• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Development of a sensitive and reliable droplet digital PCR assay for the detection of ‘Candidatus Liberibacter asiaticus’

    2018-02-05 07:11:00ZHONGXiLIUXueluLOUBinghaiZHOUChangyongWANGXuefeng
    Journal of Integrative Agriculture 2018年2期

    ZHONG Xi, LIU Xue-lu, LOU Bing-hai, ZHOU Chang-yong, WANG Xue-feng

    1 National Citrus Engineering Research Center, Citrus Research Institute, Chinese Academy of Agricultural Sciences/Southwest University, Chongqing 400712, P.R.China

    2 Guangxi Key Laboratory of Citrus Biology, Guangxi Academy of Specialty Crops, Guilin 541004, P.R.China

    1. Introduction

    ‘CandidatusLiberibacter asiaticus’ (Las), a phloem-resided α-protebacterium, is the putative causal agent of citrus Huanglongbing (HLB, yellow shoot disease) that is one of the most serious diseases in citrus production (Bové 2006). The bacterium is transmitted from infected to healthy plants through grafting or by citrus psyllid (Diaphorina citri).No effective cure is currently available for HLB-infected citrus plants. Therefore, the use of pathogen-free nursery stocks, control of insect vector and removal of infected trees are major control measures in HLB management.This is of particular importance if HLB infection status of asymptomatic trees in field could be accurately diagnosed for the implementation of control strategies.

    Because Las is unable to be cultured so far, current detection is typically PCR-based using primers developed from genomic DNA sequences, mostly the 16S rRNA gene.Primer set OI1/OI2c for conventional PCR and primer-probe set HLBas/HLBp/HLBr for TaqMan real-time quantitative PCR(qPCR) are widely used for the standardized detection of Las(Jagoueixet al. 1994; Liet al. 2006). Recently, multi-copy genes have been chosen as targets for the improvement of qPCR sensitivity (Morganet al. 2012; Zhenget al. 2016).However, absolute quantification of unculturable Las by qPCR is challenging due to erratic distribution and low titer,especially for early detection of Las infection.

    Droplet digital PCR (ddPCR) is a new technology that allows sensitive detection and absolute quantification of low concentration DNA without the need for a standard curve.Each sample tested was partitioned in tens of thousands of individual droplets in a water-oil emulsion and then the number of positive droplets was read by cumulativefluorescence signal during PCR amplification. The total number of target DNA molecules in a sample can be calculated from the fraction of positive droplets and Poisson statistics (Hindsonet al. 2011). Since ddPCR has been shown to yield more precise detection results than qPCR,the robust and powerful method has been increasingly used in medical researches (Tayloret al. 2015), clinical applications (Tsuiet al. 2011; Watanabeet al. 2015), food safety inspection (Pinheiroet al. 2011; Florenet al. 2015)and gene-editing frequencies study (Mocket al. 2016).Recently, it also has been used to detectXanthomonas citrisubsp.citri, an economically important disease of citrus(Zhaoet al. 2016).

    In this study, we established ddPCR approach to detect and quantify Las in both symptomatic and asymptomatic samples. The detection sensitivity of ddPCR was compared to qPCR targeting the gene encoding 16S rRNA.

    2. Materials and methods

    2.1. Sample collection and DNA extraction

    HLB symptomatic and asymptomatic field citrus samples were collected from Guangxi and Hunan of China. All collected samples in China were shipped by mail to Citrus Research Institute (CRI) of Southwest University in Chongqing, China. Four HLB-positive citrus samples and four negative citrus samples were collected from the greenhouse in CRI. The midribs of citrus leaves were excised and DNA was extracted using the cetyltrimethylammonium bromide (CTAB) methods as previously described (Wanget al. 2012).

    2.2. Preparation of cloned plasmid standard

    A DNA segment encoding 16S rRNA gene of Las was amplified with Las genomic DNA as the template. The PCR amplicon was purified and ligated into the pEASY-T1 cloning vector (TransGen Biotech, China). Plasmid DNA was extracted from transformed competent cells and used to generate a standard curve for tenfold serial dilutions consisting of nine concentration gradients, which were used to test the sensitivities and linearity range of qPCR and ddPCR assays.

    2.3. Quantitative PCR

    The primers and probe targeted the 16S rRNA gene of Las were used in the subsequent qPCR and ddPCR assays (Liet al. 2006). The qPCR assay was performed on an iCyler IQTMSystem (Bio-Rad, Hercules, CA, USA). The cycling conditions included incubation for 30 s at 95°C followed by 40 cycles of 95°C for 5 s and 58°C for 30 s. Ctvalues were analyzed using BioRad iCycler iQ version 3.0 Software with auto-calculated baseline settings and a manually set threshold at 0.1. Standard curve was constructed through serial dilutions of plasmids for quantification and checked for qPCR efficiencies.

