• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Magnetic Effect Versus Thermal Effect on Quark Matter with a Running Coupling at Finite Densities?

    2018-01-24 06:23:06LiYang楊麗andXinJianWen溫新建
    Communications in Theoretical Physics 2017年5期
    關(guān)鍵詞:辭舊歲銀蛇楊麗

    Li Yang(楊麗)and Xin-Jian Wen(溫新建)

    Institute of Theoretical Physics,Shanxi University,Taiyuan 030006,China

    1 Introduction

    The properties of the quark matter are of most importance in understanding many physical aspects of nature,such as the quark gluon plasma in the big bang of the early universe,the possible structure in the core of compact objects,and the hadronic quark phase transition in experiments,where the high temperature and high densities characterize the extreme conditions.Recently,the study of the quark matter phase diagram is extended to a strong magnetic field,[1?3]and further extended to a parallel electric and magnetic field background.[4]There is a possibility that the early universe contained a strong magnetic field.Present investigations in experiments or theory propose that a strong magnetic field could exist in the core of neutron stars and in the noncentral heavy ion collision experiments in the Relativistic Heavy Ion Collider or the Large Hadron Collider(LHC).[5]The magnitude of the magnetic field can reach the order of 1019G or higher in these conditions,which is much stronger than the value 1016G in some magnetars.[6]Theoretically,the physical upper limit of the strong magnetic field can be understood as large as 1018G by comparing the magnetic and gravitational energies.[7]The magnetic field in the interior of stars could go up to the maximum strengths of(1018?1020)G.[5,8]In the experiments at the LHC/CERN energy,it is possible to produce a magnetic field of 5×1019G,[5,9]where all the flavors could be lying in the lowest Landau level(LLL).These magnetic fields are short-lived at very high energies,but play an important role in understanding the equation of state of compact stars,the chiral magnetic effect,and the possible signatures of strong CP violation in experiments.[10?13]

    In addition to the influence on the stability of the quark matter,the presence of the external magnetic field will produce the temperature-magnetic phase diagram for QCD matter.[14?15]The isospin symmetry breaking is determined by both the temperature and the non-zero magnetic field.[16]The chiral symmetry phase transition will be intensively affected by the magnetic catalysis effect at finite temperature.The spins of the quarks are aligned along the direction of the induced magnetic field according to their helicities.As a result,the spin polarization effect is enhanced and the quark-antiquark pair couples strongly as the magnetic field increases.

    In previous works,we have studied the properties of two- flavor quark matter at zero temperature within the NJL model with a magnetic field dependent running coupling.It was shown that the dynamical quark masses as functions of the magnetic field strength are not monotonous in the fully chirally broken phase and the magnetized quark matter with the running coupling is more stable than that of the conventional constant coupling case.[27]In this paper,our aim is to investigate the influence of the magnetic effect and thermal effect on twoflavor quark matter under the strong magnetic field at if nite densities.

    This work is organized as follows.In Sec.2,a brief review of the NJL model description of quark matter in a strong magnetic field is provided.The magnetic- fielddependent running scalar coupling in the SU(2)version is introduced as well as the model parameters in the computation.In Sec.3,the numerical results and discussion are given with a detailed analysis of the competition of the magnetic effect and the thermal effect.The last section is a short summary.

    2 Thermodynamics of Magnetized Quark Matter in SU(2)NJL Model

    The Lagrangian density of the two- flavor NJL model in a strong magnetic field is given as

    whereψrepresents a flavor isodoublet(uanddquarks),the covariant derivativeDμ=?μ?iqiAμrepresents the coupling of the quarks to the electromagnetic field,while→τare isospin Pauli matrices. A sum over flavor and color degrees of freedom is implicit.In the mean- field approximation,[28]the dynamical quark mass is related to the condensation terms as

    where the quark condensates includeuanddquark contributions as The constituent mass depends on both condensates.Therefore,the same massMu=Md=Mis available foruanddquarks.Thecontribution from the quark flavoriis

    銀蛇歡舞辭舊歲,金馬奔騰迎新春,在這辭舊迎新的日子里,保定市力達(dá)塑業(yè)有限公司通過《中國水利》雜志向各界朋友致以節(jié)日的問候,祝大家在新的一年里身體健康、萬事如意、闔家幸福!

    whereaki=2?δk0andkiare respectively the degeneracy label and the Landau quantum number.The dimensionless quantityxiis defined asxi=M2/(2|qi|B).The fermion distribution function is

    The quark condensation is greatly strengthened by the factor|qiB|together with the dimension reductionD? 2.[31?32]

    The total thermodynamic potential density in the mean field approximation reads

    where the first term is the interaction term.In the second term,the quantity is defined asThe vacuum contribution to the thermodynamic potential is

    where the quantity?Λis defined asThe ultraviolet divergence in the vacuum partof the thermodynamic potential is removed by the momentum cutoff.The magnetic field and medium contributions are respectively

    According to the formulaSi= ?(??i/?T),we can obtain the entropy density from the flavoricontribution[30]

    Under strong magnetic fields,the system total pressure should be a sum of the matter pressure and the field pressure contribution.[29,33]But due to the requirement that the pressure should vanish in vacuum,the magnetic field termB2/2 is automatically absent in the normalized thermodynamic quantities.

