• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Magnetic Effect Versus Thermal Effect on Quark Matter with a Running Coupling at Finite Densities?

    2018-01-24 06:23:06LiYang楊麗andXinJianWen溫新建
    Communications in Theoretical Physics 2017年5期
    關(guān)鍵詞:辭舊歲銀蛇楊麗

    Li Yang(楊麗)and Xin-Jian Wen(溫新建)

    Institute of Theoretical Physics,Shanxi University,Taiyuan 030006,China

    1 Introduction

    The properties of the quark matter are of most importance in understanding many physical aspects of nature,such as the quark gluon plasma in the big bang of the early universe,the possible structure in the core of compact objects,and the hadronic quark phase transition in experiments,where the high temperature and high densities characterize the extreme conditions.Recently,the study of the quark matter phase diagram is extended to a strong magnetic field,[1?3]and further extended to a parallel electric and magnetic field background.[4]There is a possibility that the early universe contained a strong magnetic field.Present investigations in experiments or theory propose that a strong magnetic field could exist in the core of neutron stars and in the noncentral heavy ion collision experiments in the Relativistic Heavy Ion Collider or the Large Hadron Collider(LHC).[5]The magnitude of the magnetic field can reach the order of 1019G or higher in these conditions,which is much stronger than the value 1016G in some magnetars.[6]Theoretically,the physical upper limit of the strong magnetic field can be understood as large as 1018G by comparing the magnetic and gravitational energies.[7]The magnetic field in the interior of stars could go up to the maximum strengths of(1018?1020)G.[5,8]In the experiments at the LHC/CERN energy,it is possible to produce a magnetic field of 5×1019G,[5,9]where all the flavors could be lying in the lowest Landau level(LLL).These magnetic fields are short-lived at very high energies,but play an important role in understanding the equation of state of compact stars,the chiral magnetic effect,and the possible signatures of strong CP violation in experiments.[10?13]

    In addition to the influence on the stability of the quark matter,the presence of the external magnetic field will produce the temperature-magnetic phase diagram for QCD matter.[14?15]The isospin symmetry breaking is determined by both the temperature and the non-zero magnetic field.[16]The chiral symmetry phase transition will be intensively affected by the magnetic catalysis effect at finite temperature.The spins of the quarks are aligned along the direction of the induced magnetic field according to their helicities.As a result,the spin polarization effect is enhanced and the quark-antiquark pair couples strongly as the magnetic field increases.

    In previous works,we have studied the properties of two- flavor quark matter at zero temperature within the NJL model with a magnetic field dependent running coupling.It was shown that the dynamical quark masses as functions of the magnetic field strength are not monotonous in the fully chirally broken phase and the magnetized quark matter with the running coupling is more stable than that of the conventional constant coupling case.[27]In this paper,our aim is to investigate the influence of the magnetic effect and thermal effect on twoflavor quark matter under the strong magnetic field at if nite densities.

    This work is organized as follows.In Sec.2,a brief review of the NJL model description of quark matter in a strong magnetic field is provided.The magnetic- fielddependent running scalar coupling in the SU(2)version is introduced as well as the model parameters in the computation.In Sec.3,the numerical results and discussion are given with a detailed analysis of the competition of the magnetic effect and the thermal effect.The last section is a short summary.

    2 Thermodynamics of Magnetized Quark Matter in SU(2)NJL Model

    The Lagrangian density of the two- flavor NJL model in a strong magnetic field is given as

    whereψrepresents a flavor isodoublet(uanddquarks),the covariant derivativeDμ=?μ?iqiAμrepresents the coupling of the quarks to the electromagnetic field,while→τare isospin Pauli matrices. A sum over flavor and color degrees of freedom is implicit.In the mean- field approximation,[28]the dynamical quark mass is related to the condensation terms as

    where the quark condensates includeuanddquark contributions as The constituent mass depends on both condensates.Therefore,the same massMu=Md=Mis available foruanddquarks.Thecontribution from the quark flavoriis

    銀蛇歡舞辭舊歲,金馬奔騰迎新春,在這辭舊迎新的日子里,保定市力達(dá)塑業(yè)有限公司通過《中國水利》雜志向各界朋友致以節(jié)日的問候,祝大家在新的一年里身體健康、萬事如意、闔家幸福!

    whereaki=2?δk0andkiare respectively the degeneracy label and the Landau quantum number.The dimensionless quantityxiis defined asxi=M2/(2|qi|B).The fermion distribution function is

    The quark condensation is greatly strengthened by the factor|qiB|together with the dimension reductionD? 2.[31?32]

    The total thermodynamic potential density in the mean field approximation reads

    where the first term is the interaction term.In the second term,the quantity is defined asThe vacuum contribution to the thermodynamic potential is

    where the quantity?Λis defined asThe ultraviolet divergence in the vacuum partof the thermodynamic potential is removed by the momentum cutoff.The magnetic field and medium contributions are respectively

    According to the formulaSi= ?(??i/?T),we can obtain the entropy density from the flavoricontribution[30]

    Under strong magnetic fields,the system total pressure should be a sum of the matter pressure and the field pressure contribution.[29,33]But due to the requirement that the pressure should vanish in vacuum,the magnetic field termB2/2 is automatically absent in the normalized thermodynamic quantities.

