• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Overexpression of IbSnRK1 enhances nitrogen uptake and carbon assimilation in transgenic sweetpotato

    2018-02-05 07:10:41RENZhitongZHAOHongyuanHEShaozhenZHAIHongZHAONingLIUQingchang
    Journal of Integrative Agriculture 2018年2期

    REN Zhi-tong, ZHAO Hong-yuan, HE Shao-zhen, ZHAI Hong, ZHAO Ning, LIU Qing-chang

    Key Laboratory of Sweetpotato Biology and Biotechnology, Ministry of Agriculture/Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization, Ministry of Education/China Agricultural University, Beijing 100193,P.R.China

    1. Introduction

    Nitrogen is one of the most important essential macronutrients for growth and development of plants. It is a vital element of DNA, RNA and proteins, and its transport and metabolism are necessary for the survival of living organisms (Chenet al. 2016). The nitrogen uptake efficiency is important for achieving high yield and excellent quality in agricultural production (Zhaoet al. 2016). Therefore, how to improve the nitrogen absorption is the primary issue which breeders concern.

    Plant nitrogen metabolism is a complicated process.Plants uptake nitrogen with the help of nitrogen transport proteins (NRT) (Lezhneva 2014). The first enzyme involved in nitrate assimilation is nitrate reductase (NR) which converts nitrate to nitrite (Davenportet al. 2015), and subsequently nitrite is converted to ammonium by the second key enzyme nitrite reductase (NiR), which is redistributed to different tissues of plants (Orselet al. 2002). The nitrogen assimilation is tightly linked to photosynthesis and carbon metabolism (Vincentzet al. 1993; Tobinet al. 2005).

    The sucrose non-fermenting 1 (SNF1) protein kinase,which belongs to serine/threonine protein kinase, is one of the most important energy and stress regulators. In higher plants, the SNF1 protein kinase family is divided into three subfamilies, SnRK1, SnRK2, and SnRK3. SnRK1 regulates carbon and nitrogen metabolisms by inactivating the sucrose phosphate synthase (SPS), 3-hydroxy-3-methylglutaryl CoA reductase (HMG-CoA) and NR, and activating sucrose synthase (SUS) and α-amylase (Halfordet al.2003). Overexpression ofStSnRK1in potato increased the starch content and decreased the glucose level (Mckibbinet al. 2006).AKIN10andAKIN11fromArabidopsiswere found to be involved in starch biosynthesis (Fragosoet al.2009). Liet al. (2010) cloned theSnRK1gene fromMalus hupehensisand found that its overexpression in tomato resulted in the increased starch content. They further found that overexpression of this gene increased carbon assimilation and nitrogen uptake and modified fruit development(Wanget al. 2012).

    Sweetpotato,Ipomoea batatas(L.) Lam., is an important food crop. Several genes have been cloned from sweetpotato(Liu 2017). However, nitrogen metabolism related genes have not been reported to date in sweetpotato. Jianget al. (2013)cloned theIbSnRK1gene from sweetpotato and found that its overexpression increased the starch content in tobacco.In this study, we found that its overexpression enhanced nitrogen uptake and carbon assimilation in sweetpotato.

    2. Materials and methods

    2.1. Plant materials

    In our previous study, theIbSnRK1gene was cloned from sweetpotatocv. Lushu No. 3 (Jianget al. 2013). The expression vector pCAMBIA3301 withIbSnRK1andbargenes driven by a CaMV 35S promoter, respectively, was constructed and transformed to sweetpotatocv. Lizixiang according to the method of Yuet al. (2007). The transgenic plants were produced and identified with PCR analysis as described by Wanget al. (2016). The primers were listed in Table 1. The transgenic plants, wild type (WT) and empty vector control (VC) were transferred to soils in a greenhouse and further in a field for subsequent study.

    2.2. Expression analysis of IbSnRK1

    The 4-week-oldin vitro-grown plants of Lushu No. 3 were treated with 8 mmol L–1Ca(NO3)2in liquid Murashige and Skoog (MS) medium, and sampled at 0, 3, 6, 12, 24, and 48 h after treatment to analyze the expression ofIbSnRK1by real-time quantitative PCR (qRT-PCR) according to themethod of Liuet al. (2014). Specific primers ofIbSnRK1and sweetpotatoβ-actingene (GenBank AY905538) as an internal control for qRT-PCR were listed in Table 1. Quantification of the gene expression was done with comparative CTmethod (Schmittgen and Livak 2008).

    Table 1 Primers used in this study

    2.3. Analysis of nitrogen uptake efficiency

    The cuttings about 20 cm in length of the transgenic plants,WT and VC from a field were grown in a transplanting box with a mixture of soil, vermiculite and humus (1:1:1, v:v) for 1 week. All plants were irrigated with a 200-mL of 8 mmol L–1Ca(15NO3)2(10% atoms15N excess) solution once (Liet al.2010; Fanet al. 2014). After 45 days, their roots, stems, and leaves were dried at 80°C for 72 h and weighed, respectively.The15N concentration was measured with the Stable Isotope Ratio Mass Spectrometer Isoprime 100 (Elementar Analysensysteme GmbH, Germany). The total N was detected with Automatic Kieldahl Apparatus K1100F (Haineng, Jinan,China). The total N content, nitrogen derived from fertilizer(NDFF), and nitrogen uptake efficiency (NUE) were calculated according to the method of Wanget al. (2012).

    2.4. Analyses of nitrate content and NR activity

    All plants were irrigated with a 200-mL of 8 mmol L–1Ca(NO3)2solution once. Plants treated without Ca(NO3)2were used as the control. After 45 days, the fresh roots were collected to measure the nitrate content. Roots of 0.1 g were added to 1 mL distilled water and boiled for 30 min to extract the nitrate. The samples were centrifuged at 12 000×g for 15 min,0.02 mL supernatant was mixed with 0.08 mL 5% salicylic acid-sulfuric acid solution and incubated at room temperature for 30 min. The 1.9 mL 8% sodium hydroxide solution was added and nitrate was detected at 410 nm under room temperature. The NR activity was measured according to the method of Ferrario-Méryet al. (1998).