    2.4. Droplet digital PCR

    The QX200TMDroplet Digital PCR System (Bio-Rad,Hercules, CA, USA) was used in the study. The total ddPCR reaction volume was 20 μL, containing 10 μL 2× ddPCRTMsupermix for probe (no dUTP) (Bio-Rad, Pleasanton, CA,USA), 1 μmol L–1of each primer, 500 nmol L–1of probe, and 2 μL template DNA. Approximately 20 000 droplets were generated using a Droplet Generator (DG) with an 8-channel DG8 cartridge and cartridge holder with 70 μL of DG oil per well and 20 μL of reaction mixture. Following this step, 40 μL droplets mixtures were transferred into a 96-well plate. The PCR plate was heat-sealed using a PX1TMPCR Plate Sealer(Bio-Rad) and placed in the C1000 Thermal Cycler (Bio-Rad)under the following thermal conditions (temperature ramp rate 2°C s–1): 95°C for 10 min, followed by 40 cycles of 94°C for 30 s and 54°C for 1 min. Droplets were counted on the QX200 droplet reader (Bio-Rad).

    2.5. Data analysis

    Linear regression analyses of standard curve from qPCR was performed and recalculated with Microsoft Excel Software (Microsoft, USA). Slope value of standard curve was used to determine PCR efficiencies. For ddPCR,positive droplets were discriminated from negative droplets by applying a fluorescence amplitude threshold with the QuantaSoftTMversion 1.7.4 (Bio-Rad). Correlation analysis between ddPCR and qPCR was performed with SPSS Software version 21.0 (SPSS Inc., Chicago, USA).Pearson’s correlations and linear regression were also used to evaluate the relationship between measurements of ddPCR and qPCR assays.

    3. Results and discussion

    Adequate discrimination between positive and negative signals is of great importance to set appropriate thresholds.Annealing temperature conditions play important roles in determining fluorescence intensity and the distance between positive and negative signals. To assess the optimal annealing temperature of the ddPCR assay, the eight temperature gradients ranged from 64 to 52°C were set on the thermal cycler. An optimized annealing temperature of 54°C was determined based on the largest discrimination in fluorescence intensity between positive and negative droplets.

    To compare the linearity, dynamic range and sensitivity of qPCR and ddPCR assays, calibration curves for the qPCR assay and the regression curves for the ddPCR assay were constructed using tenfold serial dilutions of positive plasmid(3.07×108–3.07×101copies μL–1). Both qPCR and ddPCR assays exhibited good linearity of amplification with high determination coefficient (R2=0.999 and 0.996, respectively)(Fig. 1-A and B). Furthermore, a very strong and significant positive correlation between the two methods (r=0.99;P<0.001) was observed (Fig. 1-C). The dynamic range tested in positive plasmid in qPCR was from 108to 102.Compared to qPCR, ddPCR had the narrower linearity range from 105to 101copies since the droplets were positively saturated at target concentrations ≥106copies μL–1, making the Poisson algorithm invalid (Fig. 2-A). However, ddPCR showed a lower detection limit, suggesting the ddPCR is more sensitive than qPCR (Fig. 2).

    The weak real-time PCR signals derived from lowconcentration samples, as represented by high Ctvalues,may be questionable for declaring a positive reaction.To better compare the detection sensitivity between the two assays, samples with Ct>35 tested by qPCR were regarded as Las-negative samples in this study. Total of 40 citrus samples extracted previously, with the Ctvalue ranging from 28 to 38 by qPCR, were chosen for testing the detection capacity of ddPCR for high Ctvalues samples and determining whether ddPCR can be used in the detection of field samples. Besides the relatively low Ctvalue (<35)samples, six of 13 samples (46.15%) with high Ctvalue(>35) were also positive by ddPCR (data not shown). It should be noted that asymptomatic citrus samples with low Las concentration could be detected by ddPCR, suggesting that ddPCR is a more robust method for the detection of samples with low concentration of Las, especially for samples in early infection and asymptomatic phase. The application of a microsimulation model of asymptomatic disease spread using psyllid introduction scenarious indicated that the surveillance and control should be used from the initial detection of invasion and throughout the asymptomatic period (Leeet al. 2015). The ddPCR-based technology will play an important role in the detection of Las from asymptomatic citrus samples. It is believed that if more primer pairs targeting multi-copy genes were used in ddPCR (Morganet al. 2012; Zhenget al. 2016), the detection sensitivity might be improved accordingly.

