• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Development of a sensitive and reliable droplet digital PCR assay for the detection of ‘Candidatus Liberibacter asiaticus’

    2018-02-05 07:11:00ZHONGXiLIUXueluLOUBinghaiZHOUChangyongWANGXuefeng
    Journal of Integrative Agriculture 2018年2期

    ZHONG Xi, LIU Xue-lu, LOU Bing-hai, ZHOU Chang-yong, WANG Xue-feng

    1 National Citrus Engineering Research Center, Citrus Research Institute, Chinese Academy of Agricultural Sciences/Southwest University, Chongqing 400712, P.R.China

    2 Guangxi Key Laboratory of Citrus Biology, Guangxi Academy of Specialty Crops, Guilin 541004, P.R.China

    1. Introduction

    ‘CandidatusLiberibacter asiaticus’ (Las), a phloem-resided α-protebacterium, is the putative causal agent of citrus Huanglongbing (HLB, yellow shoot disease) that is one of the most serious diseases in citrus production (Bové 2006). The bacterium is transmitted from infected to healthy plants through grafting or by citrus psyllid (Diaphorina citri).No effective cure is currently available for HLB-infected citrus plants. Therefore, the use of pathogen-free nursery stocks, control of insect vector and removal of infected trees are major control measures in HLB management.This is of particular importance if HLB infection status of asymptomatic trees in field could be accurately diagnosed for the implementation of control strategies.

    Because Las is unable to be cultured so far, current detection is typically PCR-based using primers developed from genomic DNA sequences, mostly the 16S rRNA gene.Primer set OI1/OI2c for conventional PCR and primer-probe set HLBas/HLBp/HLBr for TaqMan real-time quantitative PCR(qPCR) are widely used for the standardized detection of Las(Jagoueixet al. 1994; Liet al. 2006). Recently, multi-copy genes have been chosen as targets for the improvement of qPCR sensitivity (Morganet al. 2012; Zhenget al. 2016).However, absolute quantification of unculturable Las by qPCR is challenging due to erratic distribution and low titer,especially for early detection of Las infection.

    Droplet digital PCR (ddPCR) is a new technology that allows sensitive detection and absolute quantification of low concentration DNA without the need for a standard curve.Each sample tested was partitioned in tens of thousands of individual droplets in a water-oil emulsion and then the number of positive droplets was read by cumulativefluorescence signal during PCR amplification. The total number of target DNA molecules in a sample can be calculated from the fraction of positive droplets and Poisson statistics (Hindsonet al. 2011). Since ddPCR has been shown to yield more precise detection results than qPCR,the robust and powerful method has been increasingly used in medical researches (Tayloret al. 2015), clinical applications (Tsuiet al. 2011; Watanabeet al. 2015), food safety inspection (Pinheiroet al. 2011; Florenet al. 2015)and gene-editing frequencies study (Mocket al. 2016).Recently, it also has been used to detectXanthomonas citrisubsp.citri, an economically important disease of citrus(Zhaoet al. 2016).

    In this study, we established ddPCR approach to detect and quantify Las in both symptomatic and asymptomatic samples. The detection sensitivity of ddPCR was compared to qPCR targeting the gene encoding 16S rRNA.

    2. Materials and methods

    2.1. Sample collection and DNA extraction

    HLB symptomatic and asymptomatic field citrus samples were collected from Guangxi and Hunan of China. All collected samples in China were shipped by mail to Citrus Research Institute (CRI) of Southwest University in Chongqing, China. Four HLB-positive citrus samples and four negative citrus samples were collected from the greenhouse in CRI. The midribs of citrus leaves were excised and DNA was extracted using the cetyltrimethylammonium bromide (CTAB) methods as previously described (Wanget al. 2012).

    2.2. Preparation of cloned plasmid standard

    A DNA segment encoding 16S rRNA gene of Las was amplified with Las genomic DNA as the template. The PCR amplicon was purified and ligated into the pEASY-T1 cloning vector (TransGen Biotech, China). Plasmid DNA was extracted from transformed competent cells and used to generate a standard curve for tenfold serial dilutions consisting of nine concentration gradients, which were used to test the sensitivities and linearity range of qPCR and ddPCR assays.

    2.3. Quantitative PCR

    The primers and probe targeted the 16S rRNA gene of Las were used in the subsequent qPCR and ddPCR assays (Liet al. 2006). The qPCR assay was performed on an iCyler IQTMSystem (Bio-Rad, Hercules, CA, USA). The cycling conditions included incubation for 30 s at 95°C followed by 40 cycles of 95°C for 5 s and 58°C for 30 s. Ctvalues were analyzed using BioRad iCycler iQ version 3.0 Software with auto-calculated baseline settings and a manually set threshold at 0.1. Standard curve was constructed through serial dilutions of plasmids for quantification and checked for qPCR efficiencies.