    2.5. Analyses of free amino acid and soluble protein content

    The fresh leaves of transgenic plants, WT and VC treated with Ca(NO3)2as mentioned above were used to measure the content of free amino acids and soluble proteins.Leaves of 0.1 g were mixed with 1 mL 10% acetum and then boiled for 15 min to extract free amino acids. These samples were centrifuged at 8 000×g for 10 min at 4°C to separate supernatant. And 0.05 mL supernatant was mixed with 0.5 mL phosphate buffer (pH=5.4), 0.5 mL ninhydrin and 0.05 mL 0.3% ascorbic acid and boiled for 15 min, and free amino acids were detected at 580 nm under room temperature. The soluble proteins were measured as described by Brownet al. (1989).

    2.6. Measurements of photosynthesis activity

    The photosynthetic rate, stomatal conductance, intercellular CO2concentration, and transpiration rate in the leaves of transgenic plants, WT and VC treated with Ca(NO3)2as mentioned above were measured at 13:00 with LI-6400 Portable Photosynthesis System LI-6400 (LI-COR Inc.,Lincoln, NE, USA).

    2.7. Analyses of sucrose and starch contents

    The sucrose and starch contents in the fresh leaves of transgenic plants, WT and VC treated with Ca(NO3)2as mentioned above were determined according to the methods of Xiaoet al. (2016) and Weiet al. (2015), respectively.

    2.8. Assays for SUS and AGPase activities

    SUS and ADP-glucose pyrophosphorylase (AGPase) activities in the fresh leaves of transgenic plants, WT and VC treated with Ca(NO3)2as mentioned above were measured according to the methods of Baroja-Fernándezet al. (2012)and Kanget al. (2013), respectively.

    2.9. Expression analysis of nitrogen and carbon metabolisms related genes

    The fresh roots of transgenic plants, WT and VC treated with Ca(NO3)2as mentioned above were used to analyze the expression of nitrogen transporter (NRT 1.1,NRT 1.3,NRT 2.4, andNRT 3.1) andNRgenes, and their fresh leaves were used to analyze the expression of glutamine synthetase (GS), glutamate synthase (GOGAT),SUSand AGPase large subunit (AGPL1) genes according to the method of Liuet al. (2015). Specific primers were designed from conserved regions of genes (Table 1).

    2.10. Statistical analysis

    All experiments were independently performed three times and the data were presented as the means±SE. Results were analyzed by Student’st-test in a two-tailed analysis using SPSS 20.0 Statistic Program. Significance was de-fined asP<0.05 (*) andP<0.01 (**), respectively.

    3. Results

    3.1. Expression analysis of IbSnRK1

    qRT-PCR analysis showed that the expression ofIbSnRK1reached the highest level (3.1-fold) at 24 h of Ca(NO3)2treatment (Fig. 1). The results indicated thatIbSnRK1was induced by nitrate and might be involved in the nitrogen metabolism.

    3.2. Nitrogen uptake efficiency

    A total of 18 transgenic plants, named L1, L2, …, L18,respectively, were obtained and 7 of them exhibited signifi-cantly higher15N atom excess in roots, stems, and leaves compared with WT and VC (Table 2). The 4 transgenic plants, L5, L6, L16, and L18, with the highest15N atom excess were selected to analyze dry weight, root/shoot ratio,15N and total N content, NDFF and NUE. These 4 plants showed significantly higher dry weight, root/shoot ratio,15N and total N content, NDFF and NUE compared with WT and VC (Fig. 2).

    3.3. Nitrate content and NR activity

    No differences in nitrate content and NR activity were found between the 4 transgenic plants and WT/VC without Ca(NO3)2treatment. The nitrate content and NR activity in the transgenic plants were significantly increased by 62.5–104.4% and 30.6–61.1%, respectively, compared with WT under Ca(NO3)2treatment (Fig. 3-A and B). These results indicated that the overexpression ofIbSnRK1enhanced the nitrogen uptake of the transgenic plants.

    Fig. 1 Expression analysis of IbSnRK1 in sweetpotato cv.Lushu No. 3 by qRT-PCR after different times of 8 mmol L–1 Ca(NO3)2 treatment. Bars are SE. **, significant difference at P<0.01.

    Table 2 The 15N atom excess in roots, stems, and leaves of the transgenic plants, wild type (WT), and empty vector control(VC) under Ca(15NO3)2 treatment

    3.4. Free amino acid and soluble protein content

    Free amino acid and soluble protein content in the 4 transgenic plants were significantly increased by 18.3–35.6% and 32.1–49.0%, respectively, compared with WT under Ca(NO3)2treatment (Fig. 3-C and D). No significant differences were observed between the transgenic plants and WT under normal condition. These results suggest thatIbSnRK1is involved in the nitrogen metabolism of sweetpotato.

    3.5. Photosynthesis activity

    The photosynthetic rate, stomatal conductance, and intercellular CO2concentration were significantly higher,while the transpiration rate was significantly lower in the 4 transgenic plants than in WT and VC under Ca(NO3)2treatment (Fig. 4). No significant differences were observed in these parameters between the transgenic plants and WT/VC under normal condition (Fig. 4). These results showed thatIbSnRK1enhanced the photosynthesis activity of the transgenic plants under Ca(NO3)2treatment.

    3.6. Sucrose and starch contents, SUS and AGPase activities

    Overexpression of the genes associated with the carbon assimilation can increase the sucrose and starch contents and SUS and AGPase activities in plants under normal and treatment conditions (Mckibbinet al. 2006; Fragosoet al. 2009; Liet al. 2010; Wanget al. 2012). The 4IbSn-RK-overexpressing plants exhibited significantly increased sucrose and starch contents and SUS and AGPase activities compared with WT and VC under normal conditions(Fig. 5). These results suggest thatIbSnRK1is involved in the carbon assimilation of sweetpotato. Furthermore,the increased levels of sucrose, starch, SUS, and AGPase were significantly higher in the transgenic plants than in WT and VC under Ca(NO3)2treatment (Fig. 5). These results showed thatIbSnRK1enhanced the carbon assimilation of sweetpotato.