    For asymmetric quark matter we should consider theβequilibrium by including the electron contribution under strong magnetic fields,where the charge neutrality condition 2nu?nd?3ne=0 is attained. The electron chemical potential,which is not independent and related to the quark chemical potential meet the conditions:μe=μd?μu.The thermodynamical quantities can√ be obtained by settingNc=1,M=meandThe total pressure withβequilibrium should be a summation going over theu,dquarks and electrons as

    According to the fundamental thermodynamic relation,the free energy density and the energy density at finite temperature are

    In principle,the interaction coupling constant between quarks should be solved by the renormalization group equation,or it can be phenomenologically expressed in an effective potential dependent on environmental variables.[34?36]In the infrared region,the nonperturbative effect becomes important and the dynamical gluon mass represents the confinement feature of QCD.[37]In the presence of a strong magnetic field,it is well known that the interaction constant shows an obvious decreasing behavior in addition to the enlargement of the gluon mass.[38]For suffciently strong magnetic fieldseB?Λ2QCD,it is reasonable to express the coupling constantαsrelated to the magnetic field.[26,31]Motivated by the work of Miransky and Shovkovy,[31]the similar ansatz of the magnetic- field-dependent coupling constant is introduced in the SU(2)NJL models.[25]

    with the parameters ΛQCD=200 MeV,α=2,β=0.000327.

    3 Numerical Results and Discussion

    In this work we consider the two- flavor quarks inβequilibrium state.Therefore the different chemical potentials ofuanddquarks should be solved,even though their dynamical masses are common from Eq.(2).In Fig.1,the dynamical masses ofuanddquarks are shown versus their chemical potentials at a fixed magnetic fieldB=2×1019G.The three different temperaturesT=(50,100,150)MeV are marked respectively by solid,dashed,and dotted lines from outside to inside.It can be clearly seen from the figure that the lower the temperature,the larger the critical chemical potential at which the firstorder phase transition happens.As the chemical potential increases,the dynamical masses decrease gradually until their masses approach to the chiral limit,which indicates a fully chiral symmetry restored phase.

    Fig.1 Dynamical masses of u and d quarks versus the chemical potential at different temperatures and a fixed magnetic field.

    Fig.2 (Color online)Dynamical quark mass versus the temperature for the fixed coupling G and the running coupling G′(eB)at a fixed density and three different magnetic fields.

    In Fig.2,we show that the dynamical quark masses vary with the temperature at a fixed densitynB=2ρ0.The three different magnetic fieldsB=5 × 1018G,B=2×1019G,B=5×1019G are marked respectively by black,blue,and red lines.For comparisons,the two kinds of the interactionsGandG′(eB)are taken in computations.It can be seen that the magnetic- fielddependent running couplingG′(eB)has a light influence on the values of the dynamical masses.The minor difference between the two kinds of couplings is expected to be enlarged under higher magnetic field.

    In order to study the spin polarization,the degeneracy factor is neglected.The Landau level quantum number is 2ki=2n+1?s.Thes= ±1 stand for the spin up and down respectively.We define the polarization parameter as[30]

    Charged particles in a magnetic field have a tendency to align their spin orientation along the direction of the external field.In Fig.3,the entropy per baryon is shown as a function of the temperature at different magnetic fieldsB=(1×1018,2×1019,5×1019)G from top to bottom.The entropy per baryon increases monotonically as the temperature increases,which is fully in agreement with the third law of thermodynamics.From the figure we can find that the magnetic field has a less influence on the entropy per baryon.The entropy behavior is mainly dominated by the temperature as expected.At the fixed temperature in Fig.5,the entropy per baryon is given as a function of the magnetic field.It is again verified that the entropy keeps constant for a given temperature,and feels less influence of the magnetic field below 1.5×1019G,at the field beyond which the entropy per baryon will have a slight oscillation behavior at lower temperature.

    Fig.3 The entropy per baryon versus the temperature is shown at the magnetic field B=1018G,2×1019G,5×1019G and the density nB=2ρ0.

    In Fig.4,we show the quark spin polarizations versus the magnetic fields at different temperaturesT=25 MeV,150 MeV and the densitiesnB=2ρ0,3ρ0withρ0=0.16 fm?3. The spin polarization effect is more noticeable for the low temperatureT=25 MeV and the densitynB=2ρ0indicated by the dashed line.The maximum of the absolute value is|Δi|=1.Specially at the magnetic field larger than 1019G,a lot of quarks are collected into the LLL,which is indicated by the two horizonal lines labeled by Δu=+1 and Δd= ?1.However,at a higher temperature,the thermal effect makes the lines gradually concentrate to the central region and the spin polarization effect becomes weaker and weaker.

    Fig.4 Spin polarizations Δuand Δdversus the magnetic field at two different temperatures T=25,150 MeV and two different density nB=2ρ0,3ρ0.

    Fig.5 The entropy per baryon versus the magnetic field is shown at three different temperatures T=(25,100,and 150)MeV and the density nB=2ρ0.

    where the signs“+”and“?”refer the positively and negatively charged particles respectively.is the number density in the LLL fori-type quarks.So the absolute value of the spin polarization is directly related to the ratio of the number density on the LLL and the total density,then all quarks are in the LLL.In Fig.6,the ratiosofu-andd-quarks versus the temperature are shown.The different densitiesnB=2ρ0,3ρ0are represented by solid and dotted lines

    In a strong magnetic field,the each Landau level is occupied by the particles with two spin-directions in addition to the zeroth Landau level,which is not spin-degenerated.So in Eq.(17),the difference of the number density is directly denominated by the zeroth Landau level,namely the LLL.For positively charged quarks,the LLL is occupied by the spin-up particle,and for negatively charged quarks by the spin-down particle.Now the spin polarization in Eq.(17)can be simplified by a ratio of the number density as respectively.The ratio/nuofuquark is larger than that of thedquark because of the larger electric charge ofuquarks.Moreover,it is easily seen that the ratio is larger at a lower temperature and a lower baryon number density,where the magnetic field becomes very important.However,as the temperature increases,the ratio will decrease and the spin polarization becomes weaker until the thermal effect dominates the structure of the matter.