    For asymmetric quark matter we should consider theβequilibrium by including the electron contribution under strong magnetic fields,where the charge neutrality condition 2nu?nd?3ne=0 is attained. The electron chemical potential,which is not independent and related to the quark chemical potential meet the conditions:μe=μd?μu.The thermodynamical quantities can√ be obtained by settingNc=1,M=meandThe total pressure withβequilibrium should be a summation going over theu,dquarks and electrons as

    According to the fundamental thermodynamic relation,the free energy density and the energy density at finite temperature are

    In principle,the interaction coupling constant between quarks should be solved by the renormalization group equation,or it can be phenomenologically expressed in an effective potential dependent on environmental variables.[34?36]In the infrared region,the nonperturbative effect becomes important and the dynamical gluon mass represents the confinement feature of QCD.[37]In the presence of a strong magnetic field,it is well known that the interaction constant shows an obvious decreasing behavior in addition to the enlargement of the gluon mass.[38]For suffciently strong magnetic fieldseB?Λ2QCD,it is reasonable to express the coupling constantαsrelated to the magnetic field.[26,31]Motivated by the work of Miransky and Shovkovy,[31]the similar ansatz of the magnetic- field-dependent coupling constant is introduced in the SU(2)NJL models.[25]

    with the parameters ΛQCD=200 MeV,α=2,β=0.000327.

    3 Numerical Results and Discussion

    In this work we consider the two- flavor quarks inβequilibrium state.Therefore the different chemical potentials ofuanddquarks should be solved,even though their dynamical masses are common from Eq.(2).In Fig.1,the dynamical masses ofuanddquarks are shown versus their chemical potentials at a fixed magnetic fieldB=2×1019G.The three different temperaturesT=(50,100,150)MeV are marked respectively by solid,dashed,and dotted lines from outside to inside.It can be clearly seen from the figure that the lower the temperature,the larger the critical chemical potential at which the firstorder phase transition happens.As the chemical potential increases,the dynamical masses decrease gradually until their masses approach to the chiral limit,which indicates a fully chiral symmetry restored phase.

    Fig.1 Dynamical masses of u and d quarks versus the chemical potential at different temperatures and a fixed magnetic field.

    Fig.2 (Color online)Dynamical quark mass versus the temperature for the fixed coupling G and the running coupling G′(eB)at a fixed density and three different magnetic fields.

    In Fig.2,we show that the dynamical quark masses vary with the temperature at a fixed densitynB=2ρ0.The three different magnetic fieldsB=5 × 1018G,B=2×1019G,B=5×1019G are marked respectively by black,blue,and red lines.For comparisons,the two kinds of the interactionsGandG′(eB)are taken in computations.It can be seen that the magnetic- fielddependent running couplingG′(eB)has a light influence on the values of the dynamical masses.The minor difference between the two kinds of couplings is expected to be enlarged under higher magnetic field.

    In order to study the spin polarization,the degeneracy factor is neglected.The Landau level quantum number is 2ki=2n+1?s.Thes= ±1 stand for the spin up and down respectively.We define the polarization parameter as[30]

    Charged particles in a magnetic field have a tendency to align their spin orientation along the direction of the external field.In Fig.3,the entropy per baryon is shown as a function of the temperature at different magnetic fieldsB=(1×1018,2×1019,5×1019)G from top to bottom.The entropy per baryon increases monotonically as the temperature increases,which is fully in agreement with the third law of thermodynamics.From the figure we can find that the magnetic field has a less influence on the entropy per baryon.The entropy behavior is mainly dominated by the temperature as expected.At the fixed temperature in Fig.5,the entropy per baryon is given as a function of the magnetic field.It is again verified that the entropy keeps constant for a given temperature,and feels less influence of the magnetic field below 1.5×1019G,at the field beyond which the entropy per baryon will have a slight oscillation behavior at lower temperature.

    Fig.3 The entropy per baryon versus the temperature is shown at the magnetic field B=1018G,2×1019G,5×1019G and the density nB=2ρ0.

    In Fig.4,we show the quark spin polarizations versus the magnetic fields at different temperaturesT=25 MeV,150 MeV and the densitiesnB=2ρ0,3ρ0withρ0=0.16 fm?3. The spin polarization effect is more noticeable for the low temperatureT=25 MeV and the densitynB=2ρ0indicated by the dashed line.The maximum of the absolute value is|Δi|=1.Specially at the magnetic field larger than 1019G,a lot of quarks are collected into the LLL,which is indicated by the two horizonal lines labeled by Δu=+1 and Δd= ?1.However,at a higher temperature,the thermal effect makes the lines gradually concentrate to the central region and the spin polarization effect becomes weaker and weaker.

    Fig.4 Spin polarizations Δuand Δdversus the magnetic field at two different temperatures T=25,150 MeV and two different density nB=2ρ0,3ρ0.