    Fig. 1 Linear regression of droplet digital PCR (ddPCR, A) and real-time quantitative PCR (qPCR) assays using serial tenfold dilutions of plasmid DNA (B), and correlation between log10 means of copies using ddPCR vs. qPCR (C). Data are means±SD (A and B).

    Fig. 2 Sensitivity comparison of ‘Candidatus Liberibacter asiaticus’ (Las) detection between droplet digital PCR (ddPCR, A) and real-time quantitative PCR (qPCR, B) assays. Eight ddPCR reactions with serially diluted targets are divided by the vertical dotted yellow line. The unbroken pink line is the threshold, above which are positive droplets (blue) containing the target DNA and below which are negative droplets (gray) without any target DNA. Each target concentration in ddPCR is corresponding to the Ct value(from 15.52 to NA (not applicable) in qPCR by the red arrow. RFU, relative fluorescence units.

    Recently, field-capable assays, loop mediated isothermal amplification (LAMP) and serologically based immune tissue print, have been developed for Las detection (Riganoet al. 2014; Dinget al. 2016, 2017). These methods offer the advantages of simplicity, low cost and high throughput in comparison with PCR-based assays currently used.However, uneven distribution and low titer of Las in citrus plants are still big challenges for these assays. The high sensitivity ddPCR assay could be an effective complement for the detection of early HLB infection or low titer samples.

    4. Conclusion

    This is the first report to demonstrate the ddPCR technology for the quantification of Las. The detection sensitivity of ddPCR was compared to qPCR targeting the 16S rRNA gene. Our result showed that ddPCR was superior to qPCR for detecting and quantifying Las at low concentrations.Reducing risk of false negatives is critically important if PCR diagnosis of Las infection is used in certification programs.This methodology showed great potential for early HLB infection diagnosis.

    Acknowledgements

    This study was funded by the National Natural Sciences Foundation of China (31671992, 31301635), the Chongqing Science and Technology Commission Project, China(cstc2016shms-ztzx80003) and the Guangxi Key Laboratory of Citrus Biology, Guangxi Academy of Specialty Crops,China (SYS2015K004).

    Bové J M. 2006. Huanglongbing: A destructive, newly-emerging,century-old disease of citrus.Journal of Plant Pathology,88, 7–37.

    Ding F, Duan Y P, Yuan Q, Shao J, Hartung J S. 2016.Serological detection of “CandidatusLiberibacter asiaticus”in citrus, and identification by GeLC-MS/MS of a chaperone protein responding to cellular pathogens.Scientific Reports,6, 29272.

    Ding F, Paul C, Brlansky R, Hartung J S. 2017. Immune tissue print and immune capture-PCR for diagnosis and detection ofCandidatusLiberibacter asiaticus.Scientific Reports, 7,46467.

    Floren C, Wiedemann I, Brenig B, Schütz E, Beck J. 2015.Species identification and quantification in meat and meat products using droplet digital PCR (ddPCR).Food Chemistry, 173, 1054–1058.

    Hindson B J, Ness K D, Masquelier D A, Belgrader P, Heredia N J, Makarewicz A J, Bright I J, Lucero M Y, Hiddessen A L, Legler T C. 2011. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number.Analytical Chemistry, 83, 8604–8610.

    Jagoueix S, Bove J M, Garnier M. 1994. The phloem-limited bacterium of greening disease of citrus is a member of the α subdivision of theProteobacteria.International Journal of Systematic and Evolutionary Microbiology, 44, 379–386.

    Lee J A, Halbert S E, Dawson W O, Robertson C J, Keesling J E,Singer B H. 2015. Asymptomatic spread of Huanglongbing and implications for disease control.Proceedings of the National Academy of Sciences of the United States ofAmerica, 112, 7605–7610.

    Li W, Hartung J S, Levy L. 2006. Quantitative real-time PCR for detection and identification ofCandidatusLiberibacter species associated with citrus huanglongbing.Journal of Microbiological Methods, 66, 104–115.

    Mock U, Hauber I, Fehse B. 2016. Digital PCR to assess geneediting frequencies (GEF-dPCR) mediated by designer nucleases.Nature Protocols, 11, 598–615.

    Morgan J K, Zhou L, Li W, Shatters R G, Keremane M, Duan Y P. 2012. Improved real-time PCR detection of ‘CandidatusLiberibacter asiaticus’ from citrus and psyllid hosts by targeting the intragenic tandem-repeats of its prophage genes.Molecular and Cellular Probes, 26, 90–98.

    Pinheiro L B, Coleman V A, Hindson C M, Herrmann J, Hindson B J, Bhat S, Emslie K R. 2011. Evaluation of a droplet digital polymerase chain reaction format for DNA copy number quantification.Analytical Chemistry, 84, 1003–1011.