    Fig.6 The particle number density ratios/nifor uand d-quarks versus the temperature are indicated by solid and dotted lines respectively.For a given magnetic field B=5×1018G,the two baryon densities nB=2ρ0,3ρ0are studied.

    For three values of the magnetic field,we show the ratioatnB=2ρ0in Fig.7,where we can find two extreme cases.The first case is under the magnetic field of the order 1018G indicated by the red lines,where the polarization effect is not important in the whole range of temperature.On the contrary,the second case is in a stronger magnetic field of order 5×1019G,where the polarization effect will become more important.In particular,the ratiois very close to 1 for lower temperatureT=25 MeV,where a mount of quarks are in the LLL.Therefore the corresponding LLL approximation is exactly suitable for the condition of the strong magnetic if elds and low temperature.

    Undoubtedly,the spin polarization is enhanced by the magnetic field larger than 1019G and the quarks would be in a uniform arrangement with the same spin orientation.The fully polarized state means that all quarks would be lying in the LLL.In Fig.8,we show the ratioversus the magnetic field at three temperaturesT=(25,100,150)MeV respectively andnB=2ρ0.From the figure,we can see that the quark number density ratiois an increasing function of the magnetic field:from the non-polarized stateto the fully polarized stateindicated by the solid horizonal line.In other words,the quark number in the zeroth Landau level has a remarkable increase at the magnetic field about 1019G.When the magnetic field reached the threshold value,almost alluquark are lying in the LLL.The threshold value of the magnetic field foris larger because ofdquark’s smaller electric charge.

    Fig.7 The ratio /nifor u-,d-quark versus the temperature for nB=2ρ0and B=(1018,2×1019,5×1019)G from bottom to top marked by red,blue,and black lines respectively.

    Fig.8 The quark number density ratio n0i/niof u,d quark versus the magnetic field B is shown at T=(25,100,150)MeV respectively.The baryon number density is fixed as nB=2ρ0.

    The free energy per baryon is an important quantity to characterize the stability of the quark matter.In the SU(2)NJL model,Fig.9 gives the energy and free energy per baryon versus baryon number density for different temperatures at theB=1×1018G.In the small density region,the free energy per baryon on left panel is clearly an increasing function of the number density,while the energy per baryon is a decreasing function.In the middle range of the density,there is a local minimum value for both the energy and free energy.At a given density,the higher temperature will lead to a smaller free energy and a larger energy per baryon.

    To illustrate the fundamental thermodynamic relationE=F+TSin fluenced by the magnetic effect and thermal effect,we show the energy and free energy per baryon as a function of the temperature for three different magnetic fields in Fig.10.It is obvious that the energy is an increasing function of temperature whereas the free energy decreases with increasing temperature.Importantly,we can find that stronger magnetic field will lead to a lower free energy per baryon,which means that a proper strong magnetic field can enhance the stability of quark matter.However,we should notice that for more higher magnetic fields,the quark matter may be located in the fully chirally broken phase,where the calculation would give a larger free energy.The relevant discussion at zero temperature can be found in Fig.4 in Ref.[39].According to the fundamental thermodynamic relation,the energy and free energy coincide with each other at zero temperature.

    Fig.9 The free energy per baryon and energy per baryon at T=(50,100,150)MeV as a function of the baryon number density for B=1×1018G.

    Fig.10 The free energy and the energy per baryon versus the temperature at the four different magnetic field values and the density nB=2ρ0.

    The free energy versus the temperature is shown at a if xed densitynB=2ρ0and two different magnetic fieldsB=1×1018andB=5×1019in Fig.11.The constant couplingGand the running couplingG′(eB)are indicated by the solid and dotted lines respectively.The effect of the magnetic field can hardly be seen from the very close lines.Especially at the fieldB=1×1018G,the two red lines forGandG′(eB)overlap.But it can be numerically concluded that the quark matter is more stable under the running couplingG′(eB)in larger magnetic field.At both the low temperature and the strong magnetic field,the running coupling effect becomes more clear.

    Fig.11 The free energy per baryon versus the temperature at two different magnetic field values for the couplings G and G′(eB).

    4 Summary

    In this paper we have studied the magnetic effect and the thermal effect on the quark matter in a strong magnetic field within the SU(2)NJL model.The interaction is described by the magnetic- field-dependent coupling.As the temperature or density increases,the chiral restoration transition happens.By comparison with the constant coupling case,the dynamical masses change a little under the running couplingG′(eB).The spin polarization is shown as a function of the magnetic field.It can be further understood by the ratio of the quark number in the LLL and the total quark number.We focus on the discussion of the competition of the magnetic effect and thermal effect by investigating the spin polarization,the ratioand the entropy per baryon.In a suffcient strong magnetic field,a lot of quarks are lying in the LLL due to the large degeneracy factor|eB|.But higher temperatures will excite the quarks to higher Landau levels,and eventually make the magnetic effect less and less important.It is graphically demonstrated that for the magnetic field range from 1017G to 1019G,the quark matter would undergo a transition from the non-polarized state to fully polarized state,where all quarks are in the LLL.Because theuquark has a larger charge thandquark,it is earlier collected in the LLL as the magnetic field increases.Finally,we show the energy and the free energy per baryon varying with the density,the temperature,and the magnetic field.It is found that the magnetic field of a proper value can lower the free energy per baryon and enhance the stability of quark matter to some extent.

    [1]V.A.Miransky and I.A.Shovkovy,Phys.Rep.576(2015)1;J.O.Andersen,W.R.Naylor,and A.Tranberg,Rev.Mod.Phys.88(2016)025001.