    Fig.5 The entropy per baryon versus the magnetic field is shown at three different temperatures T=(25,100,and 150)MeV and the density nB=2ρ0.

    where the signs“+”and“?”refer the positively and negatively charged particles respectively.is the number density in the LLL fori-type quarks.So the absolute value of the spin polarization is directly related to the ratio of the number density on the LLL and the total density,then all quarks are in the LLL.In Fig.6,the ratiosofu-andd-quarks versus the temperature are shown.The different densitiesnB=2ρ0,3ρ0are represented by solid and dotted lines

    In a strong magnetic field,the each Landau level is occupied by the particles with two spin-directions in addition to the zeroth Landau level,which is not spin-degenerated.So in Eq.(17),the difference of the number density is directly denominated by the zeroth Landau level,namely the LLL.For positively charged quarks,the LLL is occupied by the spin-up particle,and for negatively charged quarks by the spin-down particle.Now the spin polarization in Eq.(17)can be simplified by a ratio of the number density as respectively.The ratio/nuofuquark is larger than that of thedquark because of the larger electric charge ofuquarks.Moreover,it is easily seen that the ratio is larger at a lower temperature and a lower baryon number density,where the magnetic field becomes very important.However,as the temperature increases,the ratio will decrease and the spin polarization becomes weaker until the thermal effect dominates the structure of the matter.

    Fig.6 The particle number density ratios/nifor uand d-quarks versus the temperature are indicated by solid and dotted lines respectively.For a given magnetic field B=5×1018G,the two baryon densities nB=2ρ0,3ρ0are studied.

    For three values of the magnetic field,we show the ratioatnB=2ρ0in Fig.7,where we can find two extreme cases.The first case is under the magnetic field of the order 1018G indicated by the red lines,where the polarization effect is not important in the whole range of temperature.On the contrary,the second case is in a stronger magnetic field of order 5×1019G,where the polarization effect will become more important.In particular,the ratiois very close to 1 for lower temperatureT=25 MeV,where a mount of quarks are in the LLL.Therefore the corresponding LLL approximation is exactly suitable for the condition of the strong magnetic if elds and low temperature.

    Undoubtedly,the spin polarization is enhanced by the magnetic field larger than 1019G and the quarks would be in a uniform arrangement with the same spin orientation.The fully polarized state means that all quarks would be lying in the LLL.In Fig.8,we show the ratioversus the magnetic field at three temperaturesT=(25,100,150)MeV respectively andnB=2ρ0.From the figure,we can see that the quark number density ratiois an increasing function of the magnetic field:from the non-polarized stateto the fully polarized stateindicated by the solid horizonal line.In other words,the quark number in the zeroth Landau level has a remarkable increase at the magnetic field about 1019G.When the magnetic field reached the threshold value,almost alluquark are lying in the LLL.The threshold value of the magnetic field foris larger because ofdquark’s smaller electric charge.

    Fig.7 The ratio /nifor u-,d-quark versus the temperature for nB=2ρ0and B=(1018,2×1019,5×1019)G from bottom to top marked by red,blue,and black lines respectively.

    Fig.8 The quark number density ratio n0i/niof u,d quark versus the magnetic field B is shown at T=(25,100,150)MeV respectively.The baryon number density is fixed as nB=2ρ0.

    The free energy per baryon is an important quantity to characterize the stability of the quark matter.In the SU(2)NJL model,Fig.9 gives the energy and free energy per baryon versus baryon number density for different temperatures at theB=1×1018G.In the small density region,the free energy per baryon on left panel is clearly an increasing function of the number density,while the energy per baryon is a decreasing function.In the middle range of the density,there is a local minimum value for both the energy and free energy.At a given density,the higher temperature will lead to a smaller free energy and a larger energy per baryon.

    To illustrate the fundamental thermodynamic relationE=F+TSin fluenced by the magnetic effect and thermal effect,we show the energy and free energy per baryon as a function of the temperature for three different magnetic fields in Fig.10.It is obvious that the energy is an increasing function of temperature whereas the free energy decreases with increasing temperature.Importantly,we can find that stronger magnetic field will lead to a lower free energy per baryon,which means that a proper strong magnetic field can enhance the stability of quark matter.However,we should notice that for more higher magnetic fields,the quark matter may be located in the fully chirally broken phase,where the calculation would give a larger free energy.The relevant discussion at zero temperature can be found in Fig.4 in Ref.[39].According to the fundamental thermodynamic relation,the energy and free energy coincide with each other at zero temperature.

    Fig.9 The free energy per baryon and energy per baryon at T=(50,100,150)MeV as a function of the baryon number density for B=1×1018G.

    Fig.10 The free energy and the energy per baryon versus the temperature at the four different magnetic field values and the density nB=2ρ0.

    The free energy versus the temperature is shown at a if xed densitynB=2ρ0and two different magnetic fieldsB=1×1018andB=5×1019in Fig.11.The constant couplingGand the running couplingG′(eB)are indicated by the solid and dotted lines respectively.The effect of the magnetic field can hardly be seen from the very close lines.Especially at the fieldB=1×1018G,the two red lines forGandG′(eB)overlap.But it can be numerically concluded that the quark matter is more stable under the running couplingG′(eB)in larger magnetic field.At both the low temperature and the strong magnetic field,the running coupling effect becomes more clear.

    Fig.11 The free energy per baryon versus the temperature at two different magnetic field values for the couplings G and G′(eB).