    Rigano L A, Malamud F, Orce I G, Filippone M P, Marano M R,Morais do Amaral A, Castagnaro A P, Vojnov A A. 2014.Rapid and sensitive detection ofCandidatusLiberibacter asiaticus by loop mediated isothermal amplication combined with a lateral flow dipstick.BMC Microbiology, 14, 86.

    Taylor S C, Carbonneau J, Shelton D N, Boivin G. 2015.Optimization of droplet digital PCR from RNA and DNA extracts with direct comparison to RT-qPCR: Clinical implications for quantification of Oseltamivir-resistant subpopulations.Journal of Virological Methods, 224, 58–66.

    Tsui N B, Kadir R A, Chan K A, Chi C, Mellars G, Tuddenham E G, Leung T Y, Lau T K, Chiu R W, Lo Y D. 2011. Noninvasive prenatal diagnosis of hemophilia by microfluidics digital PCR analysis of maternal plasma DNA.Blood, 117, 3684–3691.

    Wang X, Zhou C, Deng X, Su H, Chen J. 2012. Molecular characterization of a mosaic locus in the genome of‘CandidatusLiberibacter asiaticus’.BMC Microbiology,12, 18.

    Watanabe M, Kawaguchi T, Isa S I, Ando M, Tamiya A, Kubo A, Saka H, Takeo S, Adachi H, Tagawa T. 2015. Ultrasensitive detection of the pretreatment EGFR T790M mutation in non-small cell lung cancer patients with an EGFR-activating mutation using droplet digital PCR.Clinical Cancer Research, 21, 3552–3560.

    Zhao Y, Xia Q, Yin Y, Wang Z. 2016. Comparison of droplet digital PCR and quantitative PCR assays for quantitative detection ofXanthomonascitriSubsp.citri.PLoS ONE,11, e0159004.

    Zheng Z, Xu M, Bao M, Wu F, Chen J, Deng X. 2016.Unusual five copies and dual forms of nrdB in “CandidatusLiberibacter asiaticus”: Biological implications and PCR detection application.Scientific Reports, 6, doi: 10.1038/srep39020