    [2]V.P.Gusynin,V.A.Miransky,and I.A.Shovkovy,Phys.Rev.Lett.73(1994)3499;E.J.Ferrer and V.de la Incera,Phys.Lett.B 481(2000)287;N.Mueller and J.M.Pawlowski,Phys.Rev.D 91(2015)116010.

    [3]R.G.Felipe and A.P.Martínez,J.Phys.G 36(2009)075202;R.González Felipe,D.Manreza Paret,and A.Pérez Martínez,Eur.Phys.J A 47(2011)1.

    [4]M.Ruggieri and G.X.Peng,Phys.Rev.D 19(2016)094021.

    [5]D.E.Kharzeev,L.D.McLerran,and H.J.Warringa,Nucl.Phys.A 803(2008)227.

    [6]C.Thompson and R.C.Duncan,Astrophys.J.392(1992)L9.

    [7]G.Chanmugam,Annu.Rev.Astron.Astrophys.30(1992)143;D.Lai,Rev.Mod.Phys.73(2001)629.

    [8]L.Dong and S.L.Shapiro,Astrophys.J.383(1991)745.

    [9]V.Voronyuk,V.D.Toneev,W.Cassing,E.L.Bratkovskaya,V.P.Konchakovski,and S.A.Voloshin,Phys.Rev.C 83(2011)054911.

    [10]K.Fukushima,D.E.Kharzeev,and H.J.Warringa,Phys.Rev.D 78(2008)074033;D.E.Kharzeev and H.J.Warringa,Phys.Rev.D 80(2009)034028.

    [11]D.Kharzeev,R.D.Pisarski,and M.H.G.Tytgat,Phys.Rev.Lett.81(1998)512;D.Kharzeev and R.D.Pisarski,Phys.Rev.D 61(2000)111901(R);K.Buckley,T.Fugleberg,and A.Zhitnitsky,Phys.Rev.Lett.84(2000)4814;S.A.Voloshin,Phys.Rev.C 62(2000)044901;70(2004)057901;D.Kharzeev,Phys.Lett.B 633(2006)260;D.Kharzeev and A.Zhitnitsky,Nucl.Phys.A 797(2007)67.

    [12]D.E.Kharzeev,Nucl.Phys.A 830(2009)543c;Ann.Phys.(N.Y.)325(2010)205;K.Fukushima,D.E.Kharzeev,and H.J.Warringa,Nucl.Phys.A 836(2010)311;Phys.Rev.Lett.104(2010)212001.

    [13]V.Skokov,A.Illarionov,and V.Toneev,Int.J.Mod.Phys.A 24(2009)5925.

    [14]A.J.Mizher,M.N.Chernodub,and E.S.Fraga,Phys.Rev.D 82(2010)105016.

    [15]R.L.S.Farias,V.S.Timóteo,S.S.Avancini,M.B.Pinto,and G.Krein,arXiv:1603.03847[hep-ph].

    [16]S.Nam and C.W.Kao,Phys.Rev.D 83(2011)096009.

    [17]D.P.Menezes,M.B.Pinto,and C.Providência,Phys.Rev.C 91(2015)065205.

    [18]D.Ebert,K.G.Klimenko,M.A.Vdovichenko,and A.S.Vshivtsev,Phys.Rev.D 61(1999)025005.

    [19]P.G.Allen and N.N.Scoccola,Phys.Rev.D 88(2013)094005.

    [20]T.Inagaki,D.Kimura,and T.Murata,Prog.Theor.Phys.111(2004)371.

    [21]A.G.Grunfeld,D.P.Menezes,M.B.Pinto,and N.N.Scoccola,Phys.Rev.D 90(2014)044024.

    [22]F.Preis,A.Rebhan,and A.Schmitt,J.High Energy Phys.03(2011)033;Lect.Notes Phys.871(2013)51.

    [23]G.S.Bali,F.Bruckmann,G.Endrodi,Z.Fodor,S.D.Katz,S.Krieg,A.Schafer,and K.K.Szabo,J.High Energy Phys.1202(2012)044;G.S.Bali,F.Bruckmann,G.Endrodi,Z.Fodor,S.D.Katz,S.Krieg,and A.Schafer,Phys.Rev.D 86(2012)071502(R).

    [24]V.Bernard and U.G.Meissner,Annals Phys.206(1991)50;M.B.Pinto,Phys.Rev.D 50(1994)7673.

    [25]R.L.S.Farias,K.P.Gomes,G.Krein,and M.B.Pinto,Phys.Rev.C 90(2014)025203.

    [26]M.Ferreira,P.Costa,O.Lourenco,T.Frederico,and C.Providência,Phys.Rev.D 89(2014)116011.

    [27]C.F.Li,L.Yang,X.J.Wen,and G.X.Peng,Phys.Rev.D 93(2016)054005.

    [28]C.Ratti,Europhys.Lett.61(2003)314;M.Buballa and M.Oertel,Phys.Lett.B 457(1999)261.

    [29]D.P.Menezes,M.B.Pinto,S.S.Avancini,A.P.Martínez,and C.Providência,Phys.Rev.C 79(2009)035807;M.Ferreira,P.Costa,D.P.Menezes,C.Providência,and N.N.Scoccola,Phys.Rev.D 89(2014)016002.

    [30]S.S.Avancini,D.P.Menezes,and C.Providência,Phys.Rev.C 83(2011)065805.

    [31]V.A.Miransky and I.A.Shovkovy,Phys.Rev.D 66(2002)045006.

    [32]T.Kojo and N.Su,Nucl.Phys.A 931(2014)763.

    [33]J.L.Noronha and I.A.Shovkovy,Phys.Rev.D 76(2007)105030.E.J.Ferrer,V.de la Incera,J.P.Keith,I.Portillo,and P.L.Springsteen,Phys.Rev.C 82(2010)065802;L.Paulucci,E.J.Ferrer,V.de la Incera,and J.E.Horvath,Phys.Rev.D 83(2011)043009.