    4 Summary

    In this paper we have studied the magnetic effect and the thermal effect on the quark matter in a strong magnetic field within the SU(2)NJL model.The interaction is described by the magnetic- field-dependent coupling.As the temperature or density increases,the chiral restoration transition happens.By comparison with the constant coupling case,the dynamical masses change a little under the running couplingG′(eB).The spin polarization is shown as a function of the magnetic field.It can be further understood by the ratio of the quark number in the LLL and the total quark number.We focus on the discussion of the competition of the magnetic effect and thermal effect by investigating the spin polarization,the ratioand the entropy per baryon.In a suffcient strong magnetic field,a lot of quarks are lying in the LLL due to the large degeneracy factor|eB|.But higher temperatures will excite the quarks to higher Landau levels,and eventually make the magnetic effect less and less important.It is graphically demonstrated that for the magnetic field range from 1017G to 1019G,the quark matter would undergo a transition from the non-polarized state to fully polarized state,where all quarks are in the LLL.Because theuquark has a larger charge thandquark,it is earlier collected in the LLL as the magnetic field increases.Finally,we show the energy and the free energy per baryon varying with the density,the temperature,and the magnetic field.It is found that the magnetic field of a proper value can lower the free energy per baryon and enhance the stability of quark matter to some extent.

    [1]V.A.Miransky and I.A.Shovkovy,Phys.Rep.576(2015)1;J.O.Andersen,W.R.Naylor,and A.Tranberg,Rev.Mod.Phys.88(2016)025001.

    [2]V.P.Gusynin,V.A.Miransky,and I.A.Shovkovy,Phys.Rev.Lett.73(1994)3499;E.J.Ferrer and V.de la Incera,Phys.Lett.B 481(2000)287;N.Mueller and J.M.Pawlowski,Phys.Rev.D 91(2015)116010.

    [3]R.G.Felipe and A.P.Martínez,J.Phys.G 36(2009)075202;R.González Felipe,D.Manreza Paret,and A.Pérez Martínez,Eur.Phys.J A 47(2011)1.

    [4]M.Ruggieri and G.X.Peng,Phys.Rev.D 19(2016)094021.

    [5]D.E.Kharzeev,L.D.McLerran,and H.J.Warringa,Nucl.Phys.A 803(2008)227.

    [6]C.Thompson and R.C.Duncan,Astrophys.J.392(1992)L9.

    [7]G.Chanmugam,Annu.Rev.Astron.Astrophys.30(1992)143;D.Lai,Rev.Mod.Phys.73(2001)629.

    [8]L.Dong and S.L.Shapiro,Astrophys.J.383(1991)745.

    [9]V.Voronyuk,V.D.Toneev,W.Cassing,E.L.Bratkovskaya,V.P.Konchakovski,and S.A.Voloshin,Phys.Rev.C 83(2011)054911.

    [10]K.Fukushima,D.E.Kharzeev,and H.J.Warringa,Phys.Rev.D 78(2008)074033;D.E.Kharzeev and H.J.Warringa,Phys.Rev.D 80(2009)034028.

    [11]D.Kharzeev,R.D.Pisarski,and M.H.G.Tytgat,Phys.Rev.Lett.81(1998)512;D.Kharzeev and R.D.Pisarski,Phys.Rev.D 61(2000)111901(R);K.Buckley,T.Fugleberg,and A.Zhitnitsky,Phys.Rev.Lett.84(2000)4814;S.A.Voloshin,Phys.Rev.C 62(2000)044901;70(2004)057901;D.Kharzeev,Phys.Lett.B 633(2006)260;D.Kharzeev and A.Zhitnitsky,Nucl.Phys.A 797(2007)67.

    [12]D.E.Kharzeev,Nucl.Phys.A 830(2009)543c;Ann.Phys.(N.Y.)325(2010)205;K.Fukushima,D.E.Kharzeev,and H.J.Warringa,Nucl.Phys.A 836(2010)311;Phys.Rev.Lett.104(2010)212001.

    [13]V.Skokov,A.Illarionov,and V.Toneev,Int.J.Mod.Phys.A 24(2009)5925.

    [14]A.J.Mizher,M.N.Chernodub,and E.S.Fraga,Phys.Rev.D 82(2010)105016.

    [15]R.L.S.Farias,V.S.Timóteo,S.S.Avancini,M.B.Pinto,and G.Krein,arXiv:1603.03847[hep-ph].

    [16]S.Nam and C.W.Kao,Phys.Rev.D 83(2011)096009.

    [17]D.P.Menezes,M.B.Pinto,and C.Providência,Phys.Rev.C 91(2015)065205.

    [18]D.Ebert,K.G.Klimenko,M.A.Vdovichenko,and A.S.Vshivtsev,Phys.Rev.D 61(1999)025005.

    [19]P.G.Allen and N.N.Scoccola,Phys.Rev.D 88(2013)094005.

    [20]T.Inagaki,D.Kimura,and T.Murata,Prog.Theor.Phys.111(2004)371.

    [21]A.G.Grunfeld,D.P.Menezes,M.B.Pinto,and N.N.Scoccola,Phys.Rev.D 90(2014)044024.

    [22]F.Preis,A.Rebhan,and A.Schmitt,J.High Energy Phys.03(2011)033;Lect.Notes Phys.871(2013)51.

    [23]G.S.Bali,F.Bruckmann,G.Endrodi,Z.Fodor,S.D.Katz,S.Krieg,A.Schafer,and K.K.Szabo,J.High Energy Phys.1202(2012)044;G.S.Bali,F.Bruckmann,G.Endrodi,Z.Fodor,S.D.Katz,S.Krieg,and A.Schafer,Phys.Rev.D 86(2012)071502(R).