    2.4. Droplet digital PCR

    The QX200TMDroplet Digital PCR System (Bio-Rad,Hercules, CA, USA) was used in the study. The total ddPCR reaction volume was 20 μL, containing 10 μL 2× ddPCRTMsupermix for probe (no dUTP) (Bio-Rad, Pleasanton, CA,USA), 1 μmol L–1of each primer, 500 nmol L–1of probe, and 2 μL template DNA. Approximately 20 000 droplets were generated using a Droplet Generator (DG) with an 8-channel DG8 cartridge and cartridge holder with 70 μL of DG oil per well and 20 μL of reaction mixture. Following this step, 40 μL droplets mixtures were transferred into a 96-well plate. The PCR plate was heat-sealed using a PX1TMPCR Plate Sealer(Bio-Rad) and placed in the C1000 Thermal Cycler (Bio-Rad)under the following thermal conditions (temperature ramp rate 2°C s–1): 95°C for 10 min, followed by 40 cycles of 94°C for 30 s and 54°C for 1 min. Droplets were counted on the QX200 droplet reader (Bio-Rad).

    2.5. Data analysis

    Linear regression analyses of standard curve from qPCR was performed and recalculated with Microsoft Excel Software (Microsoft, USA). Slope value of standard curve was used to determine PCR efficiencies. For ddPCR,positive droplets were discriminated from negative droplets by applying a fluorescence amplitude threshold with the QuantaSoftTMversion 1.7.4 (Bio-Rad). Correlation analysis between ddPCR and qPCR was performed with SPSS Software version 21.0 (SPSS Inc., Chicago, USA).Pearson’s correlations and linear regression were also used to evaluate the relationship between measurements of ddPCR and qPCR assays.

    3. Results and discussion

    Adequate discrimination between positive and negative signals is of great importance to set appropriate thresholds.Annealing temperature conditions play important roles in determining fluorescence intensity and the distance between positive and negative signals. To assess the optimal annealing temperature of the ddPCR assay, the eight temperature gradients ranged from 64 to 52°C were set on the thermal cycler. An optimized annealing temperature of 54°C was determined based on the largest discrimination in fluorescence intensity between positive and negative droplets.

    To compare the linearity, dynamic range and sensitivity of qPCR and ddPCR assays, calibration curves for the qPCR assay and the regression curves for the ddPCR assay were constructed using tenfold serial dilutions of positive plasmid(3.07×108–3.07×101copies μL–1). Both qPCR and ddPCR assays exhibited good linearity of amplification with high determination coefficient (R2=0.999 and 0.996, respectively)(Fig. 1-A and B). Furthermore, a very strong and significant positive correlation between the two methods (r=0.99;P<0.001) was observed (Fig. 1-C). The dynamic range tested in positive plasmid in qPCR was from 108to 102.Compared to qPCR, ddPCR had the narrower linearity range from 105to 101copies since the droplets were positively saturated at target concentrations ≥106copies μL–1, making the Poisson algorithm invalid (Fig. 2-A). However, ddPCR showed a lower detection limit, suggesting the ddPCR is more sensitive than qPCR (Fig. 2).

    The weak real-time PCR signals derived from lowconcentration samples, as represented by high Ctvalues,may be questionable for declaring a positive reaction.To better compare the detection sensitivity between the two assays, samples with Ct>35 tested by qPCR were regarded as Las-negative samples in this study. Total of 40 citrus samples extracted previously, with the Ctvalue ranging from 28 to 38 by qPCR, were chosen for testing the detection capacity of ddPCR for high Ctvalues samples and determining whether ddPCR can be used in the detection of field samples. Besides the relatively low Ctvalue (<35)samples, six of 13 samples (46.15%) with high Ctvalue(>35) were also positive by ddPCR (data not shown). It should be noted that asymptomatic citrus samples with low Las concentration could be detected by ddPCR, suggesting that ddPCR is a more robust method for the detection of samples with low concentration of Las, especially for samples in early infection and asymptomatic phase. The application of a microsimulation model of asymptomatic disease spread using psyllid introduction scenarious indicated that the surveillance and control should be used from the initial detection of invasion and throughout the asymptomatic period (Leeet al. 2015). The ddPCR-based technology will play an important role in the detection of Las from asymptomatic citrus samples. It is believed that if more primer pairs targeting multi-copy genes were used in ddPCR (Morganet al. 2012; Zhenget al. 2016), the detection sensitivity might be improved accordingly.