    [34]J.L.Richardson,Phys.Lett.B 82(1979)272.

    [35]M.Sinha,X.G.Huang,and A.Sedrakian,Phys.Rev.D 88(2013)025008.

    [36]J.F.Xu,G.X.Peng,F.Liu,D.F.Hou,and L.W.Chen,Phys.Rev.D 92(2015)025025.

    [37]A.A.Natale,Nucl.Phys.B Proc.Suppl.199(2010)178.

    [38]E.J.Ferrer,V.de la Incera,and X.J.Wen,Phys.Rev.D 91(2015)054006.

    [39]X.J.Wen,S.Z.Su,D.H.Yang,and G.X.Peng,Phys.Rev.C 86(2012)034006.

    猜你喜歡
    辭舊歲銀蛇楊麗
    跨年
    童畫世界
    過跨海大橋
    岷峨詩稿(2022年4期)2022-09-02 22:10:28
    迎新年
    燕歸巢(外一首)
    草堂(2020年11期)2020-11-18 11:21:35
    辭舊歲,迎新春,舉杯為健康
    從“銀蛇”到名醫(yī)
    新民周刊(2018年45期)2018-12-01 04:52:58
    長江叢刊(2018年22期)2018-11-14 22:44:32
    白夜
    七年級上學(xué)期數(shù)學(xué)期末檢測題(A)
    国模一区二区三区四区视频| 国产av一区在线观看免费| 午夜免费男女啪啪视频观看| 精品一区二区三区人妻视频| 久久精品影院6| 91精品伊人久久大香线蕉| 干丝袜人妻中文字幕| 国产探花在线观看一区二区| 国产免费福利视频在线观看| 又粗又硬又长又爽又黄的视频| 丰满少妇做爰视频| 午夜久久久久精精品| 国产综合懂色| 亚洲在久久综合| 亚洲欧美精品自产自拍| 国产男人的电影天堂91| 99在线视频只有这里精品首页| 高清毛片免费看| 久久久久国产网址| 久久亚洲精品不卡| 一区二区三区免费毛片| 成年av动漫网址| 国产精品乱码一区二三区的特点| 久久精品国产自在天天线| 国产黄片视频在线免费观看| 九九爱精品视频在线观看| 少妇熟女aⅴ在线视频| 午夜福利网站1000一区二区三区| 国产精品三级大全| 麻豆乱淫一区二区| 欧美人与善性xxx| 一区二区三区高清视频在线| 成人特级av手机在线观看| 在线免费十八禁| 大又大粗又爽又黄少妇毛片口| 国产极品精品免费视频能看的| av免费在线看不卡| 亚洲国产精品成人久久小说| 国产成人午夜福利电影在线观看| 欧美日韩在线观看h| 听说在线观看完整版免费高清| 人妻少妇偷人精品九色| 国产探花在线观看一区二区| 午夜福利高清视频| a级毛片免费高清观看在线播放| 久99久视频精品免费| 成人美女网站在线观看视频| 午夜福利网站1000一区二区三区| 亚洲国产欧美人成| 国产精品美女特级片免费视频播放器| 91精品一卡2卡3卡4卡| 亚洲av中文av极速乱| 九九热线精品视视频播放| 欧美xxxx性猛交bbbb| av专区在线播放| 边亲边吃奶的免费视频| 久久久精品欧美日韩精品| 午夜激情福利司机影院| 欧美激情国产日韩精品一区| 日韩精品有码人妻一区| 日本一二三区视频观看| 欧美潮喷喷水| 2021天堂中文幕一二区在线观| 中文字幕熟女人妻在线| 人妻系列 视频| 久久久久久久久中文| 日本黄大片高清| 欧美高清性xxxxhd video| 午夜视频国产福利| 91aial.com中文字幕在线观看| 18禁在线播放成人免费| 女的被弄到高潮叫床怎么办| 精品不卡国产一区二区三区| 黑人高潮一二区| 2021少妇久久久久久久久久久| 99久久成人亚洲精品观看| 成人亚洲欧美一区二区av| 草草在线视频免费看| 亚洲精品影视一区二区三区av| 直男gayav资源| 亚洲成人av在线免费| 美女国产视频在线观看| 男人和女人高潮做爰伦理| 成人美女网站在线观看视频| 日本免费一区二区三区高清不卡| 国国产精品蜜臀av免费| 一级黄片播放器| 国产精品不卡视频一区二区| 欧美bdsm另类| 国内精品宾馆在线| 国产激情偷乱视频一区二区| 日韩欧美精品v在线| 校园人妻丝袜中文字幕| 成人亚洲精品av一区二区| 岛国毛片在线播放| 精品久久久久久电影网 | 精品熟女少妇av免费看| 亚洲精品国产成人久久av| 久久精品国产亚洲网站| 女人久久www免费人成看片 | 国产又色又爽无遮挡免| 色噜噜av男人的天堂激情| 欧美成人a在线观看| 国产乱人偷精品视频| 国产精品久久久久久久电影| 男女国产视频网站| 亚洲国产成人一精品久久久| 国产成人精品久久久久久| 国产国拍精品亚洲av在线观看| 麻豆成人午夜福利视频| 特级一级黄色大片| 