    [24]V.Bernard and U.G.Meissner,Annals Phys.206(1991)50;M.B.Pinto,Phys.Rev.D 50(1994)7673.

    [25]R.L.S.Farias,K.P.Gomes,G.Krein,and M.B.Pinto,Phys.Rev.C 90(2014)025203.

    [26]M.Ferreira,P.Costa,O.Lourenco,T.Frederico,and C.Providência,Phys.Rev.D 89(2014)116011.

    [27]C.F.Li,L.Yang,X.J.Wen,and G.X.Peng,Phys.Rev.D 93(2016)054005.

    [28]C.Ratti,Europhys.Lett.61(2003)314;M.Buballa and M.Oertel,Phys.Lett.B 457(1999)261.

    [29]D.P.Menezes,M.B.Pinto,S.S.Avancini,A.P.Martínez,and C.Providência,Phys.Rev.C 79(2009)035807;M.Ferreira,P.Costa,D.P.Menezes,C.Providência,and N.N.Scoccola,Phys.Rev.D 89(2014)016002.

    [30]S.S.Avancini,D.P.Menezes,and C.Providência,Phys.Rev.C 83(2011)065805.

    [31]V.A.Miransky and I.A.Shovkovy,Phys.Rev.D 66(2002)045006.

    [32]T.Kojo and N.Su,Nucl.Phys.A 931(2014)763.

    [33]J.L.Noronha and I.A.Shovkovy,Phys.Rev.D 76(2007)105030.E.J.Ferrer,V.de la Incera,J.P.Keith,I.Portillo,and P.L.Springsteen,Phys.Rev.C 82(2010)065802;L.Paulucci,E.J.Ferrer,V.de la Incera,and J.E.Horvath,Phys.Rev.D 83(2011)043009.

    [34]J.L.Richardson,Phys.Lett.B 82(1979)272.

    [35]M.Sinha,X.G.Huang,and A.Sedrakian,Phys.Rev.D 88(2013)025008.

    [36]J.F.Xu,G.X.Peng,F.Liu,D.F.Hou,and L.W.Chen,Phys.Rev.D 92(2015)025025.

    [37]A.A.Natale,Nucl.Phys.B Proc.Suppl.199(2010)178.

    [38]E.J.Ferrer,V.de la Incera,and X.J.Wen,Phys.Rev.D 91(2015)054006.

    [39]X.J.Wen,S.Z.Su,D.H.Yang,and G.X.Peng,Phys.Rev.C 86(2012)034006.

