Li Q, Ye H Z. 2002. Studies on resistance of wild relatives in triticeae to oat bird-cherry aphids (Homoptera, Aphididae).Scientia Agricultura Sinica, 35, 719–723. (in Chinese)

    Li S J, Zhang Z Y, Wang X Y, Ding J H, Ni H X, Sun J R, Cheng D F, Chen J L. 1998. Resistance identification of wheat varieties (lines) to aphid with fuzzy recognition technology.Plant Protection, 24, 15–16. (in Chinese)

    Li Y J, Wang L M, Wen Z Z. 2013. Influence factor analysis on control efficiency of parasitoid wasp to aphid.Hubei Agricultural Sciences, 52, 3478–3481. (in Chinese)

    Lin H Q, Chen S B. 2009. Advance in research on the orientation mechanism of herbivorous insects and natural enemies.Fujian Journal of Agricultural Sciences, 24, 191–196. (in Chinese)

    Liu D, Jiang H X, Wang Z F, Cao Y, Zhang S E, Zhai G Y. 2012.The prevention and control of alfalfa aphid.Shangdong Journal of Animal Science and Veterinary Medicine, 33,94–96. (in Chinese)

    Luginbill P. 1969. Developing resistant plants-the ideal method of controlling insects.USDA-ARS Product Research Report,11, 1–14.

    Luo J H, Huang W J, Zhao J L, Zhang J C, Ma R H, Huang M Y.2014. Predicting the probability of wheat aphid occurrence using satellite remote sensing and meteorological data.Optik, 125, 5660–5665.

    McLaren N W, Craven M. 2008. Evaluation of soybean cultivars for resistance to sclerotinia stalk rot in South Africa.Crop Protection, 27, 231–235.

    Nelson E H, Hogg B N, Mills N J, Daane K M. 2012. Syrphidflies suppress lettuce aphids.BioControl, 57, 819–826.

    Qiao G X. 2009.Hebei Fauna, Aphids. Hebei Science and Technology Press, Shijiazhuang. (in Chinese)

    Qu F, Dang J Y, Cheng M F, Lian J, Xie X S. 2012. Resistance identification of new variety wheat toMacrosiphum avenae.Journal of Shanxi Agricultural Sciences, 40, 386–388. (in Chinese)

    Rana J S. 1999. Sceening of wheat (Triticum aestivum) varieties against wheat aphidSitobion avenae(F.).Annals of Biology(Ludhiana), 15, 267–269.

    Schnee C, K?llner T G, Heid M, Turlings T C J, Gershenzon J, Degenhardt J. 2006. The products of a single maize sesquiterpene synthase form a volatile defense signal that attracts natural enemies of maize herbivores.Proceedings of the National Academy of Sciences of the United States of America, 103, 1129–1134.

    Shiojiri K, Kishimoto K, Ozawa R, Kugimiya S, Urashimo S,Arimura G, Horiuchi J, Nishioka T, Matsui K, Takabayashi J. 2006. Changing green leaf volatile biosynthesis in plants,An approach for improving plant resistance against both herbivores and pathogens.Proceedings of the National Academy of Sciences of the United States of America,103, 16672–16676.

    Smith C M, Clement S L. 2012. Molecular bases of plant resistance to arthtopods.Annual Review of Entomology,57, 309–328.

    Souza E, Smith C M, Schotzko D J, Zemetra R S. 1991.Greenhouse evaluation of red winter wheats for resistance to the Russian wheat aphid (Diuraphis noxia, Mordvilko).Euphytica, 57, 221–225.

    Sun D X. 2006. The roles of several kinds biochemical and enzymes in the spring wheat resistance toSitobion avenge Fabricius. MSc thesis, Gansu Agricultural University,Lanzhou. (in Chinese)

    Temuer B H, Wu R T, Jin X L, Shuang Q. 2005. The preliminary studies on the injury of alfalfa by aphids.Inner Mongolia Prataculture, 17, 56–59. (in Chinese)

    Thackray D J, Wrattent S D, Edwards P J, Niemeyer H M.1990. Resistance to the aphidsSitobion avenaeandRhopalosiphum padiin Gramineae in relation to hydroxamic acid levels.Annals of Applied Biology, 116, 573–582.