    12—13女人毛片做爰片一| 床上黄色一级片| 女生性感内裤真人,穿戴方法视频| 免费人成视频x8x8入口观看| 精品午夜福利视频在线观看一区| 日日摸夜夜添夜夜添小说| 麻豆成人av在线观看| www日本黄色视频网| 麻豆国产97在线/欧美| 日本 欧美在线| 热99re8久久精品国产| 中出人妻视频一区二区| 国产精品亚洲美女久久久| 国产精品综合久久久久久久免费| 日韩欧美三级三区| 偷拍熟女少妇极品色| 国产欧美日韩一区二区精品| 日本在线视频免费播放| 少妇高潮的动态图| 日韩精品有码人妻一区| 免费人成视频x8x8入口观看| 国产久久久一区二区三区| 国产伦一二天堂av在线观看| 婷婷精品国产亚洲av在线| 99热网站在线观看| 丰满乱子伦码专区| 真人一进一出gif抽搐免费| 久久久久久久久久久丰满 | 久久久成人免费电影| 一个人免费在线观看电影| 51国产日韩欧美| 国产在线精品亚洲第一网站| 亚洲电影在线观看av| 亚洲美女视频黄频| 亚洲精华国产精华精| 成人鲁丝片一二三区免费| 亚洲av中文字字幕乱码综合| 日韩欧美 国产精品| 亚洲一级一片aⅴ在线观看| 99久久无色码亚洲精品果冻| 亚洲第一电影网av| 日韩精品中文字幕看吧| avwww免费| 免费看美女性在线毛片视频| 久久久久国内视频| 一本精品99久久精品77| 精品一区二区三区视频在线观看免费| 国产精品人妻久久久影院| 69av精品久久久久久| 欧美丝袜亚洲另类 | 国产黄色小视频在线观看| 免费在线观看成人毛片| 精品久久久久久久人妻蜜臀av| 亚洲中文字幕一区二区三区有码在线看| 91麻豆精品激情在线观看国产| 亚洲aⅴ乱码一区二区在线播放| 最新在线观看一区二区三区| 亚洲国产精品合色在线| 久久精品国产亚洲av香蕉五月| 亚洲av熟女| 亚洲人成伊人成综合网2020| 亚洲无线观看免费| 婷婷色综合大香蕉| 日韩av在线大香蕉| 色尼玛亚洲综合影院| 欧美激情久久久久久爽电影| 精华霜和精华液先用哪个| 极品教师在线免费播放| 日本黄色片子视频| 国产毛片a区久久久久| 亚洲自拍偷在线| 99九九线精品视频在线观看视频| 蜜桃亚洲精品一区二区三区| 精品福利观看| 亚洲精品色激情综合| 高清毛片免费观看视频网站| 成人美女网站在线观看视频| 动漫黄色视频在线观看| 男女边吃奶边做爰视频| 日本黄色片子视频| 99久久九九国产精品国产免费| 色噜噜av男人的天堂激情| 最近中文字幕高清免费大全6 | 男女啪啪激烈高潮av片| 乱人视频在线观看| 国产视频内射| 日韩国内少妇激情av| 少妇人妻一区二区三区视频| 欧美成人a在线观看| 亚洲精品乱码久久久v下载方式| 成年版毛片免费区| 亚洲一级一片aⅴ在线观看| 久久国内精品自在自线图片| 日韩一区二区视频免费看| 91久久精品电影网| 欧美性感艳星| 欧洲精品卡2卡3卡4卡5卡区| 九九在线视频观看精品| 床上黄色一级片| 亚洲成人久久爱视频| 国产激情偷乱视频一区二区| 亚洲精品一区av在线观看| 黄色视频,在线免费观看| 国产视频内射| 亚洲经典国产精华液单| 国产精品,欧美在线| 在现免费观看毛片| 成人永久免费在线观看视频| 日韩欧美一区二区三区在线观看| 麻豆成人午夜福利视频| 老司机深夜福利视频在线观看| 黄片wwwwww| 国产精品久久久久久av不卡| 精品国内亚洲2022精品成人| 国产 一区精品| 亚洲aⅴ乱码一区二区在线播放| 99久久成人亚洲精品观看| 欧美三级亚洲精品| 久久久精品欧美日韩精品| 免费看av在线观看网站| 国产精品1区2区在线观看.| 美女高潮喷水抽搐中文字幕| xxxwww97欧美| 搡老熟女国产l中国老女人| 亚洲专区中文字幕在线| 久久久久久久久大av| 一个人观看的视频www高清免费观看| 蜜桃亚洲精品一区二区三区| 欧美最黄视频在线播放免费| 夜夜看夜夜爽夜夜摸| av在线观看视频网站免费| 淫秽高清视频在线观看| 久久久久国内视频| 欧美国产日韩亚洲一区| 午夜免费男女啪啪视频观看 | 九九在线视频观看精品| 日本黄色片子视频| 最新在线观看一区二区三区| av在线老鸭窝| 变态另类成人亚洲欧美熟女| 免费av不卡在线播放| 身体一侧抽搐| 亚洲欧美日韩无卡精品| 十八禁网站免费在线| 精品欧美国产一区二区三| 蜜桃久久精品国产亚洲av| 伦精品一区二区三区| 一区二区三区激情视频| 又粗又爽又猛毛片免费看| 国产精品人妻久久久影院| 