    Fig. 2 Dry weight (DW, A), root/shoot ratio (B), 15N content (C), total N content (D), nitrogen derived from fertilizer (NDFF, E), and nitrogen uptake efficiency (NUE, F) in roots, stems, and leaves of the transgenic plants (L5, L6, L16, and L18), wild type (WT), and empty vector control (VC) grown in a transplanting box under Ca(15NO3)2 treatment for 45 days. Bars are SE. * and **, significant difference at P<0.05 and P<0.01, respectively.

    3.7. Expression analysis of nitrogen and carbon metabolisms related genes

    Expression levels of several nitrogen and carbon metabolisms related genes were analyzed by qRT-PCR under normal and treatment conditions (Fig. 6). The nitrogen metabolism related genesNRT 1.1,NRT 1.3,NRT 2.4,NRT 3.1,NR,GS, andGOGATdid not show the changes in expression levels under normal condition, but their expression was significantly up-regulated in the transgenic plants compared with WT and VC under treatment condition (Fig. 6).The expression of the carbon metabolism related genesIbSnRK1,SUS, andAGPL1 was significantly increased in the 4 transgenic plants compared with WT and VC under normal and treatment conditions (Fig. 6).

    Fig. 3 Nitrate content (A), nitrate reductase (NR) activity (B), free amino acid content (C), and soluble protein content (D) in the roots of transgenic plants (L5, L6, L16, and L18), wild type (WT), and empty vector control (VC) grown in a transplanting box under Ca(NO3)2 treatment for 45 days. FW, fresh weight. Bars are SE. * and **, significant difference at P<0.05 and P<0.01, respectively.

    Fig. 4 Photosynthetic rate (A), stomatal conductance (B), intercellular CO2 concentration (C), and transpiration rate (D) in the leaves of transgenic plants (L5, L6, L16, and L18), wild type (WT) and empty vector control (VC) grown in a transplanting box under Ca(NO3)2 treatment for 45 days. FW, fresh weight. Bars are SE. * and **, significant difference at P<0.05 and P<0.01, respectively.

    Fig. 5 Sucrose content (A), starch content (B), sucrose synthase (SUS) activity (C), and ADP-glucose pyophosphorylase(AGPase) activity in the leaves of transgenic plants (L5, L6, L16, and L18), wild type (WT) and empty vector control (VC) grown in a transplanting box under Ca(NO3)2 treatment for 45 days. FW, fresh weight. Bars are SE. * and **, significant difference at P<0.05 and P<0.01, respectively.

    4. Discussion

    Nitrogen is a very important nutrient to sweetpotato. Effects of NUE on yield and quality in sweetpotato were widely reported (Martí and Mills 2002; Ankumahet al. 2003; Ukomet al. 2011). Gene engineering is an alterative approach to improve NUE in higher plants. This study has indicated that overexpression of theIbSnRK1gene significantly enhanced nitrogen uptake and carbon assimilation in sweetpotato,similar to the results of Wanget al. (2012) in tomato.

    The present results showed that the expression ofIbSnRK1in sweetpotato was induced by Ca(NO3)2(Fig. 1).Under Ca(15NO3)2treatment, theIbSnRK1-overexpressing sweetpotato plants exhibited significantly higher dry weight,root/shoot ratio,15N and total N content, NDFF and NUE than WT (Fig. 2), suggesting that its overexpression increases the nitrogen content by improving NUE.

    The nitrogen is absorbed by the roots through nitrate transporters, and then is distributed to roots, stems and leaves. Three types of nitrate transporters, nitrate/peptide transporters (NRT1/PTR), NRT2, and NRT3, have been identified in higher plants (Kibaet al. 2012; Baiet al. 2013).In the present study, the expression levels ofNRT1.1,NRT1.3,NRT2.4, andNRT3.1, the content of nitrate and the activity of NR in the roots of transgenic plants were significantly higher than in those of WT under Ca(NO3)2treatment (Fig. 3-A and B, Fig. 6). These results suggest that overexpression ofIbSnRK1enhances the nitrogen uptake by up-regulating theNRTgenes and increasing the NR activity.

    The content of free amino acids and soluble proteins can reflect the nitrogen metabolism in higher plants. The primary nitrate is converted into ammonium by NR, subsequently ammonium is converted into glutamine and glutamic acid by GS and GOGAT in plants (Lamet al. 1996; Masclauxet al.2009). The present study has indicated that overexpression ofIbSnRK1increased the content of free amino acids and soluble proteins (Fig. 3-C and D) and the expression level ofGSandGOGAT(Fig. 6). It is thought thatIbSnRK1might enhance the nitrogen metabolism by up-regulatingGSandGOGAT.

    Fig. 6 Relative expression level of IbSnRK1 and nitrogen and carbon metabolisms related genes in the leaves (SnRK1, GS,GOGAT, SUS and AGPL1) and roots (NRT 1.1, NRT 1.3, NRT 2.4, NRT 3.1, and NR) of transgenic plants (L5, L6, L16, and L18),wild type (WT), and empty vector control (VC) grown in a transplanting box under Ca(NO3)2 treatment for 45 days. Bars are SE.* and **, significant difference at P<0.05 and P<0.01, respectively.

    In plants, nitrogen and carbon metabolisms are tightly linked to physiological functions (Vincentzet al. 1993;Nunes-Nesiet al. 2010). The photosynthetic capacity of leaves is related to the nitrogen content primarily (Evanset al. 1989). Sucrose and starch are the main products of carbon assimilation, and SUS and AGPase are widely recognized as the vital enzyme of sucrose metabolism and starch biosynthesis, respectively (Chenet al. 2012; Senget al. 2016). In this study, the photosynthetic rate, stomatal conductance and intercellular CO2concentration in leaves of the transgenic plants were significantly higher than those of WT under Ca(NO3)2treatment, and the content of sucrose and starch were significantly increased (Figs. 4 and 5).Furthermore, the activities of SUS and AGPase and the expression levels ofSUSandAGPL1 were significantly higher in the transgenic plants than in WT under Ca(NO3)2treatment (Fig. 6).

    These results suggest that the increased NUE and nitrogen content promote photosynthesis activity, resulting in more accumulation of carbohydrates in the transgenic plants.

    5. Conclusion

    TheIbSnRK1gene plays important roles in nitrogen uptake and carbon assimilation of sweetpotato. Its overexpression enhanced the nitrogen and carbon metabolisms by improving NUE and up-regulating theNR,GS,GOGAT,SUS, andAGPL1 genes which resulted in the increased free amino acid, soluble protein, sucrose and starch content. This gene has the potential to be used for improving the yield and quality of sweetpotato.