    Fig. 1 Linear regression of droplet digital PCR (ddPCR, A) and real-time quantitative PCR (qPCR) assays using serial tenfold dilutions of plasmid DNA (B), and correlation between log10 means of copies using ddPCR vs. qPCR (C). Data are means±SD (A and B).

    Fig. 2 Sensitivity comparison of ‘Candidatus Liberibacter asiaticus’ (Las) detection between droplet digital PCR (ddPCR, A) and real-time quantitative PCR (qPCR, B) assays. Eight ddPCR reactions with serially diluted targets are divided by the vertical dotted yellow line. The unbroken pink line is the threshold, above which are positive droplets (blue) containing the target DNA and below which are negative droplets (gray) without any target DNA. Each target concentration in ddPCR is corresponding to the Ct value(from 15.52 to NA (not applicable) in qPCR by the red arrow. RFU, relative fluorescence units.

    Recently, field-capable assays, loop mediated isothermal amplification (LAMP) and serologically based immune tissue print, have been developed for Las detection (Riganoet al. 2014; Dinget al. 2016, 2017). These methods offer the advantages of simplicity, low cost and high throughput in comparison with PCR-based assays currently used.However, uneven distribution and low titer of Las in citrus plants are still big challenges for these assays. The high sensitivity ddPCR assay could be an effective complement for the detection of early HLB infection or low titer samples.

    4. Conclusion

    This is the first report to demonstrate the ddPCR technology for the quantification of Las. The detection sensitivity of ddPCR was compared to qPCR targeting the 16S rRNA gene. Our result showed that ddPCR was superior to qPCR for detecting and quantifying Las at low concentrations.Reducing risk of false negatives is critically important if PCR diagnosis of Las infection is used in certification programs.This methodology showed great potential for early HLB infection diagnosis.

    Acknowledgements

    This study was funded by the National Natural Sciences Foundation of China (31671992, 31301635), the Chongqing Science and Technology Commission Project, China(cstc2016shms-ztzx80003) and the Guangxi Key Laboratory of Citrus Biology, Guangxi Academy of Specialty Crops,China (SYS2015K004).

    Bové J M. 2006. Huanglongbing: A destructive, newly-emerging,century-old disease of citrus.Journal of Plant Pathology,88, 7–37.

    Ding F, Duan Y P, Yuan Q, Shao J, Hartung J S. 2016.Serological detection of “CandidatusLiberibacter asiaticus”in citrus, and identification by GeLC-MS/MS of a chaperone protein responding to cellular pathogens.Scientific Reports,6, 29272.

    Ding F, Paul C, Brlansky R, Hartung J S. 2017. Immune tissue print and immune capture-PCR for diagnosis and detection ofCandidatusLiberibacter asiaticus.Scientific Reports, 7,46467.

    Floren C, Wiedemann I, Brenig B, Schütz E, Beck J. 2015.Species identification and quantification in meat and meat products using droplet digital PCR (ddPCR).Food Chemistry, 173, 1054–1058.

    Hindson B J, Ness K D, Masquelier D A, Belgrader P, Heredia N J, Makarewicz A J, Bright I J, Lucero M Y, Hiddessen A L, Legler T C. 2011. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number.Analytical Chemistry, 83, 8604–8610.

    Jagoueix S, Bove J M, Garnier M. 1994. The phloem-limited bacterium of greening disease of citrus is a member of the α subdivision of theProteobacteria.International Journal of Systematic and Evolutionary Microbiology, 44, 379–386.

    Lee J A, Halbert S E, Dawson W O, Robertson C J, Keesling J E,Singer B H. 2015. Asymptomatic spread of Huanglongbing and implications for disease control.Proceedings of the National Academy of Sciences of the United States ofAmerica, 112, 7605–7610.

    Li W, Hartung J S, Levy L. 2006. Quantitative real-time PCR for detection and identification ofCandidatusLiberibacter species associated with citrus huanglongbing.Journal of Microbiological Methods, 66, 104–115.

    Mock U, Hauber I, Fehse B. 2016. Digital PCR to assess geneediting frequencies (GEF-dPCR) mediated by designer nucleases.Nature Protocols, 11, 598–615.

    Morgan J K, Zhou L, Li W, Shatters R G, Keremane M, Duan Y P. 2012. Improved real-time PCR detection of ‘CandidatusLiberibacter asiaticus’ from citrus and psyllid hosts by targeting the intragenic tandem-repeats of its prophage genes.Molecular and Cellular Probes, 26, 90–98.

    Pinheiro L B, Coleman V A, Hindson C M, Herrmann J, Hindson B J, Bhat S, Emslie K R. 2011. Evaluation of a droplet digital polymerase chain reaction format for DNA copy number quantification.Analytical Chemistry, 84, 1003–1011.