免费搜索国产男女视频| av女优亚洲男人天堂| 午夜久久久久精精品| 亚洲国产日韩欧美精品在线观看| 中文亚洲av片在线观看爽| 精品人妻1区二区| 久久精品夜夜夜夜夜久久蜜豆| 亚洲综合色惰| 99在线人妻在线中文字幕| 91麻豆精品激情在线观看国产| 日本免费一区二区三区高清不卡| 国产极品精品免费视频能看的| 一进一出抽搐gif免费好疼| 99国产极品粉嫩在线观看| 国产高潮美女av| 一级a爱片免费观看的视频| 最好的美女福利视频网| 国产乱人伦免费视频| 亚洲专区中文字幕在线| 日本 av在线| 国产精品免费一区二区三区在线| 国产一区二区三区在线臀色熟女| 色综合站精品国产| 精品久久久久久久末码| 国产精品嫩草影院av在线观看 | 久久久色成人| 亚洲国产精品久久男人天堂| 欧美日韩综合久久久久久 | a级毛片免费高清观看在线播放| 亚洲黑人精品在线| 欧美丝袜亚洲另类 | 国内精品久久久久精免费| 亚洲人成网站在线播放欧美日韩| 男女做爰动态图高潮gif福利片| 99久久无色码亚洲精品果冻| 桃色一区二区三区在线观看| 国产av一区在线观看免费| 搞女人的毛片| 国内精品一区二区在线观看| 动漫黄色视频在线观看| 国产高清视频在线观看网站| 舔av片在线| 免费观看的影片在线观看| 午夜激情欧美在线| 午夜精品久久久久久毛片777| 欧美极品一区二区三区四区| 国产精品永久免费网站| 日本在线视频免费播放| 别揉我奶头 嗯啊视频| 国产伦在线观看视频一区| 看黄色毛片网站| 不卡视频在线观看欧美| 久久久久国产精品人妻aⅴ院| 全区人妻精品视频| 亚洲电影在线观看av| 亚洲国产高清在线一区二区三| 精品国产三级普通话版| 欧美精品国产亚洲| 久久久久久久午夜电影| 亚洲最大成人手机在线| 国产成人影院久久av| 久久精品国产亚洲网站| 欧美潮喷喷水| 18+在线观看网站| 赤兔流量卡办理| 永久网站在线| 黄色女人牲交| 少妇的逼好多水| 欧美一区二区亚洲| 国内精品宾馆在线| 精品午夜福利视频在线观看一区| 久久人妻av系列| 午夜久久久久精精品| 国语自产精品视频在线第100页| 亚洲经典国产精华液单| av在线蜜桃| 亚洲最大成人av| 亚洲精品久久国产高清桃花| 黄色视频,在线免费观看| 精品人妻熟女av久视频| 91精品国产九色| 免费观看精品视频网站| 亚洲第一区二区三区不卡| 国产一区二区三区av在线 | 免费观看精品视频网站| 三级国产精品欧美在线观看| 91麻豆精品激情在线观看国产| 亚洲va在线va天堂va国产| 国产人妻一区二区三区在| 精品日产1卡2卡| 欧美绝顶高潮抽搐喷水| 91午夜精品亚洲一区二区三区 | 一边摸一边抽搐一进一小说| 亚洲成人久久爱视频| 亚洲四区av| 99精品在免费线老司机午夜| 在线观看舔阴道视频| 国产精品综合久久久久久久免费| 深爱激情五月婷婷| 亚洲美女搞黄在线观看 | 最近在线观看免费完整版| 欧美色视频一区免费| 国产日本99.免费观看| 欧美日韩亚洲国产一区二区在线观看| 亚洲在线自拍视频| 国产一区二区三区视频了| 他把我摸到了高潮在线观看| 午夜福利在线观看吧| 久久精品国产亚洲网站| 国产欧美日韩精品一区二区| 成年女人看的毛片在线观看| 午夜福利18| 床上黄色一级片| 午夜激情福利司机影院| 亚洲不卡免费看| 亚洲经典国产精华液单| 亚洲精品在线观看二区| 久久热精品热| 亚洲av第一区精品v没综合| 99精品久久久久人妻精品| 成人欧美大片| 日本成人三级电影网站| 成人三级黄色视频| 亚洲av一区综合| 亚洲国产精品成人综合色| 日本黄色片子视频| 久久精品夜夜夜夜夜久久蜜豆| 亚洲最大成人手机在线| 国产精品乱码一区二三区的特点| 日本色播在线视频| 亚洲av熟女| 级片在线观看| 国产精品1区2区在线观看.| 亚洲精品一卡2卡三卡4卡5卡| 午夜a级毛片| 久久精品国产清高在天天线| 亚洲av第一区精品v没综合| 天堂影院成人在线观看| 黄色一级大片看看| 亚洲精品亚洲一区二区| 听说在线观看完整版免费高清| 毛片女人毛片| 乱码一卡2卡4卡精品| 婷婷亚洲欧美| 99热网站在线观看| 日本a在线网址| bbb黄色大片| 少妇的逼水好多| 婷婷精品国产亚洲av| 久久欧美精品欧美久久欧美| 欧美日韩乱码在线| 毛片女人毛片| 欧美中文日本在线观看视频| 国内精品久久久久久久电影| 日本三级黄在线观看| 99久久精品一区二区三区| 深夜a级毛片| 天堂√8在线中文| 中文字幕熟女人妻在线| 