    Tong H P, Zhu X M, Cao J Z, Guo Y Y, Hu Y, Wu Y Q, Zhou D H. 1991. The preliminary studies on the resistance identification of winter variety wheat to aphid.Crop Variety Resource, 2, 29–30. (in Chinese)

    Tu X B, Fan Y L, Ji M S, Liu Z K, Xie N, Liu Z Y, Zhang Z H. 2016.Improving a method for evaluating alfalfa cultivar resistance to thrips.Journal of Integrative Agriculture, 15, 600–607.

    Vet L E M, Dicke M. 1992. Ecology of infochemi use by natural enemies in a tritrophic context.Annual Review of Entomology, 37, 141–172.

    Wang X Q, Ding X Y, Huang F. 1993. Analysing the key factor in insect population dynamics with grey correlation coefficient.Journal of Shenyang Agricultural University, 24, 120–124.(in Chinese)

    Wu D G, Du J L, Wang S S, Hu G X, He C G. 2012. Evaluation on resistance of 4 alfalfa (Medicago sativa) cultivars to pea aphid (Acyrthosiphon pisum).Pratacultural Science, 29,101–104. (in Chinese)

    Wu D G, He C G, Wu T J, Tang S R, Jia B. 2007. Resistance comparison of eleven alfalfa varieties to aphid.Grassland Turf, 4, 54–57. (in Chinese)

    Yang W G, Chai H, Huang X Y, Yang Z, Gao H J, Li H. 2013.The main pests and occurrence regulation of alfalfa in Qiqihar of Heilongjiang Province.Grass Culture, 12, 26–30.(in Chinese)

    Zeng R S, Su Y J, Ye M, Xie L J, Chen M, Song Y Y. 2008. Plant induced defense and biochemical mechanisms.Journal of South China Agricultural University, 29, 1–6. (in Chinese)

    ZhuY Y, Chen H R, Fan J H, Wang Y Y, Li Y, Chen J B, Fan J X, Yang S S, Hu L P, Leung H, Mew T W, Teng P S, Wang Z H, Mundt C C. 2000. Genetic diversity and disease control in rice.Nature, 406, 718–722.