    Acknowledgements

    This work was supported by the earmarked fund for China Agriculture Research System (CARS-11), the National Natural Science Foundation of China (31461143017) and the Science and Technology Planning Project of Guangdong Province, China (2015B020202008).

    Ankumah R O, Khan V, Mwamba K, Kpomblekou A K. 2003.The influence of source and timing of nitrogen fertilizers on yield and nitrogen use efficiency of four sweet potato cultivars.Agriculture Ecosystems & Environment, 100,201–207.

    Bai H, Euring D J, Volmer K, Janz D, Polle A. 2013. The nitrate transporter (NRT) gene family in poplar.PLOS ONE, 8,e72126.

    Baroja-Fernández E, Mu?oz F J, Li J, Bahaji A, Almagro G,Montero M, Etxeberria E, Hidalgo M, Sesma M T, Pozueta-Romero J. 2012. Sucrose synthase activity insus1/sus2/sus3/sus4Arabidopsismutant is sufficient to support normal cellulose and starch production.Proceedings of the National Academy of Sciences of the United States of America, 109, 321–326.

    Brown R E, Jarvis K L, Hyland K J. 1989. Protein measurement using bicinchoninic acid: Elimination of interfering substances.Analytical Biochemistry, 180, 136–139.

    Chen A Q, He S A, Li F F, Li Z, Ding M Q, Liu Q P, Rong J K. 2012. Analyses of the sucrose synthase gene family in cotton: Structure, phylogeny and expression patterns.BMC Plant Biology, 12, 1–17.

    Chen Z H, Wang Y Z, Wang J W, Babla M, Z C C, CarcíaMata C , Sani E, Differ C, Mak M, Hills A, Amtmann A, Blatt M R.2016. Nitrate reductase mutation alters potassium nutrition as well as nitric oxide-mediated control of guard cell ion channels inArabidopsis.New Phytologist, 209, 1456–1469.

    Davenport S, Lay P L, Sanchez-Tamburrrino J P. 2015. Nitrate metabolism in tobacco leaves overexpressingArabidopsisnitrite reductase.Plant Physiology and Biochemistry, 97,96–107.

    Evans J R. 1989. Photosynthesis and nitrogen relationships in leaves of C3plants.Oecologia, 78, 9–19.

    Fan X R, Xie D, Chen J G, Lu H Y, Xu Y L, Ma C, Xu G H. 2014.Over-expression ofOsPTR6, in rice increased plant growth at different nitrogen supplies but decreased nitrogen use efficiency at high ammonium supply.Plant Science, 227,1–11.

    Ferrario-Méry S, Valadier M, Foyer C H. 1998. Overexpression of nitrate reductase in tobacco delays drought-induced decreases in nitrate reductase activity and mRNA.Plant Physiology, 117, 293–302.

    Fragoso S, Espíndola L, Páez-Valencia J, Gamboa A,Camacho Y, Martínez-Barajas E. Coello P. 2009. SnRK1 isoformsAKIN10andAKIN11are differentially regulated inArabidopsisplants under phosphate starvation.Plant Physiology, 149, 1906–1916.

    Halford N G, Hey S, Jhurreea D, Laurrie S, McKibbin R S,Paul M, Zhang Y H. 2003. Metabolic signalling and carbon partitioning: Role of Snf1-related (SnRK1) protein kinase.Journal of Experimental Botany, 54, 467–475.

    Jiang T, Zhai H, Wang F B, Yang N K, Wang B, He S Z, Liu Q C. 2013. Cloning and characterization of a carbohydrate metabolism-associated geneIbSnRK1from sweetpotato.Scientia Horticulturae, 158, 22–32.

    Kang G Z, Liu G Q, Peng X Q, Wei L T, Wang C Y, Zhu Y J, M Y, Jiang Y M, Guo T C. 2013. Increasing the starch content and grain weight of common wheat by overexpression of the cytosolic AGPase large subunit gene.Plant Physiology and Biochemistry, 73, 93–98.

    Kiba T, Feria-Bourrellier A, Lafouge F, Lezhneva L, Boutet-Mercey S, Orsel M, Bréhaut V, Miller A, Daniel-Vedele F, Sakaibara H, Krapp A. 2012. TheArabidopsisnitrate transporter NRT2.4 plays a double role in roots and shoots of nitrogen-starved plants.The Plant Cell, 24, 245–258.

    Lam H, Coschigano K T, Oliveira I C, Melo-Oliveira R, Coruzzi G M. 1996. The molecular-genetics of nitrogen assimilation into amino acids in higher plants.Plant Biology, 47,569–593.

    Lezhneva L, Kiba T, Feria-Bourrellier A B, Lafouge F, Boutet-Mercey S, Zoufan P, Sakakibara H, Daniel-Vedele F, Krapp A . 2014. TheArabidopsisnitrate transporter NRT2.5 plays a role in nitrate acquisition and remobilization in nitrogenstarved plants.The Plant Journal, 80, 230–241.

    Li G J, Peng F T, Zhang L, Shi X X, Wang Z Y. 2010. Cloning and characterization of a SnRK1-encoding gene fromMalus hupehensisRehd. and heterologous expression in tomato.Molecular Biology Reports, 37, 947–954.

    Liu D G, He S Z, Song X J, Zhai H, Liu N, Zhang D D,Ren Z T, Liu Q C. 2015.IbSIMT1, a novel salt-induced methyltransferase gene fromIpomoea batatas, is involved in salt tolerance.Plant Cell,Tissue and Organ Culture,120, 701–715.

    Liu D G, He S Z, Zhai H, Wang L J, Zhao Y, Wang B, Li R J,Liu Q C. 2014. Overexpression ofIbP5CR, enhances salt tolerance in transgenic sweetpotato.Plant Cell,Tissue and Organ Culture, 117, 1–16.

    Liu Q C. 2017. Improvement for agronomically important traits by gene engineering in sweetpotato.Breeding Science,67, 15–26.