成人av在线播放网站| 国产综合懂色| 中文资源天堂在线| 久久国产乱子免费精品| 国内毛片毛片毛片毛片毛片| 久99久视频精品免费| 91狼人影院| 自拍偷自拍亚洲精品老妇| 一区二区三区四区激情视频 | 亚洲精品456在线播放app | 国产精品av视频在线免费观看| 国产精品嫩草影院av在线观看 | 蜜桃久久精品国产亚洲av| 午夜影院日韩av| 毛片一级片免费看久久久久 | 一级a爱片免费观看的视频| 在线免费观看不下载黄p国产 | 久久午夜福利片| 国产色爽女视频免费观看| 男女做爰动态图高潮gif福利片| 别揉我奶头~嗯~啊~动态视频| 日本-黄色视频高清免费观看| 色噜噜av男人的天堂激情| 久久99热6这里只有精品| 中文亚洲av片在线观看爽| 免费搜索国产男女视频| 欧美+日韩+精品| 亚洲精品在线观看二区| 日韩高清综合在线| .国产精品久久| 琪琪午夜伦伦电影理论片6080| 国产69精品久久久久777片| 国产老妇女一区| 啪啪无遮挡十八禁网站| 免费av观看视频| 88av欧美| 亚洲不卡免费看| 日韩一本色道免费dvd| 国产欧美日韩一区二区精品| 免费观看精品视频网站| 成年女人永久免费观看视频| 日韩一区二区视频免费看| 久久精品久久久久久噜噜老黄 | 亚洲国产日韩欧美精品在线观看| 丰满乱子伦码专区| 久久久久久久久久久丰满 | 18禁在线播放成人免费| 国内精品久久久久精免费| 18禁黄网站禁片免费观看直播| 男人的好看免费观看在线视频| 日韩在线高清观看一区二区三区 | 最新在线观看一区二区三区| 亚洲第一区二区三区不卡| 春色校园在线视频观看| netflix在线观看网站| 九九热线精品视视频播放| 俺也久久电影网| 成人永久免费在线观看视频| 丰满人妻一区二区三区视频av| 欧美色欧美亚洲另类二区| 欧美+日韩+精品| 超碰av人人做人人爽久久| 直男gayav资源| 成人国产麻豆网| 九九爱精品视频在线观看| 国产高潮美女av| 久99久视频精品免费| 一区二区三区高清视频在线| 99国产精品一区二区蜜桃av| 中文字幕高清在线视频| 久久久久久久久久黄片| 美女被艹到高潮喷水动态| 国产av不卡久久| 亚洲图色成人| 美女高潮喷水抽搐中文字幕| 日本欧美国产在线视频| 成年女人看的毛片在线观看| 亚洲最大成人av| 久久精品国产99精品国产亚洲性色| 在线天堂最新版资源| 免费不卡的大黄色大毛片视频在线观看 | 国产精品一及| 国产视频内射| 亚洲成人中文字幕在线播放| 国产精品久久久久久av不卡| 免费一级毛片在线播放高清视频| 国产亚洲精品久久久久久毛片| 欧美性感艳星| 精品一区二区三区av网在线观看| 国产av在哪里看| 真人一进一出gif抽搐免费| 国产精品久久久久久久电影| 国产精品久久久久久精品电影| 桃色一区二区三区在线观看| 波多野结衣高清无吗| 99在线视频只有这里精品首页| 国产熟女欧美一区二区| 国产一区二区在线av高清观看| 蜜桃亚洲精品一区二区三区| 久久久久久久久中文| 香蕉av资源在线| 最近中文字幕高清免费大全6 | 校园春色视频在线观看| 亚洲 国产 在线| 偷拍熟女少妇极品色| 精品久久久久久久久久免费视频| 亚洲 国产 在线| 久久久久九九精品影院| 人妻丰满熟妇av一区二区三区| 美女大奶头视频| 一个人观看的视频www高清免费观看| 赤兔流量卡办理| 亚洲精品日韩av片在线观看| 99精品久久久久人妻精品| av天堂中文字幕网| 国产成人福利小说| 精品人妻一区二区三区麻豆 | 又爽又黄a免费视频| 99久久中文字幕三级久久日本| 成熟少妇高潮喷水视频| 人人妻,人人澡人人爽秒播| 成人二区视频| 久久精品人妻少妇| 国产淫片久久久久久久久| 老熟妇乱子伦视频在线观看| 国产亚洲av嫩草精品影院| 亚洲国产精品合色在线| 俺也久久电影网| 在线观看午夜福利视频| 亚洲,欧美,日韩| 久久精品国产亚洲av香蕉五月| 老女人水多毛片| 亚洲内射少妇av| 国产综合懂色| 欧美日韩中文字幕国产精品一区二区三区| 久久精品国产鲁丝片午夜精品 | 日本在线视频免费播放| 国产真实伦视频高清在线观看 | 少妇的逼水好多| 久久久精品欧美日韩精品| 黄色丝袜av网址大全| 日日撸夜夜添| 九九爱精品视频在线观看| 精品久久久久久,| 内地一区二区视频在线| 国产一区二区三区av在线 | 18禁在线播放成人免费| 精品99又大又爽又粗少妇毛片 | 中文字幕久久专区| 99久久中文字幕三级久久日本| 