    久久久国产精品麻豆| 国产成人精品在线电影| 美女国产高潮福利片在线看| 性少妇av在线| 中文字幕人妻熟女乱码| 国产一区二区三区在线臀色熟女 | 亚洲男人天堂网一区| 成人特级黄色片久久久久久久 | 啦啦啦中文免费视频观看日本| 黑人欧美特级aaaaaa片| 人人妻人人澡人人爽人人夜夜| 免费少妇av软件| 午夜免费成人在线视频| 亚洲精品成人av观看孕妇| 国产成人免费无遮挡视频| 法律面前人人平等表现在哪些方面| 极品人妻少妇av视频| 波多野结衣一区麻豆| 亚洲av美国av| 久久久精品免费免费高清| 国产精品影院久久| 欧美日韩亚洲高清精品| 一级黄色大片毛片| 高清欧美精品videossex| 免费一级毛片在线播放高清视频 | 99热国产这里只有精品6| 成人手机av| 亚洲精品美女久久久久99蜜臀| 波多野结衣av一区二区av| 老熟女久久久| 久久久久久人人人人人| 97人妻天天添夜夜摸| 成人国产av品久久久| 成人精品一区二区免费| 亚洲精品中文字幕一二三四区 | 国产一卡二卡三卡精品| 国产精品香港三级国产av潘金莲| 欧美成人午夜精品| 精品国产国语对白av| 人人妻人人添人人爽欧美一区卜| 久久青草综合色| 青青草视频在线视频观看| 亚洲 欧美一区二区三区| 大片免费播放器 马上看| 国产成人免费无遮挡视频| 久久精品国产综合久久久| 欧美性长视频在线观看| 搡老乐熟女国产| 久9热在线精品视频| 99热国产这里只有精品6| 亚洲伊人久久精品综合| 色综合欧美亚洲国产小说| 亚洲欧洲日产国产| 黑人猛操日本美女一级片| 久久人人爽av亚洲精品天堂| 99国产精品99久久久久| 一本大道久久a久久精品| 国产精品1区2区在线观看. | 国产99久久九九免费精品| 亚洲午夜理论影院| 中文字幕精品免费在线观看视频| 国产精品一区二区精品视频观看| 国产老妇伦熟女老妇高清| 变态另类成人亚洲欧美熟女 | 国产av一区二区精品久久| 黄片小视频在线播放| 国产精品二区激情视频| 人人妻人人澡人人爽人人夜夜| 亚洲av第一区精品v没综合| 一级,二级,三级黄色视频| 成年人黄色毛片网站| 免费在线观看黄色视频的| 色婷婷av一区二区三区视频| 国产精品亚洲av一区麻豆| 黑人猛操日本美女一级片| 久久青草综合色| 中文字幕精品免费在线观看视频| 九色亚洲精品在线播放| 欧美成人午夜精品| 久久久久久久国产电影| 极品少妇高潮喷水抽搐| 欧美在线黄色| 久久中文看片网| 亚洲av日韩精品久久久久久密| 少妇裸体淫交视频免费看高清 | 国产免费现黄频在线看| 高清黄色对白视频在线免费看| 国产精品偷伦视频观看了| 精品一区二区三区四区五区乱码| 大片电影免费在线观看免费| 9色porny在线观看| 大片免费播放器 马上看| 激情在线观看视频在线高清 | 悠悠久久av| 色在线成人网| 亚洲,欧美精品.| 国产av精品麻豆| 男女边摸边吃奶| 久久久国产成人免费| 久久精品国产99精品国产亚洲性色 | 无遮挡黄片免费观看| 日韩欧美一区二区三区在线观看 | 国产在线观看jvid| a级片在线免费高清观看视频| 一本一本久久a久久精品综合妖精| 国产一区二区三区在线臀色熟女 | 国产高清视频在线播放一区| 免费黄频网站在线观看国产| 18禁国产床啪视频网站| 成人亚洲精品一区在线观看| 久久久久久久久久久久大奶| 99香蕉大伊视频| 亚洲免费av在线视频| 91大片在线观看| 欧美乱码精品一区二区三区| 国产视频一区二区在线看| 亚洲少妇的诱惑av| 国产伦理片在线播放av一区| 久久中文字幕一级| 最近最新免费中文字幕在线| 日本一区二区免费在线视频| 