    Rigano L A, Malamud F, Orce I G, Filippone M P, Marano M R,Morais do Amaral A, Castagnaro A P, Vojnov A A. 2014.Rapid and sensitive detection ofCandidatusLiberibacter asiaticus by loop mediated isothermal amplication combined with a lateral flow dipstick.BMC Microbiology, 14, 86.

    Taylor S C, Carbonneau J, Shelton D N, Boivin G. 2015.Optimization of droplet digital PCR from RNA and DNA extracts with direct comparison to RT-qPCR: Clinical implications for quantification of Oseltamivir-resistant subpopulations.Journal of Virological Methods, 224, 58–66.

    Tsui N B, Kadir R A, Chan K A, Chi C, Mellars G, Tuddenham E G, Leung T Y, Lau T K, Chiu R W, Lo Y D. 2011. Noninvasive prenatal diagnosis of hemophilia by microfluidics digital PCR analysis of maternal plasma DNA.Blood, 117, 3684–3691.

    Wang X, Zhou C, Deng X, Su H, Chen J. 2012. Molecular characterization of a mosaic locus in the genome of‘CandidatusLiberibacter asiaticus’.BMC Microbiology,12, 18.

    Watanabe M, Kawaguchi T, Isa S I, Ando M, Tamiya A, Kubo A, Saka H, Takeo S, Adachi H, Tagawa T. 2015. Ultrasensitive detection of the pretreatment EGFR T790M mutation in non-small cell lung cancer patients with an EGFR-activating mutation using droplet digital PCR.Clinical Cancer Research, 21, 3552–3560.

    Zhao Y, Xia Q, Yin Y, Wang Z. 2016. Comparison of droplet digital PCR and quantitative PCR assays for quantitative detection ofXanthomonascitriSubsp.citri.PLoS ONE,11, e0159004.

    Zheng Z, Xu M, Bao M, Wu F, Chen J, Deng X. 2016.Unusual five copies and dual forms of nrdB in “CandidatusLiberibacter asiaticus”: Biological implications and PCR detection application.Scientific Reports, 6, doi: 10.1038/srep39020