    猜你喜歡
    辭舊歲銀蛇楊麗
    跨年
    童畫世界
    過跨海大橋
    岷峨詩稿(2022年4期)2022-09-02 22:10:28
    迎新年
    燕歸巢(外一首)
    草堂(2020年11期)2020-11-18 11:21:35
    辭舊歲,迎新春,舉杯為健康
    從“銀蛇”到名醫(yī)
    新民周刊(2018年45期)2018-12-01 04:52:58
    長江叢刊(2018年22期)2018-11-14 22:44:32
    白夜
    七年級上學(xué)期數(shù)學(xué)期末檢測題(A)
    99久久九九国产精品国产免费| 国产精品久久久久久av不卡| 日韩大片免费观看网站| 亚洲精品日韩在线中文字幕| 欧美区成人在线视频| 久久久精品免费免费高清| 直男gayav资源| 国产老妇伦熟女老妇高清| 有码 亚洲区| 国产伦精品一区二区三区视频9| 你懂的网址亚洲精品在线观看| 内射极品少妇av片p| 尤物成人国产欧美一区二区三区| 国产精品99久久99久久久不卡 | 国产亚洲一区二区精品| 日韩亚洲欧美综合| 久久韩国三级中文字幕| 久久综合国产亚洲精品| 校园人妻丝袜中文字幕| 亚洲伊人久久精品综合| 日韩制服骚丝袜av| av国产免费在线观看| 亚洲一区二区三区欧美精品 | 天美传媒精品一区二区| 噜噜噜噜噜久久久久久91| 国内揄拍国产精品人妻在线| 亚洲真实伦在线观看| 中文字幕av成人在线电影| 人妻夜夜爽99麻豆av| 国产精品久久久久久久电影| 插逼视频在线观看| 久久久久久久久久久免费av| 精品久久久久久久人妻蜜臀av| 久久久久久久亚洲中文字幕| 最近最新中文字幕大全电影3| 久久久a久久爽久久v久久| 涩涩av久久男人的天堂| 亚洲图色成人| 亚洲国产成人一精品久久久| 欧美成人精品欧美一级黄| 嘟嘟电影网在线观看| 女的被弄到高潮叫床怎么办| a级毛色黄片| 午夜爱爱视频在线播放| 美女cb高潮喷水在线观看| 欧美少妇被猛烈插入视频| 精品久久久久久久久亚洲| 十八禁网站网址无遮挡 | 黄片无遮挡物在线观看| 亚洲精品,欧美精品| 我的老师免费观看完整版| 成人亚洲欧美一区二区av| av专区在线播放| 热re99久久精品国产66热6| 久久99热6这里只有精品| 熟女人妻精品中文字幕| 黄色视频在线播放观看不卡| 2021少妇久久久久久久久久久| 国产成人免费无遮挡视频| 久久久精品欧美日韩精品| 亚洲av电影在线观看一区二区三区 | 欧美精品国产亚洲| 少妇的逼好多水| 久久久久久久午夜电影| 一级毛片久久久久久久久女| 午夜免费鲁丝| 丝袜美腿在线中文| 能在线免费看毛片的网站| 能在线免费看毛片的网站| av国产久精品久网站免费入址| 嫩草影院入口| 少妇猛男粗大的猛烈进出视频 | 欧美潮喷喷水| 乱码一卡2卡4卡精品| 99热这里只有是精品50| 日本一本二区三区精品| 国产精品无大码| 天天躁夜夜躁狠狠久久av| 在线看a的网站| 成人亚洲精品av一区二区| 日韩一区二区三区影片| 热99国产精品久久久久久7| 18禁裸乳无遮挡免费网站照片| 亚洲国产色片| 精品人妻熟女av久视频| 最近2019中文字幕mv第一页| 亚洲精品成人av观看孕妇| 又爽又黄无遮挡网站| 欧美成人午夜免费资源| 极品少妇高潮喷水抽搐| 天堂网av新在线| 韩国高清视频一区二区三区| 亚洲精品成人av观看孕妇| 女的被弄到高潮叫床怎么办| 亚洲欧美中文字幕日韩二区| 日本av手机在线免费观看| 久久99热这里只有精品18| 99热国产这里只有精品6| 菩萨蛮人人尽说江南好唐韦庄| 美女国产视频在线观看| 免费不卡的大黄色大毛片视频在线观看| 一边亲一边摸免费视频| 欧美少妇被猛烈插入视频| 国产一区二区亚洲精品在线观看| 深爱激情五月婷婷| av在线播放精品| 最后的刺客免费高清国语| 亚洲成人久久爱视频| 免费看av在线观看网站| 久久精品国产a三级三级三级| 在线观看一区二区三区激情| 国产午夜精品一二区理论片| 欧美激情国产日韩精品一区| 久久久久国产网址| 国产精品一区二区在线观看99| 日本-黄色视频高清免费观看| 婷婷色麻豆天堂久久| 精华霜和精华液先用哪个| 国产精品秋霞免费鲁丝片| 亚洲av.av天堂| 亚洲av男天堂| 亚州av有码| 国产高清国产精品国产三级 | 国产精品偷伦视频观看了| 亚洲精品,欧美精品| av国产免费在线观看| 一本色道久久久久久精品综合| 色哟哟·www| 黄色怎么调成土黄色| 亚洲va在线va天堂va国产| 熟女人妻精品中文字幕| 少妇熟女欧美另类| 日本三级黄在线观看| 午夜免费观看性视频| av在线亚洲专区| 欧美日韩一区二区视频在线观看视频在线 | 小蜜桃在线观看免费完整版高清| 97超碰精品成人国产| 国产熟女欧美一区二区| 中文字幕av成人在线电影| 亚洲精品日韩在线中文字幕| 97人妻精品一区二区三区麻豆| 国产欧美另类精品又又久久亚洲欧美| 97在线视频观看| 毛片一级片免费看久久久久| 亚洲人与动物交配视频| 久久精品国产亚洲av天美| 又黄又爽又刺激的免费视频.