一级片'在线观看视频| 久久国产精品人妻蜜桃| 搡老熟女国产l中国老女人| 欧美成人午夜精品| 精品亚洲成a人片在线观看| 久久中文看片网| 久久中文字幕一级| a在线观看视频网站| 国产成人免费观看mmmm| 最新美女视频免费是黄的| 色综合婷婷激情| 久热爱精品视频在线9| 97在线人人人人妻| a级片在线免费高清观看视频| 黄色视频,在线免费观看| 日韩大码丰满熟妇| 首页视频小说图片口味搜索| 我的亚洲天堂| 一边摸一边抽搐一进一出视频| 亚洲专区中文字幕在线| 在线永久观看黄色视频| 亚洲av电影在线进入| 免费看十八禁软件| 菩萨蛮人人尽说江南好唐韦庄| 亚洲精品国产色婷婷电影| 欧美乱码精品一区二区三区| 国产无遮挡羞羞视频在线观看| 精品国产一区二区三区四区第35| 国产午夜精品久久久久久| av超薄肉色丝袜交足视频| aaaaa片日本免费| 国产精品久久电影中文字幕 | 精品午夜福利视频在线观看一区 | 99国产极品粉嫩在线观看| 国产不卡av网站在线观看| 中文字幕另类日韩欧美亚洲嫩草| 一区在线观看完整版| 多毛熟女@视频| 咕卡用的链子| 国产无遮挡羞羞视频在线观看| 国产精品香港三级国产av潘金莲| 亚洲人成77777在线视频| 黄片大片在线免费观看| 欧美一级毛片孕妇| 精品卡一卡二卡四卡免费| 精品一区二区三区视频在线观看免费 | 少妇被粗大的猛进出69影院| 19禁男女啪啪无遮挡网站| 夜夜爽天天搞| 一区二区av电影网| 国产在线精品亚洲第一网站| 国产av国产精品国产| 下体分泌物呈黄色| 国产亚洲精品第一综合不卡| 欧美日本中文国产一区发布| 男女边摸边吃奶| 日韩中文字幕视频在线看片| 精品高清国产在线一区| 精品国产亚洲在线| 午夜福利欧美成人| 99精国产麻豆久久婷婷| 午夜精品久久久久久毛片777| 成人影院久久| 美女国产高潮福利片在线看| 亚洲少妇的诱惑av| 美女高潮到喷水免费观看| 在线观看免费日韩欧美大片| 熟女少妇亚洲综合色aaa.| 国产亚洲精品一区二区www | av线在线观看网站| 日韩欧美一区二区三区在线观看 | 一进一出好大好爽视频| 国产伦人伦偷精品视频| aaaaa片日本免费| 91精品国产国语对白视频| 亚洲中文字幕日韩| 精品一品国产午夜福利视频| 国产伦人伦偷精品视频| 热99re8久久精品国产| 欧美久久黑人一区二区| 黄色视频在线播放观看不卡| 波多野结衣av一区二区av| 性高湖久久久久久久久免费观看| 国产精品偷伦视频观看了| 午夜成年电影在线免费观看| 欧美 亚洲 国产 日韩一| 99久久人妻综合| 亚洲精品国产精品久久久不卡| 亚洲五月婷婷丁香| 亚洲精品国产色婷婷电影| 在线 av 中文字幕| 色在线成人网| 亚洲性夜色夜夜综合| 久久香蕉激情| 91大片在线观看| 变态另类成人亚洲欧美熟女 | 他把我摸到了高潮在线观看 | 欧美乱码精品一区二区三区| 每晚都被弄得嗷嗷叫到高潮| 一区二区日韩欧美中文字幕| 精品国产一区二区三区久久久樱花| 久9热在线精品视频| 久久人人爽av亚洲精品天堂| 亚洲五月色婷婷综合| 国产主播在线观看一区二区| 国产亚洲精品久久久久5区| 日韩一卡2卡3卡4卡2021年| 中文字幕高清在线视频| 欧美日韩亚洲高清精品| 十八禁网站免费在线| 国产精品成人在线| 国产日韩一区二区三区精品不卡| 国产精品99久久99久久久不卡| 午夜福利视频在线观看免费| 黄色视频,在线免费观看| 日本vs欧美在线观看视频| 亚洲国产欧美网| 99久久人妻综合| 女性生殖器流出的白浆| 国产欧美日韩综合在线一区二区| 精品一区二区三区av网在线观看 | 欧美黑人欧美精品刺激| 黄片大片在线免费观看| 国产一区二区 视频在线| 又紧又爽又黄一区二区| avwww免费| 母亲3免费完整高清在线观看| 高清av免费在线| 手机成人av网站| 日韩视频在线欧美| 国产精品av久久久久免费| 极品人妻少妇av视频| 久久精品国产亚洲av香蕉五月 | 精品福利永久在线观看| 亚洲第一欧美日韩一区二区三区 | 水蜜桃什么品种好| 日韩欧美一区视频在线观看| 天天操日日干夜夜撸| www.