国产私拍福利视频在线观看| 久99久视频精品免费| 国产精品不卡视频一区二区| 久久久成人免费电影| 欧美xxxx黑人xx丫x性爽| 男女那种视频在线观看| 日韩一本色道免费dvd| 我要看日韩黄色一级片| 又爽又黄a免费视频| 久久精品91蜜桃| 国产黄a三级三级三级人| 秋霞在线观看毛片| 久久久久久久久久久免费av| 九色成人免费人妻av| 99热6这里只有精品| 亚洲性久久影院| 男人舔女人下体高潮全视频| 午夜精品在线福利| 麻豆一二三区av精品| 亚洲精品,欧美精品| 一夜夜www| 国产久久久一区二区三区| 免费观看在线日韩| 观看美女的网站| 亚洲不卡免费看| 日本-黄色视频高清免费观看| 精品久久国产蜜桃| 日本三级黄在线观看| 免费观看在线日韩| 青春草亚洲视频在线观看| 国产单亲对白刺激| 你懂的网址亚洲精品在线观看 | 天天一区二区日本电影三级| 国产成年人精品一区二区| 午夜爱爱视频在线播放| 人妻制服诱惑在线中文字幕| 亚洲内射少妇av| 国产视频内射| 夜夜看夜夜爽夜夜摸| 天堂√8在线中文| 免费在线观看成人毛片| 国产精品一区二区在线观看99 | 超碰av人人做人人爽久久| 久久精品国产99精品国产亚洲性色| 三级经典国产精品| 国产视频首页在线观看| 亚洲国产精品久久男人天堂| 日韩精品青青久久久久久| 一区二区三区四区激情视频| 一级爰片在线观看| 亚洲成人中文字幕在线播放| 精品欧美国产一区二区三| 赤兔流量卡办理| 国产 一区精品| 亚洲婷婷狠狠爱综合网| 欧美高清成人免费视频www| 久久精品国产自在天天线| 国产亚洲av嫩草精品影院| 亚洲成av人片在线播放无| 久久精品夜夜夜夜夜久久蜜豆| 禁无遮挡网站| 亚洲成av人片在线播放无| 成人国产麻豆网| 亚洲国产精品成人久久小说| 一个人看的www免费观看视频| 亚洲av福利一区| 桃色一区二区三区在线观看| 老司机影院毛片| 变态另类丝袜制服| 极品教师在线视频| 91久久精品电影网| 18禁在线无遮挡免费观看视频| 联通29元200g的流量卡| 国产精品无大码| 国模一区二区三区四区视频| kizo精华| 国产男人的电影天堂91| 欧美成人午夜免费资源| 日日啪夜夜撸| 午夜精品在线福利| 国产黄片美女视频| 一级二级三级毛片免费看| 又爽又黄a免费视频| 亚洲精品亚洲一区二区| 久久国内精品自在自线图片| 日韩在线高清观看一区二区三区| 在线免费观看的www视频| 日韩一区二区三区影片| 国语自产精品视频在线第100页| 少妇的逼好多水| 嘟嘟电影网在线观看| 高清午夜精品一区二区三区| 狠狠狠狠99中文字幕| 亚洲在线自拍视频| 亚洲欧美成人综合另类久久久 | 美女大奶头视频| 99久久精品国产国产毛片| 亚洲成av人片在线播放无| 精品一区二区免费观看| 中文字幕精品亚洲无线码一区| .国产精品久久| 国产亚洲午夜精品一区二区久久 | 干丝袜人妻中文字幕| 小说图片视频综合网站| 成人午夜高清在线视频| 小蜜桃在线观看免费完整版高清| 久久久成人免费电影| 麻豆乱淫一区二区| 成年女人看的毛片在线观看| 观看美女的网站| 夜夜爽夜夜爽视频| 哪个播放器可以免费观看大片| 青春草亚洲视频在线观看| 亚洲国产精品久久男人天堂| 成人毛片a级毛片在线播放| 精品午夜福利在线看| 久久久国产成人精品二区| 日本-黄色视频高清免费观看| 日本免费a在线| 亚洲av成人精品一区久久| 日本午夜av视频| 成人av在线播放网站| 99久久九九国产精品国产免费| 成年女人永久免费观看视频| 亚洲在线自拍视频| 国产成人91sexporn| 青春草国产在线视频| 亚洲中文字幕日韩| 美女内射精品一级片tv| 内射极品少妇av片p| 长腿黑丝高跟| 真实男女啪啪啪动态图| 菩萨蛮人人尽说江南好唐韦庄 | 身体一侧抽搐| 日韩av在线大香蕉| 国产精品不卡视频一区二区| 成年女人永久免费观看视频| 成人美女网站在线观看视频| 日日撸夜夜添| 别揉我奶头 嗯啊视频| 蜜臀久久99精品久久宅男| 美女cb高潮喷水在线观看| 久久鲁丝午夜福利片| 国产成人福利小说| 午夜久久久久精精品| 日本色播在线视频| 最近的中文字幕免费完整| 波野结衣二区三区在线| 日本av手机在线免费观看| 一级毛片aaaaaa免费看小| 九九久久精品国产亚洲av麻豆| 韩国av在线不卡| 中文亚洲av片在线观看爽| 精品免费久久久久久久清纯| 日韩成人伦理影院| 国产亚洲91精品色在线| 国产精品麻豆人妻色哟哟久久 | 久久6这里有精品| 成人欧美大片| АⅤ资源中文在线天堂| 久久久久久久亚洲中文字幕| 91aial.com中文字幕在线观看| 久久精品久久精品一区二区三区| 国产精品久久久久久久久免| 国产在线男女| 2021天堂中文幕一二区在线观| 嫩草影院精品99| 亚洲精品国产av成人精品| 老司机福利观看| 国产成人一区二区在线| 美女国产视频在线观看| 桃色一区二区三区在线观看| 