    Martí H R, Mills H A. 2002. Nitrogen and potassium nutrition affect yield, dry weight partitioning, and nutrient-use efficiency of sweet potato.Communications in Soil Science and Plant Analysis, 33, 287–301.

    Masclaux-Daubresse C, Daniel-Vedele F, Dechorgnat J,Chardon F, Gaufichon L, Suzuki A. 2010. Nitrogen uptake,assimilation and remobilization in plants: Challenges for sustainable and productive agriculture.Annals of Botany, 105, 1141–1157.

    McKibbin R S, Muttucumaru N, Paul M J, Powers S J, Burrell M M, Coates S , Purcell P C, Tiessen A, Geigenberger P,Halford N G. 2006. Production of high-starch, low-glucose potatoes through overexpression of the metabolic regulatorSnRK1.Plant Biotechnology Journal, 4, 409–418.

    Nunes-Nesi A, Fernie A R, Stitt M. 2010. Metabolic and signaling aspects underpinning the regulation of plant carbon nitrogen interactions.Molecular Plant, 3, 973–996.

    Orsel M, Filleur S, Fraisier V, Daniel-Vedele F. 2002. Nitrate transport in plants: Which gene and which control?Journal of Experimental Botany, 53, 825–833.

    Schmittgen T D, Livak K J. 2008. Analyzing real-time PCR data by the comparativeCTmethod.Nature Protocols, 3,1101–1108.

    Seng S S, Wu J, Sui J J, Wu C Y, Zhong X H, Liu C, Liu C,Gong B H, Zhang F Q, He J N, Yi M F. 2016. ADP-glucose pyrophosphorylase gene plays a key role in the quality of corm and yield of cormels in gladiolus.Biochemical and Biophysical Research Communications, 474, 206–212.

    Tobin A K, Bowsher C G. 2005. Nitrogen and carbon metabolism in plastids: Evolution, integration, and coordination with reactions in the cytosol.Advances in Botanical Research, 42, 113–165.

    Ukom A N, Ojimelukwe P C, Alamu E O. 2011. All trans-cis β-carotene content of selected sweet potato (Ipomoea batatas(L.) lam) varieties as influenced by different levels of nitrogen fertilizer application.African Journal of Food Science, 5, 131–137.

    Vincentz M, Moureaux T, Leydecker M, Vaucheret H, Caboche M. 1993. Regulation of nitrate and nitrite reductase expression in nicotiana plumbaginifolia leaves by nitrogen and carbon metabolites.The Plant Journal, 3, 315–324.

    Wang B, Zhai H, He S Z, Zhang H, Ren Z T, Zhang D D, Liu Q C. 2016. A vacuolar Na+/H+antiporter gene,IbNHX2,enhances salt and drought tolerance in transgenic sweetpotato.Scientia Horticulturae, 201, 153–166.

    Wang X L, Peng F T, Li M J, Yang L, Li G J. 2012.Expression of a heterologousSnRK1in tomato increases carbon assimilation, nitrogen uptake and modifies fruit development.Journal of Plant Physiology, 169, 1173–1182.

    Wei L T, Wang L N, Yang Y, Liu G Y, Wu Y F, Guo T C, Kang G Z. 2015. Abscisic acid increases leaf starch content of polyethylene glycol-treated wheat seedlings by temporally increasing transcripts of genes encoding starch synthesis enzymes.Acta Physiologiae Plantarum, 37, 1–6.

    Xiao G Q, Qin H, Zhou J H, Quan R D, Lu X Y, Huang R F, Zhang H W. 2016.OsERF2controls rice root growth and hormone responses through tuning expression of key genes involved in hormone signaling and sucrose metabolism.Plant Molecular Biology, 90, 293–302.

    Yu B, Zhai H, Wang Y P, Zang N, He S Z, Liu Q C. 2007. EfficientAgrobacteriumtumefaciens-mediated transformation using embryogenic suspension cultures in sweetpotato,Ipomoea batatas(L.) Lam.Plant Cell,Tissue and Organ Culture, 90,265–273.

    Zhao B, Liu Z D, Ata-UI-Karim S T, Xiao J F, Liu Z G, Qi A Z, Ning D F, Nan J Q, Duan A W. 2016. Rapid and nondestructive estimation of the nitrogen nutrition index in winter barley using chlorophyll measurements.Field Crops Research, 185, 59–68.