精华液| 一级黄色大片毛片| 国产精品免费一区二区三区在线 | 久久久久精品人妻al黑| 男人操女人黄网站| 看免费av毛片| 中文字幕制服av| videosex国产| 热99re8久久精品国产| 亚洲欧美一区二区三区久久| 女人高潮潮喷娇喘18禁视频| 99精国产麻豆久久婷婷| 成人国语在线视频| 无限看片的www在线观看| 国产精品久久久av美女十八| 黄频高清免费视频| 欧美一级毛片孕妇| 美女国产高潮福利片在线看| 久久狼人影院| 色精品久久人妻99蜜桃| 久久久精品94久久精品| 亚洲欧美激情在线| 免费在线观看完整版高清| 亚洲色图 男人天堂 中文字幕| av国产精品久久久久影院| 精品一区二区三区视频在线观看免费 | 免费女性裸体啪啪无遮挡网站| 91麻豆av在线| 亚洲精品一卡2卡三卡4卡5卡| 18禁国产床啪视频网站| 国产欧美日韩一区二区精品| 美女福利国产在线| 久久久国产欧美日韩av| 天天操日日干夜夜撸| 成人影院久久| 欧美 日韩 精品 国产| 亚洲av电影在线进入| 18禁裸乳无遮挡动漫免费视频| 老司机深夜福利视频在线观看| 99re在线观看精品视频| 中国美女看黄片| 50天的宝宝边吃奶边哭怎么回事| 成人av一区二区三区在线看| 国产精品一区二区在线观看99| 成人国语在线视频| 老司机在亚洲福利影院| kizo精华| 精品熟女少妇八av免费久了| 久久国产亚洲av麻豆专区| 自线自在国产av| 一个人免费在线观看的高清视频| 极品人妻少妇av视频| 亚洲专区字幕在线| 在线观看免费视频网站a站| 国产成人影院久久av| 久久99热这里只频精品6学生| 丝瓜视频免费看黄片| 男女之事视频高清在线观看| 亚洲欧洲日产国产| 久久久精品区二区三区| 五月开心婷婷网| 老司机午夜十八禁免费视频| 99国产精品一区二区三区| 亚洲视频免费观看视频| 别揉我奶头~嗯~啊~动态视频| netflix在线观看网站| 久久国产精品男人的天堂亚洲| 亚洲av欧美aⅴ国产| 国产人伦9x9x在线观看| 久久久久久免费高清国产稀缺| 亚洲精品美女久久av网站| 亚洲伊人久久精品综合| 下体分泌物呈黄色| 高清视频免费观看一区二区| 国产精品秋霞免费鲁丝片| 在线 av 中文字幕| 18禁国产床啪视频网站| 欧美日韩福利视频一区二区| 女人爽到高潮嗷嗷叫在线视频| 精品一品国产午夜福利视频| 欧美乱妇无乱码| 丝袜美足系列| 国产淫语在线视频| 制服诱惑二区| 香蕉久久夜色| 国产免费av片在线观看野外av| 亚洲熟女精品中文字幕| 女人爽到高潮嗷嗷叫在线视频| 另类亚洲欧美激情| 别揉我奶头~嗯~啊~动态视频| 午夜日韩欧美国产| 午夜福利乱码中文字幕| 久久亚洲真实| 精品国内亚洲2022精品成人 | 麻豆成人av在线观看| 五月开心婷婷网| 老司机福利观看| 不卡一级毛片| 国产亚洲精品久久久久5区| 成人18禁高潮啪啪吃奶动态图| av线在线观看网站| 国产精品 国内视频| av国产精品久久久久影院| 亚洲国产毛片av蜜桃av| 黄片大片在线免费观看| 亚洲国产欧美网| 三上悠亚av全集在线观看| 日韩熟女老妇一区二区性免费视频| 