| 久久久欧美国产精品| 网址你懂的国产日韩在线| 欧美精品一区二区大全| 欧美日韩在线观看h| 丰满人妻一区二区三区视频av| 观看美女的网站| 老司机影院成人| 91精品国产九色| 亚洲丝袜综合中文字幕| 日本熟妇午夜| 日韩欧美 国产精品| 免费播放大片免费观看视频在线观看| 亚洲自偷自拍三级| 国产精品精品国产色婷婷| 午夜福利视频精品| 51国产日韩欧美| 亚洲av不卡在线观看| 成人午夜精彩视频在线观看| www.av在线官网国产| 男女啪啪激烈高潮av片| 亚洲成人精品中文字幕电影| 18禁裸乳无遮挡动漫免费视频 | 午夜免费男女啪啪视频观看| 网址你懂的国产日韩在线| 国产极品天堂在线| 国产成年人精品一区二区| 亚洲av一区综合| 在线免费十八禁| 亚洲一级一片aⅴ在线观看| av在线播放精品| 99热6这里只有精品| 亚洲天堂国产精品一区在线| 日本熟妇午夜| 亚洲精品久久久久久婷婷小说| 97超视频在线观看视频| 亚洲,一卡二卡三卡| 少妇 在线观看| 国产精品麻豆人妻色哟哟久久| 伦精品一区二区三区| 男的添女的下面高潮视频| 免费播放大片免费观看视频在线观看| 深爱激情五月婷婷| 国产成人aa在线观看| 国产精品麻豆人妻色哟哟久久| 少妇高潮的动态图| 在线观看av片永久免费下载| 中国三级夫妇交换| 卡戴珊不雅视频在线播放| 一级黄片播放器| 午夜精品一区二区三区免费看| 高清视频免费观看一区二区| 纵有疾风起免费观看全集完整版| eeuss影院久久| 丰满乱子伦码专区| 国产精品熟女久久久久浪| 亚洲久久久久久中文字幕| 中国美白少妇内射xxxbb| 寂寞人妻少妇视频99o| 亚洲精品成人久久久久久| 激情 狠狠 欧美| 中文乱码字字幕精品一区二区三区| 免费黄网站久久成人精品| 中国美白少妇内射xxxbb| 寂寞人妻少妇视频99o| 26uuu在线亚洲综合色| 一级二级三级毛片免费看| 简卡轻食公司| 国产精品麻豆人妻色哟哟久久| 人人妻人人澡人人爽人人夜夜| 中文欧美无线码| 自拍欧美九色日韩亚洲蝌蚪91 | 美女脱内裤让男人舔精品视频| 中文欧美无线码| 日韩av免费高清视频| 最后的刺客免费高清国语| 国产乱来视频区| 99久久精品一区二区三区| 国产熟女欧美一区二区| 精品国产三级普通话版| 啦啦啦中文免费视频观看日本| 人妻系列 视频| a级一级毛片免费在线观看| .国产精品久久| 亚洲精品日韩av片在线观看| 亚洲精品国产成人久久av| 日本欧美国产在线视频| 亚洲不卡免费看| 伊人久久精品亚洲午夜| 亚洲激情五月婷婷啪啪| 自拍欧美九色日韩亚洲蝌蚪91 | 三级男女做爰猛烈吃奶摸视频| 亚洲精品视频女| 午夜日本视频在线| 男人舔奶头视频| 免费高清在线观看视频在线观看| 国产黄色免费在线视频| 自拍偷自拍亚洲精品老妇| freevideosex欧美| 国产精品国产三级专区第一集| 亚洲一区二区三区欧美精品 | 好男人视频免费观看在线| 18禁在线无遮挡免费观看视频| 国产精品嫩草影院av在线观看| 亚洲国产最新在线播放| 能在线免费看毛片的网站| 国产精品久久久久久av不卡| videossex国产| 黄色视频在线播放观看不卡| 免费观看性生交大片5| 97超视频在线观看视频| 国产一区二区在线观看日韩| 久久精品熟女亚洲av麻豆精品| 自拍欧美九色日韩亚洲蝌蚪91 | tube8黄色片| 精品视频人人做人人爽| 免费av不卡在线播放| 亚洲成人中文字幕在线播放| 国产精品爽爽va在线观看网站| 国产老妇伦熟女老妇高清| 日本一本二区三区精品| 亚洲欧美精品自产自拍| 中国三级夫妇交换| 春色校园在线视频观看| 尤物成人国产欧美一区二区三区| 国产欧美亚洲国产| 久久久久精品久久久久真实原创| 久久人人爽av亚洲精品天堂 | 久久精品夜色国产| 在线观看一区二区三区激情| 全区人妻精品视频| 日韩精品有码人妻一区| 91精品伊人久久大香线蕉| 国产精品久久久久久久久免| 最近最新中文字幕大全电影3| 九草在线视频观看| 哪个播放器可以免费观看大片| 黄色怎么调成土黄色| 国产精品蜜桃在线观看| 亚洲最大成人中文| 免费观看a级毛片全部| 女人十人毛片免费观看3o分钟| 午夜精品国产一区二区电影 | 五月伊人婷婷丁香| 天美传媒精品一区二区| 国产精品蜜桃在线观看| 内射极品少妇av片p| 国产免费福利视频在线观看| 国产永久视频网站| 免费观看a级毛片全部| av免费在线看不卡| 又粗又硬又长又爽又黄的视频| 国产精品秋霞免费鲁丝片| 亚洲av.av天堂| 亚洲精品国产色婷婷电影| 亚洲aⅴ乱码一区二区在线播放| 99久久精品国产国产毛片| 亚洲人与动物交配视频| 久热久热在线精品观看| 亚洲精品456在线播放app| 国产91av在线免费观看| 久久久久久久亚洲中文字幕| 乱码一卡2卡4卡精品| 又黄又爽又刺激的免费视频.| 国产伦精品一区二区三区四那| 亚洲,欧美,日韩| 伦理电影大哥的女人| 亚洲欧美一区二区三区黑人 | 一区二区三区乱码不卡18| 九九爱精品视频在线观看| 精品少妇黑人巨大在线播放| 亚洲精品成人久久久久久| 亚洲,一卡二卡三卡| 亚洲美女搞黄在线观看| .