    精品99又大又爽又粗少妇毛片| 亚洲av在线观看美女高潮| 丝袜脚勾引网站| 国产精品99久久99久久久不卡 | 18禁裸乳无遮挡动漫免费视频| 2018国产大陆天天弄谢| 日韩成人av中文字幕在线观看| 啦啦啦视频在线资源免费观看| 丰满少妇做爰视频| 免费黄色在线免费观看| 中文字幕亚洲精品专区| 久久国产精品男人的天堂亚洲 | 国产av一区二区精品久久| 麻豆成人av视频| videosex国产| 国产极品粉嫩免费观看在线 | 欧美日韩精品成人综合77777| 女人精品久久久久毛片| 天堂中文最新版在线下载| 成人亚洲欧美一区二区av| 人妻夜夜爽99麻豆av| 美女大奶头黄色视频| 男女啪啪激烈高潮av片| 欧美另类一区| 99久久精品国产国产毛片| 少妇 在线观看| 亚洲精品456在线播放app| 久久精品国产亚洲网站| 亚洲图色成人| 麻豆成人av视频| 国产男女超爽视频在线观看| 欧美亚洲 丝袜 人妻 在线| 亚洲伊人久久精品综合| 国产综合精华液| 春色校园在线视频观看| 亚洲av综合色区一区| 国产又色又爽无遮挡免| 亚洲av日韩在线播放| 美女主播在线视频| 中国国产av一级| 亚洲综合色网址| 校园人妻丝袜中文字幕| 最近的中文字幕免费完整| 亚洲国产成人一精品久久久| 亚洲精品456在线播放app| 欧美+日韩+精品| 成年美女黄网站色视频大全免费 | 亚洲综合色惰| 最黄视频免费看| www.色视频.com| 日韩av免费高清视频| 99九九线精品视频在线观看视频| 王馨瑶露胸无遮挡在线观看| 99热这里只有是精品在线观看| 乱人伦中国视频| 国产av一区二区精品久久| 免费av不卡在线播放| 精品熟女少妇av免费看| 久久99一区二区三区| 好男人视频免费观看在线| xxx大片免费视频| 精品久久久久久久久亚洲| 国产精品 国内视频| 久久久精品免费免费高清| 国产精品成人在线| 久久鲁丝午夜福利片| 国产精品不卡视频一区二区| 日韩电影二区| 婷婷成人精品国产| 国产精品99久久99久久久不卡 | 国产成人freesex在线| 中国美白少妇内射xxxbb| 亚洲精品一二三| 成年人免费黄色播放视频| 成人毛片60女人毛片免费| 国产精品偷伦视频观看了| 我的女老师完整版在线观看| 久久99热这里只频精品6学生| 久久韩国三级中文字幕| 国产无遮挡羞羞视频在线观看| 久久久久久久亚洲中文字幕| 夫妻性生交免费视频一级片| 超色免费av| 国产伦精品一区二区三区视频9| 国产精品欧美亚洲77777| 国模一区二区三区四区视频| 成年av动漫网址| 亚洲欧美成人精品一区二区| 亚洲精品亚洲一区二区| 十分钟在线观看高清视频www| 黑人欧美特级aaaaaa片| 国产精品99久久99久久久不卡 | 国产成人精品在线电影| 在线观看免费日韩欧美大片 | 韩国高清视频一区二区三区| 精品一区二区三卡| 日本免费在线观看一区| 国产伦精品一区二区三区视频9| 久久ye,这里只有精品| 亚洲欧美清纯卡通| 九九爱精品视频在线观看| 国产精品人妻久久久久久| 夜夜看夜夜爽夜夜摸| 国产 一区精品| 一本—道久久a久久精品蜜桃钙片| 精品少妇久久久久久888优播| 国产 精品1| 久久精品国产a三级三级三级| 日日摸夜夜添夜夜添av毛片| 三级国产精品欧美在线观看| 久久久久视频综合| 最近手机中文字幕大全| 日本91视频免费播放| 伦精品一区二区三区| 三级国产精品欧美在线观看| 欧美精品国产亚洲| 韩国av在线不卡| 成人午夜精彩视频在线观看| 亚洲av国产av综合av卡| 18禁在线播放成人免费| 三上悠亚av全集在线观看| 国产白丝娇喘喷水9色精品| 国产精品一国产av| 亚洲av电影在线观看一区二区三区| 高清欧美精品videossex| 免费黄网站久久成人精品| 伦精品一区二区三区| 国产永久视频网站| 一边亲一边摸免费视频| 亚洲av免费高清在线观看| 高清毛片免费看| kizo精华| 国产免费福利视频在线观看| 各种免费的搞黄视频| 少妇的逼水好多| 美女脱内裤让男人舔精品视频| 男女边摸边吃奶| 久久久久久伊人网av| 亚洲国产精品一区三区| 亚洲五月色婷婷综合| 99热6这里只有精品| 精品亚洲成a人片在线观看| av视频免费观看在线观看| 一级毛片黄色毛片免费观看视频| 一级毛片 在线播放| 亚洲色图综合在线观看| 丝袜在线中文字幕| 久久久国产欧美日韩av| 九九在线视频观看精品| 日本wwww免费看| 校园人妻丝袜中文字幕| 晚上一个人看的免费电影| 久久久a久久爽久久v久久| 看免费成人av毛片| 如日韩欧美国产精品一区二区三区 | 亚洲四区av| 如何舔出高潮| 欧美精品高潮呻吟av久久| 在线观看一区二区三区激情| 天堂中文最新版在线下载| www.色视频.com| 亚洲成人手机| 三上悠亚av全集在线观看| 日本黄色日本黄色录像| 汤姆久久久久久久影院中文字幕| 国产片内射在线| 中文乱码字字幕精品一区二区三区| 国产乱人偷精品视频| 不卡视频在线观看欧美| 亚洲美女黄色视频免费看| 一级a做视频免费观看| 日韩中文字幕视频在线看片| 97超视频在线观看视频| 国国产精品蜜臀av免费| 只有这里有精品99| 国产永久视频网站| 国产免费一级a男人的天堂| 久久99精品国语久久久| 国产黄色免费在线视频| 免费观看av网站的网址| 欧美日韩综合久久久久久| 亚洲av二区三区四区| 国产精品一区二区三区四区免费观看| www.av在线官网国产| 女人久久www免费人成看片| 晚上一个人看的免费电影| 免费看av在线观看网站| 91精品国产国语对白视频| 久久久久视频综合| 精品国产一区二区久久| 日韩人妻高清精品专区| 国产黄色免费在线视频| 91久久精品电影网| 日产精品乱码卡一卡2卡三| 26uuu在线亚洲综合色| 搡女人真爽免费视频火全软件| 精品少妇久久久久久888优播| 