久久久精品国产亚洲av高清涩受| 青青草视频在线视频观看| 日韩欧美国产一区二区入口| 交换朋友夫妻互换小说| av国产精品久久久久影院| 久久国产精品男人的天堂亚洲| 欧美亚洲 丝袜 人妻 在线| 午夜福利视频精品| 久久精品熟女亚洲av麻豆精品| 最近最新免费中文字幕在线| 丁香六月欧美| 亚洲精品久久成人aⅴ小说| 国产黄频视频在线观看| 国产在视频线精品| 在线观看免费视频网站a站| 欧美日韩福利视频一区二区| 亚洲午夜精品一区,二区,三区| 男女午夜视频在线观看| 一进一出抽搐动态| 视频区欧美日本亚洲| 三上悠亚av全集在线观看| 久久国产精品影院| 他把我摸到了高潮在线观看 | 十八禁网站免费在线| 女人久久www免费人成看片| 在线看a的网站| 亚洲av国产av综合av卡| 久久午夜综合久久蜜桃| 人人妻人人添人人爽欧美一区卜| 欧美乱码精品一区二区三区| 久久人妻av系列| 久久久久网色| 久久天堂一区二区三区四区| 又大又爽又粗| 国产激情久久老熟女| 女人爽到高潮嗷嗷叫在线视频| 天天躁狠狠躁夜夜躁狠狠躁| 99re6热这里在线精品视频| 色婷婷久久久亚洲欧美| 老汉色∧v一级毛片| 午夜福利欧美成人| 一夜夜www| 这个男人来自地球电影免费观看| 亚洲人成77777在线视频| 国产麻豆69| 亚洲av成人一区二区三| 十八禁高潮呻吟视频| 露出奶头的视频| 桃红色精品国产亚洲av| 操出白浆在线播放| 欧美日本中文国产一区发布| 这个男人来自地球电影免费观看| 久久青草综合色| 老熟女久久久| a级毛片在线看网站| 窝窝影院91人妻| 欧美av亚洲av综合av国产av| 一级,二级,三级黄色视频| 久久青草综合色| 80岁老熟妇乱子伦牲交| 国产一区二区在线观看av| 水蜜桃什么品种好| 国产免费av片在线观看野外av| 热99re8久久精品国产| 欧美精品亚洲一区二区| 国产亚洲欧美在线一区二区| 一级片'在线观看视频| 女人被躁到高潮嗷嗷叫费观| 69av精品久久久久久 | tube8黄色片| 一区在线观看完整版| 下体分泌物呈黄色| 一级,二级,三级黄色视频| 天堂俺去俺来也www色官网| 十八禁人妻一区二区| 国产精品98久久久久久宅男小说| 欧美日韩成人在线一区二区| 亚洲熟女毛片儿| 在线观看免费日韩欧美大片| 蜜桃国产av成人99| 久久午夜亚洲精品久久| 亚洲全国av大片| 亚洲伊人久久精品综合| 十八禁高潮呻吟视频| 自拍欧美九色日韩亚洲蝌蚪91| 午夜福利一区二区在线看| 制服人妻中文乱码| 女性生殖器流出的白浆| netflix在线观看网站| 国产亚洲精品久久久久5区| 美女国产高潮福利片在线看| a在线观看视频网站| 欧美亚洲日本最大视频资源| 国产国语露脸激情在线看| 中文字幕制服av| 色婷婷av一区二区三区视频| 国产高清激情床上av| 美女主播在线视频| 成人18禁在线播放| 欧美日韩视频精品一区| 欧美乱码精品一区二区三区| www.999成人在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 伊人久久大香线蕉亚洲五| 亚洲七黄色美女视频| 欧美久久黑人一区二区| 亚洲国产欧美日韩在线播放| 欧美激情高清一区二区三区| 色尼玛亚洲综合影院| 亚洲全国av大片| 国产日韩欧美视频二区| 叶爱在线成人免费视频播放| 精品国产乱子伦一区二区三区| 搡老岳熟女国产| 一进一出抽搐动态| 欧美亚洲日本最大视频资源| 久久久久国内视频| 亚洲va日本ⅴa欧美va伊人久久| 女性生殖器流出的白浆| 高潮久久久久久久久久久不卡| 男女无遮挡免费网站观看| 