    少妇的逼水好多| 变态另类丝袜制服| 国产伦在线观看视频一区| 18禁在线播放成人免费| 国产一区二区三区视频了| 淫妇啪啪啪对白视频| 欧美色视频一区免费| 五月玫瑰六月丁香| 久久久久国产精品人妻aⅴ院| 欧洲精品卡2卡3卡4卡5卡区| 99国产精品一区二区蜜桃av| 美女大奶头视频| 免费无遮挡裸体视频| 色综合欧美亚洲国产小说| 欧美一区二区国产精品久久精品| 日本与韩国留学比较| 少妇熟女aⅴ在线视频| 中出人妻视频一区二区| 淫秽高清视频在线观看| 日本免费一区二区三区高清不卡| 国产又黄又爽又无遮挡在线| 熟女人妻精品中文字幕| 美女xxoo啪啪120秒动态图 | 少妇的逼水好多| 国产成人欧美在线观看| 欧美日韩乱码在线| 精品久久久久久,| 婷婷精品国产亚洲av| 亚洲在线自拍视频| 亚洲人成电影免费在线| 精品久久久久久久久av| 欧美日本亚洲视频在线播放| 国产精品99久久久久久久久| 精品久久久久久成人av| 午夜福利视频1000在线观看| 哪里可以看免费的av片| 亚洲乱码一区二区免费版| 欧美最黄视频在线播放免费| 国产成人av教育| 18禁在线播放成人免费| 精品一区二区免费观看| 国内少妇人妻偷人精品xxx网站| 国产免费男女视频| 99久久成人亚洲精品观看| 麻豆成人午夜福利视频| 久久久久久国产a免费观看| 五月伊人婷婷丁香| 999久久久精品免费观看国产| 中文字幕av在线有码专区| 国内精品久久久久久久电影| 日日干狠狠操夜夜爽| 国产精品一及| 亚洲精品亚洲一区二区| 欧美精品啪啪一区二区三区| 久久久久精品国产欧美久久久| 热99re8久久精品国产| 中亚洲国语对白在线视频| 变态另类丝袜制服| 久久精品久久久久久噜噜老黄 | 午夜福利在线观看吧| 有码 亚洲区| 在线观看一区二区三区| 麻豆久久精品国产亚洲av| 一本综合久久免费| 99热这里只有是精品50| 蜜桃亚洲精品一区二区三区| 中亚洲国语对白在线视频| a级毛片a级免费在线| 精品久久久久久,| 欧美日韩黄片免| 色综合婷婷激情| 亚洲天堂国产精品一区在线| 日本黄色片子视频| 欧美成狂野欧美在线观看| 免费大片18禁| 国产成年人精品一区二区| 搡老岳熟女国产| 国产免费一级a男人的天堂| 亚洲国产日韩欧美精品在线观看| 男人狂女人下面高潮的视频| 最好的美女福利视频网| 黄色一级大片看看| 窝窝影院91人妻| 亚洲人成网站在线播| 无人区码免费观看不卡| 最后的刺客免费高清国语| 舔av片在线| 高清日韩中文字幕在线| 国产av在哪里看| 亚洲第一区二区三区不卡| 亚洲va日本ⅴa欧美va伊人久久| 高潮久久久久久久久久久不卡| 精品午夜福利视频在线观看一区| 欧美乱妇无乱码| 最近中文字幕高清免费大全6 | 在线观看66精品国产| 亚洲无线观看免费| 男女那种视频在线观看| 亚洲成a人片在线一区二区| 午夜免费激情av| 黄色视频,在线免费观看| 日韩欧美三级三区| 少妇被粗大猛烈的视频| 好男人电影高清在线观看| 三级男女做爰猛烈吃奶摸视频| 国产亚洲精品av在线| 国产色婷婷99| 亚洲第一电影网av| 美女高潮的动态| 成人性生交大片免费视频hd| 亚洲精华国产精华精| 欧美性感艳星| 长腿黑丝高跟| 黄色女人牲交| 精品久久久久久,| 亚洲精品亚洲一区二区| 不卡一级毛片| 国产乱人伦免费视频| 一个人看视频在线观看www免费| 午夜视频国产福利| 国产色爽女视频免费观看| 欧美另类亚洲清纯唯美| 亚洲人成伊人成综合网2020| 久久久国产成人免费| 97热精品久久久久久| 久久6这里有精品| 我要搜黄色片| 久久人人爽人人爽人人片va | 制服丝袜大香蕉在线| 国产精品三级大全| 十八禁网站免费在线| 久久久成人免费电影| 中文字幕人成人乱码亚洲影| 亚洲真实伦在线观看| 成人国产一区最新在线观看| 亚洲中文字幕日韩| 麻豆成人av在线观看| 亚洲色图av天堂| 内射极品少妇av片p| 人人妻人人看人人澡| av专区在线播放| 中文在线观看免费www的网站| 如何舔出高潮| 日韩av在线大香蕉| 亚洲av日韩精品久久久久久密| 成人毛片a级毛片在线播放| 久久国产精品影院| 亚洲经典国产精华液单 | 舔av片在线| 一个人免费在线观看的高清视频| 波多野结衣高清作品| 久久中文看片网| 色综合亚洲欧美另类图片| 国产精品av视频在线免费观看| 亚洲精品成人久久久久久| 国产午夜精品久久久久久一区二区三区 | 在线播放国产精品三级| 蜜桃亚洲精品一区二区三区| 国产单亲对白刺激| 99热这里只有是精品在线观看 | 欧美在线黄色| 女生性感内裤真人,穿戴方法视频| 日本 欧美在线| 国内久久婷婷六月综合欲色啪| 欧美成人免费av一区二区三区| 搡老熟女国产l中国老女人| 午夜影院日韩av| 国内毛片毛片毛片毛片毛片| 久久久色成人| 亚洲欧美日韩高清专用| 国产免费男女视频| 一本综合久久免费| 搞女人的毛片| 成人高潮视频无遮挡免费网站| 日本熟妇午夜| 国内精品一区二区在线观看| 国产成+人综合+亚洲专区| 国内精品久久久久精免费| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 99热精品在线国产| 看免费av毛片| 99精品在免费线老司机午夜| 啦啦啦韩国在线观看视频| 欧美潮喷喷水| 观看免费一级毛片| 国产色爽女视频免费观看| 久久久精品大字幕| 久久人妻av系列| 国内精品久久久久精免费| 成人欧美大片| 国产精品1区2区在线观看.| 日本与韩国留学比较| АⅤ资源中文在线天堂| 别揉我奶头~嗯~啊~动态视频| 久久久久精品国产欧美久久久| 国语自产精品视频在线第100页| 神马国产精品三级电影在线观看| 亚洲乱码一区二区免费版| a级毛片免费高清观看在线播放| 日日干狠狠操夜夜爽| 三级毛片av免费| 嫩草影院新地址| 51国产日韩欧美| 99久久成人亚洲精品观看| 精品99又大又爽又粗少妇毛片 | 两个人的视频大全免费| 国产高清视频在线观看网站| 成年人黄色毛片网站| 国产aⅴ精品一区二区三区波| 成年女人看的毛片在线观看| 亚洲综合色惰| 女生性感内裤真人,穿戴方法视频| 欧美性感艳星| 国产中年淑女户外野战色| 亚洲美女黄片视频| 97热精品久久久久久| 成人午夜高清在线视频| 免费看a级黄色片| 日韩欧美国产一区二区入口| 色综合亚洲欧美另类图片| 亚洲av美国av| 搡女人真爽免费视频火全软件 | 99久久无色码亚洲精品果冻| 亚洲黑人精品在线| 日韩高清综合在线| 国产淫片久久久久久久久 | 亚洲第一电影网av| 亚洲三级黄色毛片| 91狼人影院| 内射极品少妇av片p| 在线a可以看的网站| 一区二区三区高清视频在线| 午夜免费成人在线视频| 男女下面进入的视频免费午夜| 国产精品久久久久久精品电影| 国产私拍福利视频在线观看| 床上黄色一级片| 免费观看人在逋| 老鸭窝网址在线观看| 搡老妇女老女人老熟妇| 欧美日韩乱码在线| 精品久久久久久久末码| 成年人黄色毛片网站| aaaaa片日本免费| 久久久久九九精品影院| 国产精品美女特级片免费视频播放器| 久久精品国产99精品国产亚洲性色| 午夜福利成人在线免费观看| 亚洲人成网站高清观看| 欧美日本视频| 在线观看66精品国产| 大型黄色视频在线免费观看| 亚洲成人精品中文字幕电影| 欧美bdsm另类| 深夜精品福利| 在线观看美女被高潮喷水网站 | 美女高潮的动态| 日本三级黄在线观看| 国产精品电影一区二区三区| 成人永久免费在线观看视频| 在线观看免费视频日本深夜| 一区二区三区高清视频在线| 亚洲精品日韩av片在线观看| 日韩欧美一区二区三区在线观看| 国产精品日韩av在线免费观看| 岛国在线免费视频观看| 亚洲欧美日韩高清专用| 国产精品伦人一区二区| 亚洲av成人精品一区久久| 欧美绝顶高潮抽搐喷水| 国产老妇女一区| 国产精品影院久久| 老鸭窝网址在线观看| 成人性生交大片免费视频hd| 成人亚洲精品av一区二区| 免费观看精品视频网站| 757午夜福利合集在线观看| 麻豆久久精品国产亚洲av| av国产免费在线观看| 少妇的逼好多水| 91在线精品国自产拍蜜月| 亚洲欧美日韩高清专用| 亚洲av不卡在线观看| 九色国产91popny在线| 中文资源天堂在线| 亚洲电影在线观看av| 亚洲成人精品中文字幕电影| 欧美黑人欧美精品刺激| 国产精品精品国产色婷婷| 毛片一级片免费看久久久久 | 3wmmmm亚洲av在线观看| 国产成人福利小说| 日韩av在线大香蕉| 狂野欧美白嫩少妇大欣赏| av黄色大香蕉| 欧美乱色亚洲激情| 国产高潮美女av| 国产蜜桃级精品一区二区三区| 最近视频中文字幕2019在线8| 99精品久久久久人妻精品| 好看av亚洲va欧美ⅴa在| 久久久久亚洲av毛片大全| 亚洲七黄色美女视频| 亚洲国产精品久久男人天堂| 又紧又爽又黄一区二区| 