欧美日韩av久久| 18+在线观看网站| 在线 av 中文字幕| 亚洲欧美一区二区三区国产| 色5月婷婷丁香| 免费人妻精品一区二区三区视频| 国模一区二区三区四区视频| 精品一区二区三卡| 国产免费一级a男人的天堂| av天堂久久9| 一级黄片播放器| 男人添女人高潮全过程视频| 午夜福利网站1000一区二区三区| 日本av手机在线免费观看| 欧美丝袜亚洲另类| 亚洲成色77777| 国产精品 国内视频| 国产一区二区在线观看av| 99热6这里只有精品| 另类亚洲欧美激情| av在线观看视频网站免费| 国产精品三级大全| 丝袜喷水一区| a级毛片在线看网站| 伦理电影免费视频| 久久久a久久爽久久v久久| 国产免费一级a男人的天堂| 一级片'在线观看视频| 一本久久精品| 亚洲av成人精品一区久久| 伊人亚洲综合成人网| 国产精品欧美亚洲77777| 99热全是精品| 99视频精品全部免费 在线| 亚洲综合色网址| 少妇 在线观看| 国产成人一区二区在线| 日韩中文字幕视频在线看片| 国产 精品1| 国产不卡av网站在线观看| 久久99蜜桃精品久久| av国产久精品久网站免费入址| 乱码一卡2卡4卡精品| 欧美xxⅹ黑人| 丰满迷人的少妇在线观看| 亚洲图色成人| 亚洲av日韩在线播放| 欧美少妇被猛烈插入视频| 三级国产精品片| 成人免费观看视频高清| 午夜激情久久久久久久| 国产69精品久久久久777片| 人妻一区二区av| 亚洲一级一片aⅴ在线观看| 午夜激情av网站| 热99久久久久精品小说推荐| 欧美bdsm另类| a级毛片黄视频| 97超碰精品成人国产| 亚洲色图 男人天堂 中文字幕 | 日本wwww免费看| 亚洲国产最新在线播放| 国产一区有黄有色的免费视频| 日韩av不卡免费在线播放| 99九九线精品视频在线观看视频| 妹子高潮喷水视频| 欧美最新免费一区二区三区| 一边亲一边摸免费视频| 久久99热6这里只有精品| 国产精品.久久久| 色吧在线观看| 韩国高清视频一区二区三区| 国产毛片在线视频| 亚洲av男天堂| 午夜激情福利司机影院| 久久这里有精品视频免费| 五月伊人婷婷丁香| 能在线免费看毛片的网站| 日本欧美视频一区| 免费人妻精品一区二区三区视频| 美女内射精品一级片tv| 日本欧美视频一区| 少妇人妻久久综合中文| 日韩一区二区三区影片| 国产高清不卡午夜福利| xxxhd国产人妻xxx| 涩涩av久久男人的天堂| 亚洲精品日韩在线中文字幕| 曰老女人黄片| 久久女婷五月综合色啪小说| 久久人人爽人人爽人人片va| 亚洲av综合色区一区| 久久国产精品大桥未久av| 免费av中文字幕在线| 亚洲欧美中文字幕日韩二区| 国产熟女欧美一区二区| 男女国产视频网站| 精品99又大又爽又粗少妇毛片| 亚洲人成77777在线视频| 一级二级三级毛片免费看| 如何舔出高潮| 久久人妻熟女aⅴ| 激情五月婷婷亚洲| 在线亚洲精品国产二区图片欧美 | 日本欧美国产在线视频| 久久狼人影院| 国产免费一级a男人的天堂| 亚洲情色 制服丝袜| 啦啦啦啦在线视频资源| videosex国产| 国产精品免费大片| 中文字幕免费在线视频6| 99国产综合亚洲精品| 国产精品国产三级专区第一集| 99热国产这里只有精品6| 丰满迷人的少妇在线观看| 国产综合精华液| 日韩欧美精品免费久久| 久久 成人 亚洲| 丰满饥渴人妻一区二区三| 国产成人精品一,二区| 久久国产精品大桥未久av| 免费观看a级毛片全部| 国产视频首页在线观看| 国内精品宾馆在线| 国产乱人偷精品视频| 成年人免费黄色播放视频| 亚洲精品,欧美精品| 国产精品人妻久久久影院| 午夜福利影视在线免费观看| 久久久久久久久久久丰满| 国产毛片在线视频| 午夜日本视频在线| 国产精品三级大全| 人妻少妇偷人精品九色| 考比视频在线观看| 精品久久久久久电影网| 人妻系列 视频| 大香蕉久久网| 五月玫瑰六月丁香| 在线观看www视频免费| 一级毛片黄色毛片免费观看视频| 国产视频首页在线观看| 高清毛片免费看| 久久免费观看电影| 少妇猛男粗大的猛烈进出视频| 久久久久久久亚洲中文字幕| 国产一区二区三区av在线| 国产精品久久久久成人av| 人妻一区二区av| 桃花免费在线播放| 亚洲精品成人av观看孕妇| 看十八女毛片水多多多| 日韩强制内射视频| 涩涩av久久男人的天堂| www.色视频.com| 久久精品久久久久久久性| 免费观看在线日韩| 久久午夜综合久久蜜桃| 麻豆成人av视频| 大码成人一级视频| 欧美3d第一页| 欧美精品人与动牲交sv欧美| 国产成人免费无遮挡视频| 天天影视国产精品| 欧美日韩在线观看h| 日韩 亚洲 欧美在线| 黄色一级大片看看| 国产高清国产精品国产三级| 久久国产精品男人的天堂亚洲 | a级毛色黄片| 天天躁夜夜躁狠狠久久av| 午夜福利视频精品| 国产精品人妻久久久久久| 桃花免费在线播放| 中文字幕制服av| 男女免费视频国产| 啦啦啦中文免费视频观看日本| 精品少妇黑人巨大在线播放| 又粗又硬又长又爽又黄的视频| 18禁观看日本| av网站免费在线观看视频| 午夜福利视频精品| 伊人久久精品亚洲午夜| 2018国产大陆天天弄谢| 熟妇人妻不卡中文字幕| 午夜福利在线观看免费完整高清在| 大香蕉97超碰在线| 看十八女毛片水多多多| 国产片内射在线| 丝袜喷水一区| 3wmmmm亚洲av在线观看| 曰老女人黄片| 精品国产露脸久久av麻豆| 亚洲国产精品一区三区| 国产色爽女视频免费观看| 色网站视频免费| 男女国产视频网站| 国产高清三级在线| 免费高清在线观看视频在线观看| 视频中文字幕在线观看| 国产淫语在线视频| 最近的中文字幕免费完整| 老司机影院毛片| 亚洲精品色激情综合| 999精品在线视频| 欧美日韩综合久久久久久| 一本色道久久久久久精品综合| 丰满饥渴人妻一区二区三| 久久99一区二区三区| 国产av国产精品国产| 