国产成人免费观看mmmm| 欧美日韩亚洲高清精品| 中国美女看黄片| 丁香六月欧美| 亚洲av美国av| 国产激情久久老熟女| 成年动漫av网址| 777米奇影视久久| 日日摸夜夜添夜夜添小说| 色在线成人网| 天天添夜夜摸| 天堂8中文在线网| 久久精品熟女亚洲av麻豆精品| 日本wwww免费看| 国产精品免费视频内射| 久久精品人人爽人人爽视色| 91大片在线观看| 日本欧美视频一区| 成人黄色视频免费在线看| av免费在线观看网站| 色精品久久人妻99蜜桃| 999久久久精品免费观看国产| 女警被强在线播放| 国产精品麻豆人妻色哟哟久久| 国产精品一区二区在线不卡| 亚洲性夜色夜夜综合| 亚洲色图av天堂| 欧美成狂野欧美在线观看| 国产精品98久久久久久宅男小说| 视频区图区小说| 亚洲伊人色综图| 免费av中文字幕在线| 亚洲成av片中文字幕在线观看| 精品久久久精品久久久| 免费人妻精品一区二区三区视频| 成人特级黄色片久久久久久久 | 欧美日韩国产mv在线观看视频| 99国产精品一区二区蜜桃av | 久久av网站| 在线观看免费高清a一片| 国产一卡二卡三卡精品| 操美女的视频在线观看| 久久久久久免费高清国产稀缺| 国产淫语在线视频| 亚洲av日韩在线播放| 中文字幕高清在线视频| 色94色欧美一区二区| 久久国产精品人妻蜜桃| 国产精品久久久人人做人人爽| 国产麻豆69| 亚洲专区中文字幕在线| 在线观看免费日韩欧美大片| 久久这里只有精品19| 成人国语在线视频| 高清欧美精品videossex| 国产精品二区激情视频| 三级毛片av免费| 日韩欧美国产一区二区入口| 777米奇影视久久| 久久久精品免费免费高清| www.熟女人妻精品国产| 欧美老熟妇乱子伦牲交| 欧美久久黑人一区二区| 亚洲,欧美精品.| 日日夜夜操网爽| 国产男女超爽视频在线观看| 国产精品久久久久成人av| 久久中文字幕一级| 黑人操中国人逼视频| 欧美日本中文国产一区发布| 亚洲精品久久午夜乱码| 日韩熟女老妇一区二区性免费视频| 国产精品久久久久成人av| 久久中文字幕人妻熟女| 成人精品一区二区免费| 在线天堂中文资源库| 一级毛片精品| 欧美激情高清一区二区三区| 中文字幕精品免费在线观看视频| 人成视频在线观看免费观看| 美女视频免费永久观看网站| 久久久久久亚洲精品国产蜜桃av| 国产不卡一卡二| 两个人看的免费小视频| 久久av网站| 黄色a级毛片大全视频| 久久狼人影院| 久久久久视频综合| 亚洲国产毛片av蜜桃av| 大片电影免费在线观看免费| 午夜福利乱码中文字幕| 一级片'在线观看视频| 1024香蕉在线观看| 9色porny在线观看| 啦啦啦 在线观看视频| 夜夜骑夜夜射夜夜干| 国产男女超爽视频在线观看| 五月天丁香电影| 国产精品偷伦视频观看了| 亚洲 国产 在线| 首页视频小说图片口味搜索| 国产又爽黄色视频| 国产精品一区二区在线不卡| 女人久久www免费人成看片| 国产成+人综合+亚洲专区| 在线看a的网站| 日韩中文字幕欧美一区二区| 久9热在线精品视频| 亚洲国产成人一精品久久久| 性少妇av在线| 久久久国产欧美日韩av| 国产成人欧美在线观看 | 侵犯人妻中文字幕一二三四区| 亚洲熟女精品中文字幕| 国产深夜福利视频在线观看| 国产97色在线日韩免费| avwww免费| 久久人妻av系列| 午夜福利在线免费观看网站| 两性午夜刺激爽爽歪歪视频在线观看 | 极品少妇高潮喷水抽搐| 婷婷丁香在线五月| 国产伦理片在线播放av一区| 在线十欧美十亚洲十日本专区| 日韩有码中文字幕| 亚洲视频免费观看视频| 757午夜福利合集在线观看|