高清午夜精品一区二区三区| 一级毛片久久久久久久久女| 亚洲在线观看片| 久久国产乱子免费精品| 好男人在线观看高清免费视频| 国产毛片a区久久久久| 变态另类丝袜制服| 91精品国产九色| 日本熟妇午夜| 亚洲熟妇中文字幕五十中出| 蜜桃亚洲精品一区二区三区| 亚洲成人av在线免费| 色综合亚洲欧美另类图片| 在现免费观看毛片| 免费一级毛片在线播放高清视频| 国产精品人妻久久久影院| 国产精品永久免费网站| 亚洲av成人精品一二三区| 桃色一区二区三区在线观看| 亚洲真实伦在线观看| 国产亚洲av嫩草精品影院| h日本视频在线播放| 听说在线观看完整版免费高清| 成人欧美大片| 国产亚洲午夜精品一区二区久久 | 一个人观看的视频www高清免费观看| 国产精品国产三级国产专区5o | 最近中文字幕高清免费大全6| 九九爱精品视频在线观看| 边亲边吃奶的免费视频| 搡老妇女老女人老熟妇| 亚洲av成人精品一区久久| 神马国产精品三级电影在线观看| 乱人视频在线观看| 建设人人有责人人尽责人人享有的 | 99久久中文字幕三级久久日本| 99在线视频只有这里精品首页| 国产大屁股一区二区在线视频| 精品一区二区三区人妻视频| 国产男人的电影天堂91| 干丝袜人妻中文字幕| 亚洲成av人片在线播放无| 男女下面进入的视频免费午夜| 能在线免费看毛片的网站| 99热精品在线国产| 久久久久久九九精品二区国产| 国产一区二区亚洲精品在线观看| 国产中年淑女户外野战色| 不卡视频在线观看欧美| 美女黄网站色视频| 亚洲天堂国产精品一区在线| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 精品久久久久久久末码| 国产精品一区二区在线观看99 | 国产片特级美女逼逼视频| 你懂的网址亚洲精品在线观看 | 男女啪啪激烈高潮av片| 免费黄色在线免费观看| 蜜臀久久99精品久久宅男| 在线免费观看不下载黄p国产| 欧美一区二区精品小视频在线| 好男人在线观看高清免费视频| 日本黄色视频三级网站网址| 大香蕉97超碰在线| 寂寞人妻少妇视频99o| 超碰av人人做人人爽久久| 精品久久久久久久久久久久久| 我的老师免费观看完整版| 男插女下体视频免费在线播放| 黄色日韩在线| 最后的刺客免费高清国语| 黄色日韩在线| 午夜免费激情av| 插逼视频在线观看| 亚洲精品国产av成人精品| 熟女电影av网| 中文乱码字字幕精品一区二区三区 | 日韩av不卡免费在线播放| 国产精品久久久久久精品电影小说 | 日韩av在线大香蕉| 黄色日韩在线| 男插女下体视频免费在线播放| 插逼视频在线观看| 国产精品熟女久久久久浪| 亚洲中文字幕日韩| 久久久久网色| 日韩一本色道免费dvd| 亚洲国产色片| 边亲边吃奶的免费视频| 三级毛片av免费| 国产精品综合久久久久久久免费| 热99re8久久精品国产| 亚洲精品自拍成人| 女人被狂操c到高潮| 欧美日韩在线观看h| 成人二区视频| 久久亚洲精品不卡| 国产亚洲av片在线观看秒播厂 | 国产高清国产精品国产三级 | 91在线精品国自产拍蜜月| 伊人久久精品亚洲午夜| 男女视频在线观看网站免费| 全区人妻精品视频| 亚洲国产精品成人久久小说| 男人舔奶头视频| 日韩一区二区三区影片| 日本色播在线视频| 亚洲图色成人| 97超视频在线观看视频| 成人一区二区视频在线观看| 嫩草影院精品99| 国产成人一区二区在线| 日日摸夜夜添夜夜爱| 国语自产精品视频在线第100页| 美女内射精品一级片tv| 日本-黄色视频高清免费观看| 男人和女人高潮做爰伦理| 成人毛片60女人毛片免费| 精品人妻熟女av久视频| 久久99精品国语久久久| 免费看日本二区| 少妇丰满av| 国产乱人偷精品视频| 最近最新中文字幕免费大全7| 又黄又爽又刺激的免费视频.| 国产精品国产三级国产av玫瑰| 一级爰片在线观看| 久久久精品94久久精品| 久久精品国产亚洲av涩爱| 久久6这里有精品| 免费av不卡在线播放| 一区二区三区免费毛片| 寂寞人妻少妇视频99o| 乱系列少妇在线播放| 精品人妻偷拍中文字幕| 精品无人区乱码1区二区| 黄片无遮挡物在线观看| 蜜桃久久精品国产亚洲av| 热99在线观看视频| 国产日韩欧美在线精品| 一级毛片电影观看 | 国产精品三级大全| 国产午夜精品论理片| 国产黄片视频在线免费观看| .