两个人免费观看高清视频| 18在线观看网站| 久久 成人 亚洲| 熟女av电影| 日韩大片免费观看网站| 欧美亚洲日本最大视频资源| 日韩av在线免费看完整版不卡| 王馨瑶露胸无遮挡在线观看| 成人午夜精彩视频在线观看| 亚洲国产av新网站| 久久久久久久大尺度免费视频| 日本黄大片高清| 日韩av免费高清视频| tube8黄色片| 欧美精品一区二区免费开放| 亚洲人与动物交配视频| 日本黄大片高清| 一区二区三区免费毛片| 精品少妇黑人巨大在线播放| 日日撸夜夜添| 中文字幕亚洲精品专区| 国产黄频视频在线观看| 亚洲人与动物交配视频| 亚洲欧美精品自产自拍| 国语对白做爰xxxⅹ性视频网站| 日本黄色日本黄色录像| 丰满乱子伦码专区| 欧美 日韩 精品 国产| 极品人妻少妇av视频| 欧美 日韩 精品 国产| 亚洲经典国产精华液单| 亚洲情色 制服丝袜| 80岁老熟妇乱子伦牲交| 亚洲综合色网址| 亚洲av在线观看美女高潮| 国产精品无大码| 熟女人妻精品中文字幕| 欧美xxⅹ黑人| 亚洲精品国产av成人精品| 国产成人一区二区在线| av国产精品久久久久影院| 日韩成人伦理影院| 日韩av免费高清视频| av在线app专区| 久久久国产一区二区| 老女人水多毛片| 国产黄频视频在线观看| 亚洲不卡免费看| 精品久久久久久久久亚洲| 国产黄色视频一区二区在线观看| 大话2 男鬼变身卡| 欧美 亚洲 国产 日韩一| 国产白丝娇喘喷水9色精品| 国产综合精华液| 97超碰精品成人国产| 亚洲,一卡二卡三卡| 国产av码专区亚洲av| 男人爽女人下面视频在线观看| 久久久午夜欧美精品| 国产精品久久久久久久久免| 亚洲一级一片aⅴ在线观看| 人妻 亚洲 视频| 免费大片18禁| 美女脱内裤让男人舔精品视频| 精品人妻熟女av久视频| 日本色播在线视频| 涩涩av久久男人的天堂| 国产视频首页在线观看| 亚洲在久久综合| 久久精品熟女亚洲av麻豆精品| 亚洲精品日韩在线中文字幕| 大片免费播放器 马上看| 亚洲人成网站在线播| 最近中文字幕2019免费版| 国产男人的电影天堂91| 欧美精品亚洲一区二区| 日韩一区二区视频免费看| 欧美精品一区二区大全| 精品一区二区三区视频在线| .国产精品久久| av在线播放精品| 国产成人一区二区在线| 一级二级三级毛片免费看| 久久这里有精品视频免费| 国产男女内射视频| tube8黄色片| 99热网站在线观看| 91精品国产九色| 国产精品成人在线| 国产乱来视频区| 高清黄色对白视频在线免费看| 大片免费播放器 马上看| 十八禁网站网址无遮挡| 久久青草综合色| kizo精华| 日韩av免费高清视频| 久久久久久久久久成人| 黄片播放在线免费| 中国美白少妇内射xxxbb| 狂野欧美激情性xxxx在线观看| 午夜免费男女啪啪视频观看| 九色成人免费人妻av| 亚洲精品一区蜜桃| 久久精品久久久久久噜噜老黄| 国产乱来视频区| 少妇人妻 视频| 亚洲av不卡在线观看| 91aial.com中文字幕在线观看| 99热6这里只有精品| 亚洲精品亚洲一区二区| 欧美精品亚洲一区二区| 美女大奶头黄色视频| 亚洲国产成人一精品久久久| av福利片在线| 国产爽快片一区二区三区| 少妇人妻 视频| 亚洲美女搞黄在线观看| 少妇人妻 视频| 久久精品国产a三级三级三级| 成人国产麻豆网| 久久婷婷青草| 日韩av免费高清视频| 精品视频人人做人人爽| 自拍欧美九色日韩亚洲蝌蚪91| 丝袜喷水一区| 18禁裸乳无遮挡动漫免费视频| 在线观看人妻少妇| 日本vs欧美在线观看视频| 婷婷色综合www| 日产精品乱码卡一卡2卡三| 亚洲国产最新在线播放| 夫妻性生交免费视频一级片| 国产成人免费无遮挡视频| 大陆偷拍与自拍| 丝袜美足系列| 久久久国产精品麻豆| 久久影院123| kizo精华| 国产片内射在线| 国产爽快片一区二区三区| 这个男人来自地球电影免费观看 | 亚洲成色77777| 黑人欧美特级aaaaaa片| 国产毛片在线视频| 久久久久久久精品精品| 欧美人与善性xxx| 91久久精品国产一区二区三区| av视频免费观看在线观看| 欧美精品国产亚洲| 国产深夜福利视频在线观看| 亚洲av福利一区| 男人添女人高潮全过程视频| 少妇的逼好多水| 精品视频人人做人人爽| 一边亲一边摸免费视频| 亚洲精品久久成人aⅴ小说 | 26uuu在线亚洲综合色| 在线免费观看不下载黄p国产| 日本黄大片高清| 99热6这里只有精品| 亚洲色图 男人天堂 中文字幕 | 亚洲av男天堂| 久久久a久久爽久久v久久| 国产成人精品婷婷| 涩涩av久久男人的天堂| 狂野欧美激情性xxxx在线观看| 欧美人与善性xxx| 人人妻人人添人人爽欧美一区卜| www.av在线官网国产| 中文字幕av电影在线播放| 久久女婷五月综合色啪小说| 午夜福利影视在线免费观看| 天堂中文最新版在线下载| 国产成人aa在线观看| 国产黄色免费在线视频| 国产精品蜜桃在线观看| 亚洲av男天堂| 久久狼人影院| 青春草亚洲视频在线观看| 成年人免费黄色播放视频| 91精品伊人久久大香线蕉| 国产在线免费精品| xxxhd国产人妻xxx| 尾随美女入室| 丰满少妇做爰视频| 纵有疾风起免费观看全集完整版| 国产精品久久久久久精品电影小说| 日韩av不卡免费在线播放| 亚洲国产欧美日韩在线播放| 熟女电影av网| 夜夜骑夜夜射夜夜干| 九九在线视频观看精品| 中文乱码字字幕精品一区二区三区| 满18在线观看网站| 国产亚洲精品久久久com| a级毛片在线看网站| 韩国高清视频一区二区三区| 亚洲精品亚洲一区二区| 简卡轻食公司| 国产精品偷伦视频观看了| a级毛片免费高清观看在线播放| 91精品一卡2卡3卡4卡| 中文字幕精品免费在线观看视频 | 一级二级三级毛片免费看| 大话2 男鬼变身卡| 乱人伦中国视频| 精品少妇久久久久久888优播|