精品一区二区免费观看| 久久午夜亚洲精品久久| 免费一级毛片在线播放高清视频| 日本五十路高清| 中亚洲国语对白在线视频| 别揉我奶头 嗯啊视频| 91久久精品电影网| 亚洲av一区综合| 女人被狂操c到高潮| 日韩欧美国产在线观看| 夜夜夜夜夜久久久久| 国产探花在线观看一区二区| 成人国产综合亚洲| 国产男靠女视频免费网站| 亚洲国产精品成人综合色| 亚洲精品乱码久久久v下载方式| 看片在线看免费视频| 麻豆成人av在线观看| 丁香欧美五月| 国产精品三级大全| 日本一二三区视频观看| 又爽又黄无遮挡网站| 久久久久久久久中文| 日本黄大片高清| 免费av毛片视频| 丝袜美腿在线中文| 性欧美人与动物交配| 精品久久久久久久人妻蜜臀av| 亚洲精品在线美女| 九九久久精品国产亚洲av麻豆| 日本a在线网址| 两人在一起打扑克的视频| 免费在线观看日本一区| 夜夜看夜夜爽夜夜摸| 九九久久精品国产亚洲av麻豆| 嫩草影院新地址| 97超级碰碰碰精品色视频在线观看| 亚洲三级黄色毛片| 成人特级黄色片久久久久久久| 男女做爰动态图高潮gif福利片| 嫩草影院精品99| 国产成人av教育| 观看免费一级毛片| 三级男女做爰猛烈吃奶摸视频| av国产免费在线观看| 18禁在线播放成人免费| 中文字幕精品亚洲无线码一区| 啦啦啦观看免费观看视频高清| 又紧又爽又黄一区二区| 男女下面进入的视频免费午夜| 一夜夜www| 国产成人aa在线观看| 亚洲人成网站高清观看| 久久香蕉精品热| 亚洲综合色惰| 久久天躁狠狠躁夜夜2o2o| 欧美3d第一页| 国产伦在线观看视频一区| 欧美又色又爽又黄视频| 亚洲内射少妇av| 国产亚洲精品久久久com| 久久国产精品人妻蜜桃| 女同久久另类99精品国产91| 国产免费av片在线观看野外av| 亚洲国产精品成人综合色| 欧美极品一区二区三区四区| 亚洲,欧美,日韩| 日韩成人在线观看一区二区三区| 欧美性猛交╳xxx乱大交人| 亚洲人成伊人成综合网2020| 色综合婷婷激情| 国产精品影院久久| 最近视频中文字幕2019在线8| 国内精品久久久久久久电影| 人人妻人人看人人澡| 男人舔奶头视频| 欧美一区二区国产精品久久精品| 熟女人妻精品中文字幕| 99久久精品一区二区三区| 亚洲专区中文字幕在线| 成年女人永久免费观看视频| 精品人妻熟女av久视频| 精品久久久久久久人妻蜜臀av| 欧美+亚洲+日韩+国产| 九九热线精品视视频播放| 免费在线观看亚洲国产| 欧美日本视频| 日韩欧美精品v在线| 国产高清有码在线观看视频| 亚洲av不卡在线观看| 成年版毛片免费区| 99久久精品一区二区三区| 悠悠久久av| 国产一区二区亚洲精品在线观看| 久99久视频精品免费| 免费人成在线观看视频色| 日韩人妻高清精品专区| 国产一区二区三区在线臀色熟女| 国产高清有码在线观看视频| 99热这里只有精品一区| 免费av不卡在线播放| 美女黄网站色视频| 精品欧美国产一区二区三| 国产av麻豆久久久久久久| 嫩草影视91久久| 舔av片在线| 亚洲成a人片在线一区二区| 18+在线观看网站| 国产精品影院久久| 18美女黄网站色大片免费观看| 又爽又黄a免费视频| 免费av不卡在线播放| 亚洲国产欧洲综合997久久,| 欧美黄色淫秽网站| 亚洲经典国产精华液单 | 又紧又爽又黄一区二区| 97人妻精品一区二区三区麻豆| 亚洲黑人精品在线| 国产又黄又爽又无遮挡在线| 国产一区二区三区视频了| 国产一区二区三区在线臀色熟女| 午夜精品一区二区三区免费看| 一进一出抽搐gif免费好疼| 露出奶头的视频| 蜜桃亚洲精品一区二区三区| 国产精品久久久久久久电影| 88av欧美| 国产成人av教育| 国产熟女xx| 国产高清激情床上av| 国产黄色小视频在线观看| 亚洲男人的天堂狠狠| 精品国产亚洲在线| 久久久久久国产a免费观看| 亚洲一区高清亚洲精品| 精品福利观看| 十八禁网站免费在线| 中文字幕精品亚洲无线码一区| 两性午夜刺激爽爽歪歪视频在线观看| 国产主播在线观看一区二区| 俺也久久电影网| 午夜视频国产福利| 亚洲成人中文字幕在线播放| 日韩欧美精品免费久久 | 一进一出好大好爽视频| 一级作爱视频免费观看| 国产伦在线观看视频一区| 国产主播在线观看一区二区| 给我免费播放毛片高清在线观看| 啦啦啦韩国在线观看视频| 午夜福利18| av视频在线观看入口| 国产精品野战在线观看| 亚洲美女黄片视频| 