欧美潮喷喷水| 精品午夜福利在线看| 大又大粗又爽又黄少妇毛片口| 九九热线精品视视频播放| 日韩大尺度精品在线看网址| 国内毛片毛片毛片毛片毛片| 日韩欧美在线乱码| 噜噜噜噜噜久久久久久91| 搞女人的毛片| 超碰av人人做人人爽久久| 亚洲经典国产精华液单| 亚洲最大成人手机在线| 日韩中文字幕欧美一区二区| 国内精品久久久久久久电影| 女同久久另类99精品国产91| a在线观看视频网站| 麻豆久久精品国产亚洲av| 日本一二三区视频观看| 亚洲精品亚洲一区二区| 在线看三级毛片| 嫩草影视91久久| 欧美成人免费av一区二区三区| 亚洲美女黄片视频| 国产久久久一区二区三区| av天堂在线播放| 最新在线观看一区二区三区| 日日撸夜夜添| 欧美日韩亚洲国产一区二区在线观看| 国产精品一区二区三区四区久久| 午夜免费男女啪啪视频观看 | 波野结衣二区三区在线| 国产精品嫩草影院av在线观看 | 久久这里只有精品中国| 免费观看精品视频网站| 美女高潮喷水抽搐中文字幕| 国产午夜精品论理片| 欧美成人一区二区免费高清观看| 亚洲专区国产一区二区| 午夜爱爱视频在线播放| 国内精品美女久久久久久| 久久久国产成人免费| 少妇人妻一区二区三区视频| 免费在线观看成人毛片| www.色视频.com| 99久久精品一区二区三区| 国产黄a三级三级三级人| 国产精品亚洲美女久久久| 国产精品一区二区三区四区久久| 久久久精品大字幕| 一夜夜www| 国产伦一二天堂av在线观看| 日本一二三区视频观看| 精品人妻1区二区| 色视频www国产| 男女做爰动态图高潮gif福利片| 99热这里只有精品一区| 哪里可以看免费的av片| 韩国av一区二区三区四区| 国产一区二区三区在线臀色熟女| 在线观看66精品国产| 亚洲无线在线观看| 黄色日韩在线| 亚洲国产色片| 国产高潮美女av| 亚洲av不卡在线观看| 香蕉av资源在线| 男女那种视频在线观看| 制服丝袜大香蕉在线| 色综合婷婷激情| 久久午夜福利片| 波多野结衣高清无吗| 国内精品久久久久久久电影| 久久久久久伊人网av| 亚洲成av人片在线播放无| 九色成人免费人妻av| 天天一区二区日本电影三级| 99在线视频只有这里精品首页| 特级一级黄色大片| 国产亚洲精品久久久com| 国产精品无大码| 久99久视频精品免费| 久久亚洲精品不卡| 天堂av国产一区二区熟女人妻| 国产国拍精品亚洲av在线观看| 欧美日韩瑟瑟在线播放| 久99久视频精品免费| 日韩精品青青久久久久久| 亚洲第一电影网av| 极品教师在线免费播放| 中国美白少妇内射xxxbb| 一本久久中文字幕| 国产精品无大码| 亚洲欧美精品综合久久99| 波多野结衣高清作品| 色av中文字幕| 床上黄色一级片| 亚洲色图av天堂| 亚洲黑人精品在线| 97碰自拍视频| 老师上课跳d突然被开到最大视频| 97超视频在线观看视频| 特级一级黄色大片| 麻豆成人午夜福利视频| 亚洲精品亚洲一区二区| 国产综合懂色| 国产伦人伦偷精品视频| 国内精品一区二区在线观看| bbb黄色大片| 日韩欧美一区二区三区在线观看| 国产色爽女视频免费观看| 搡老妇女老女人老熟妇| 国产高清视频在线播放一区| 中文字幕精品亚洲无线码一区| 久久精品国产清高在天天线| 欧美人与善性xxx| 99国产精品一区二区蜜桃av| 日韩精品青青久久久久久| 乱码一卡2卡4卡精品| 五月玫瑰六月丁香| 白带黄色成豆腐渣| 亚洲欧美激情综合另类| 波多野结衣高清无吗| 国产色爽女视频免费观看| 亚洲七黄色美女视频| 国产精品国产高清国产av| 中文字幕精品亚洲无线码一区| 我的女老师完整版在线观看| 男女那种视频在线观看| 亚洲欧美日韩卡通动漫| 国产三级中文精品| 三级毛片av免费| 香蕉av资源在线| 日韩国内少妇激情av| av视频在线观看入口| 此物有八面人人有两片| 国内揄拍国产精品人妻在线| 麻豆一二三区av精品| 午夜免费激情av| 3wmmmm亚洲av在线观看| 真实男女啪啪啪动态图| 亚洲aⅴ乱码一区二区在线播放| 国产精品久久久久久亚洲av鲁大| 级片在线观看| 男女边吃奶边做爰视频| 国产视频一区二区在线看| 两人在一起打扑克的视频| 3wmmmm亚洲av在线观看| 免费av观看视频| 亚洲精品国产成人久久av| 内射极品少妇av片p| 国产美女午夜福利| 波多野结衣高清无吗| av黄色大香蕉| 观看美女的网站| 小蜜桃在线观看免费完整版高清| 禁无遮挡网站|