国产精品久久| 国产亚洲精品久久久com| 欧美一区二区精品小视频在线| 一级黄片播放器| 国产真实伦视频高清在线观看| 亚洲欧美精品综合久久99| 在线观看一区二区三区| 国产综合懂色| 久久久久久国产a免费观看| 尾随美女入室| 国产精品久久久久久av不卡| 高清午夜精品一区二区三区| 最近2019中文字幕mv第一页| 国产精品福利在线免费观看| 亚洲国产成人一精品久久久| 别揉我奶头 嗯啊视频| 高清日韩中文字幕在线| av专区在线播放| 欧美性猛交╳xxx乱大交人| 久久鲁丝午夜福利片| 欧美成人一区二区免费高清观看| 边亲边吃奶的免费视频| 国产69精品久久久久777片| 色噜噜av男人的天堂激情| 国产在视频线在精品| 国产高清视频在线观看网站| 国产亚洲精品av在线| 欧美激情在线99| 国产熟女欧美一区二区| 人妻少妇偷人精品九色| 精品人妻视频免费看| 亚洲精品一区蜜桃| 亚洲精品色激情综合| 小蜜桃在线观看免费完整版高清| av视频在线观看入口| 九九在线视频观看精品| 国产人妻一区二区三区在| 国产三级在线视频| 99久久成人亚洲精品观看| 国产av不卡久久| av在线亚洲专区| 色播亚洲综合网| 国产极品精品免费视频能看的| 午夜激情福利司机影院| 午夜a级毛片| 亚洲av成人精品一区久久| 综合色av麻豆| 色综合色国产| 国产片特级美女逼逼视频| 国产av在哪里看| 亚洲人成网站在线播| 国产成年人精品一区二区| 免费av观看视频| 欧美zozozo另类| 夜夜看夜夜爽夜夜摸| 午夜激情欧美在线| 色噜噜av男人的天堂激情| 国产成人a区在线观看| 舔av片在线| 精品酒店卫生间| 99久国产av精品国产电影| 日韩av在线免费看完整版不卡| 国产精品久久久久久久久免| 国产欧美另类精品又又久久亚洲欧美| 久久久欧美国产精品| 丝袜美腿在线中文| 大话2 男鬼变身卡| 啦啦啦啦在线视频资源| 日韩大片免费观看网站 | 亚洲18禁久久av| 日韩欧美在线乱码| 18禁在线无遮挡免费观看视频| 国产高潮美女av| 国产一级毛片在线| 国产精品国产三级国产av玫瑰| 国产成人午夜福利电影在线观看| 国产成人a∨麻豆精品| 午夜福利网站1000一区二区三区| 嘟嘟电影网在线观看| 免费不卡的大黄色大毛片视频在线观看 | 久久久久免费精品人妻一区二区| 97热精品久久久久久| 久久久久久九九精品二区国产| 欧美成人精品欧美一级黄| 最近最新中文字幕免费大全7| 久久久欧美国产精品| 亚洲婷婷狠狠爱综合网| 男人舔奶头视频| 久久精品国产亚洲av天美| 国产av不卡久久| 天天一区二区日本电影三级| 老司机影院成人| 国产午夜精品久久久久久一区二区三区| 一卡2卡三卡四卡精品乱码亚洲| 爱豆传媒免费全集在线观看| 日韩在线高清观看一区二区三区| 一边摸一边抽搐一进一小说| 日韩精品青青久久久久久| 亚洲美女搞黄在线观看| 色综合站精品国产| 网址你懂的国产日韩在线| 水蜜桃什么品种好| 搡女人真爽免费视频火全软件| 联通29元200g的流量卡| 日日摸夜夜添夜夜爱| 日韩欧美 国产精品| 久久草成人影院| 中文精品一卡2卡3卡4更新| 两性午夜刺激爽爽歪歪视频在线观看| 国产精华一区二区三区| 久久99蜜桃精品久久| 国产高清三级在线| 一个人免费在线观看电影| 亚洲第一区二区三区不卡| 婷婷色av中文字幕| 五月玫瑰六月丁香| 黄色配什么色好看| 国产美女午夜福利| 日韩制服骚丝袜av| 国产亚洲精品av在线| 午夜免费激情av| 国产真实伦视频高清在线观看| 国产精品麻豆人妻色哟哟久久 | 18禁动态无遮挡网站| 高清av免费在线| 欧美不卡视频在线免费观看| 欧美xxxx性猛交bbbb| 精品一区二区免费观看| 日韩成人伦理影院| 亚洲最大成人手机在线| 国产 一区精品| 国产探花在线观看一区二区| 色播亚洲综合网| 亚洲精品亚洲一区二区| 乱码一卡2卡4卡精品| 观看美女的网站| 两个人的视频大全免费| 亚洲不卡免费看| 狂野欧美激情性xxxx在线观看| 最近中文字幕2019免费版| a级毛色黄片| 国产成年人精品一区二区| 天天一区二区日本电影三级| 午夜爱爱视频在线播放| 久久99热这里只有精品18| 国产伦理片在线播放av一区| 国产精品一区www在线观看| 欧美又色又爽又黄视频| 18禁动态无遮挡网站| 97在线视频观看| 精品国产一区二区三区久久久樱花 | a级毛色黄片| 国产欧美另类精品又又久久亚洲欧美| 97超碰精品成人国产| 免费观看的影片在线观看| 深夜a级毛片| av专区在线播放| 丰满少妇做爰视频| 久久国产乱子免费精品| 国产伦精品一区二区三区四那| 欧美成人一区二区免费高清观看| 亚洲成人精品中文字幕电影| 免费人成在线观看视频色| 性插视频无遮挡在线免费观看| 亚洲精品日韩在线中文字幕| 国产精品麻豆人妻色哟哟久久 | 别揉我奶头 嗯啊视频| 深爱激情五月婷婷| 国产精品一区二区性色av| 国产久久久一区二区三区| 国产精品女同一区二区软件| 亚洲精品aⅴ在线观看| 在线播放国产精品三级| 校园人妻丝袜中文字幕| 日韩人妻高清精品专区| 免费黄网站久久成人精品| 青春草亚洲视频在线观看| 麻豆久久精品国产亚洲av| 别揉我奶头 嗯啊视频| 欧美性猛交╳xxx乱大交人| 永久免费av网站大全| 尤物成人国产欧美一区二区三区| 天美传媒精品一区二区| 久久久亚洲精品成人影院| 丝袜喷水一区| 一个人观看的视频www高清免费观看| 人人妻人人澡欧美一区二区| 亚洲在线观看片|