成人无遮挡网站| a级一级毛片免费在线观看| 亚洲成人中文字幕在线播放| 十八禁人妻一区二区| 久久久久久久久中文| 久久亚洲精品不卡| 麻豆成人午夜福利视频| 国产探花极品一区二区| 在线免费观看的www视频| 亚洲欧美激情综合另类| 婷婷精品国产亚洲av| 国产成人福利小说| 成熟少妇高潮喷水视频| 国产一级毛片七仙女欲春2| av在线天堂中文字幕| 尤物成人国产欧美一区二区三区| 日韩免费av在线播放| 99国产精品一区二区蜜桃av| 国产单亲对白刺激| 国产午夜福利久久久久久| 国产精品女同一区二区软件 | 一个人看视频在线观看www免费| 我的女老师完整版在线观看| 非洲黑人性xxxx精品又粗又长| 国产黄片美女视频| 色综合站精品国产| 别揉我奶头 嗯啊视频| 91字幕亚洲| 夜夜爽天天搞| 成人精品一区二区免费| 99久久精品热视频| 国内精品久久久久久久电影| 最新中文字幕久久久久| 日本一二三区视频观看| 国产成+人综合+亚洲专区| 久久久久久久久久黄片| 性欧美人与动物交配| 午夜福利在线观看免费完整高清在 | 成人高潮视频无遮挡免费网站| 精品午夜福利在线看| 久久99热6这里只有精品| 女同久久另类99精品国产91| 欧美性感艳星| 日韩大尺度精品在线看网址| 欧美bdsm另类| 三级毛片av免费| 九九在线视频观看精品| 在线观看美女被高潮喷水网站 | .国产精品久久| 90打野战视频偷拍视频| 最近最新中文字幕大全电影3| 成人三级黄色视频| 熟女人妻精品中文字幕| 在线a可以看的网站| 免费看光身美女| 亚洲熟妇熟女久久| www.熟女人妻精品国产| 色在线成人网| 精品熟女少妇八av免费久了| 久久国产精品影院| 欧美日韩乱码在线| 国产欧美日韩精品一区二区| 亚洲综合色惰| 极品教师在线视频| 日韩精品青青久久久久久| 日韩有码中文字幕| 日韩人妻高清精品专区| 18美女黄网站色大片免费观看| 亚洲,欧美,日韩| 色哟哟·www| 国产色爽女视频免费观看| 一a级毛片在线观看| 亚洲成a人片在线一区二区| 男人舔奶头视频| 国产视频内射| 免费在线观看影片大全网站| 亚洲国产精品成人综合色| 国产精品不卡视频一区二区 | 亚洲精品乱码久久久v下载方式| 最好的美女福利视频网| 别揉我奶头~嗯~啊~动态视频| 99视频精品全部免费 在线| 女人十人毛片免费观看3o分钟| 亚洲国产日韩欧美精品在线观看| 十八禁网站免费在线| 天堂影院成人在线观看| 午夜福利欧美成人| 色视频www国产| 男人舔奶头视频| 精品一区二区三区视频在线| 国产老妇女一区| 久久亚洲真实| 人妻制服诱惑在线中文字幕| 亚洲av日韩精品久久久久久密| 精品一区二区三区av网在线观看| 黄色女人牲交| 亚洲男人的天堂狠狠| 亚洲国产精品999在线| 一级黄片播放器| 日本免费一区二区三区高清不卡| 亚洲最大成人手机在线| 在线观看免费视频日本深夜| 久久久久久久精品吃奶| 欧美绝顶高潮抽搐喷水| 欧美性猛交╳xxx乱大交人| 亚洲av中文字字幕乱码综合| 欧美黄色片欧美黄色片| 级片在线观看| 黄色女人牲交| 蜜桃久久精品国产亚洲av| 日韩中字成人| 老司机午夜福利在线观看视频| 国产三级中文精品| 久99久视频精品免费| 两个人的视频大全免费| 一本一本综合久久| 成年女人看的毛片在线观看| 99riav亚洲国产免费| 精品不卡国产一区二区三区| 嫩草影院入口| 波野结衣二区三区在线| 日韩av在线大香蕉| 国产毛片a区久久久久| 一区二区三区四区激情视频 | .国产精品久久| 欧美黑人巨大hd| 婷婷亚洲欧美| 免费搜索国产男女视频| 伦理电影大哥的女人| 免费搜索国产男女视频| 免费无遮挡裸体视频| 老鸭窝网址在线观看| h日本视频在线播放| 亚洲精品影视一区二区三区av| 99久久九九国产精品国产免费| 亚洲av熟女| 亚洲av五月六月丁香网| 久久亚洲精品不卡| 很黄的视频免费| av天堂在线播放| 日本撒尿小便嘘嘘汇集6| 国产男靠女视频免费网站| 美女 人体艺术 gogo| 国产精品久久久久久亚洲av鲁大| 国产中年淑女户外野战色| 婷婷精品国产亚洲av在线| 免费在线观看亚洲国产| 国产av在哪里看| 男人狂女人下面高潮的视频| 亚洲精品成人久久久久久| 亚洲av电影不卡..在线观看| 搡老岳熟女国产| 99热这里只有精品一区| 99久久精品热视频| 老司机午夜十八禁免费视频| 成年女人看的毛片在线观看|