国产精品久久| 亚洲怡红院男人天堂| av卡一久久| 精品亚洲乱码少妇综合久久| 少妇高潮的动态图| 免费播放大片免费观看视频在线观看| 欧美日韩国产mv在线观看视频 | 女人被狂操c到高潮| 亚洲欧美日韩东京热| 亚洲天堂av无毛| 免费观看无遮挡的男女| 国产伦理片在线播放av一区| 精品人妻熟女av久视频| 精品人妻偷拍中文字幕| 一区二区三区精品91| 亚洲精品国产色婷婷电影| 成人鲁丝片一二三区免费| 国产午夜精品一二区理论片| 国产精品成人在线| 精品少妇久久久久久888优播| 国产久久久一区二区三区| 国产av码专区亚洲av| 国产男人的电影天堂91| 国产黄色视频一区二区在线观看| 精品久久久久久久人妻蜜臀av| 国产精品福利在线免费观看| 女人十人毛片免费观看3o分钟| 免费黄频网站在线观看国产| 午夜福利高清视频| 国产亚洲午夜精品一区二区久久 | 午夜免费观看性视频| 边亲边吃奶的免费视频| 一个人看的www免费观看视频| 一个人看的www免费观看视频| 岛国毛片在线播放| 在线a可以看的网站| 成人黄色视频免费在线看| 国产黄a三级三级三级人| 插阴视频在线观看视频| 91精品国产九色| 男女无遮挡免费网站观看| 久久热精品热| 日韩成人av中文字幕在线观看| 直男gayav资源| 两个人的视频大全免费| 亚洲内射少妇av| 一级av片app| 欧美区成人在线视频| 超碰av人人做人人爽久久| 国产高清三级在线| 欧美日韩视频精品一区| 亚洲精品影视一区二区三区av| 免费观看性生交大片5| 国产探花在线观看一区二区| 亚洲国产精品专区欧美| 99热6这里只有精品| 永久免费av网站大全| 欧美成人一区二区免费高清观看| 麻豆成人av视频| 国产av不卡久久| 久久久久久久久久久丰满| 日日啪夜夜撸| 高清欧美精品videossex| 色综合色国产| 一级二级三级毛片免费看| 精品久久久噜噜| 久久精品国产自在天天线| 国产精品嫩草影院av在线观看| 黄色配什么色好看| 国产成人a区在线观看| 精品国产露脸久久av麻豆| 久久久久久国产a免费观看| 女人被狂操c到高潮| 最近中文字幕2019免费版| 激情 狠狠 欧美| 免费黄频网站在线观看国产| 一区二区三区精品91| 欧美日韩国产mv在线观看视频 | 色视频www国产| 美女脱内裤让男人舔精品视频| 成人特级av手机在线观看| 97在线人人人人妻| 日韩av不卡免费在线播放| 欧美日韩国产mv在线观看视频 | 久久精品熟女亚洲av麻豆精品| 哪个播放器可以免费观看大片| 亚洲四区av| 亚洲,欧美,日韩| 久久人人爽人人爽人人片va| a级毛色黄片| 天堂中文最新版在线下载 | 欧美3d第一页| 欧美xxⅹ黑人| av在线播放精品| 久久久精品免费免费高清| 26uuu在线亚洲综合色| 午夜激情福利司机影院| 夫妻性生交免费视频一级片| 一级a做视频免费观看| 亚洲国产精品国产精品| 国产精品成人在线| 中文乱码字字幕精品一区二区三区| 十八禁网站网址无遮挡 | 亚洲人成网站在线观看播放| 3wmmmm亚洲av在线观看| 婷婷色综合www| 欧美+日韩+精品| 97超视频在线观看视频| 久热久热在线精品观看| 成人毛片60女人毛片免费| 国产免费视频播放在线视频| 男男h啪啪无遮挡| 成年免费大片在线观看| 成人毛片a级毛片在线播放| 国产成人免费无遮挡视频| 看黄色毛片网站| 亚洲伊人久久精品综合| 久久精品国产亚洲网站| 国产av码专区亚洲av| 午夜免费鲁丝| 又黄又爽又刺激的免费视频.| 欧美日韩视频精品一区| 中文乱码字字幕精品一区二区三区| 少妇高潮的动态图| 中国国产av一级| 亚洲av成人精品一区久久| 国产一区二区三区av在线| 麻豆成人午夜福利视频| 国产成人精品福利久久| 一边亲一边摸免费视频| 九九爱精品视频在线观看| freevideosex欧美| 久久久久网色| 久久久久久久久久人人人人人人| 黄色怎么调成土黄色| 欧美变态另类bdsm刘玥| 最近最新中文字幕免费大全7| 久久精品久久久久久久性| 日韩一本色道免费dvd| 春色校园在线视频观看| 五月开心婷婷网| av在线天堂中文字幕| 精品久久久噜噜| 国内揄拍国产精品人妻在线| 色视频www国产| 国产女主播在线喷水免费视频网站| 欧美激情在线99| 日韩成人伦理影院| 又粗又硬又长又爽又黄的视频| 亚洲久久久久久中文字幕| 日本与韩国留学比较| 国产精品嫩草影院av在线观看| av天堂中文字幕网| 久久综合国产亚洲精品| 男女无遮挡免费网站观看| 99热网站在线观看| 晚上一个人看的免费电影| 免费看a级黄色片| 在线免费十八禁| 99视频精品全部免费 在线| 久久97久久精品| 人妻一区二区av| 亚洲欧洲日产国产| 男女那种视频在线观看| 久久精品国产自在天天线| 欧美丝袜亚洲另类| 免费av不卡在线播放| 成人漫画全彩无遮挡| 可以在线观看毛片的网站| 国产精品国产三级国产av玫瑰| 亚洲电影在线观看av| 欧美少妇被猛烈插入视频| 男女那种视频在线观看| 亚洲国产av新网站| 18禁动态无遮挡网站| 亚洲自拍偷在线| 韩国av在线不卡| 成人毛片a级毛片在线播放| 日本欧美国产在线视频| 九九在线视频观看精品| 色播亚洲综合网| 国产一区二区三区综合在线观看 | 午夜福利高清视频| 日本欧美国产在线视频| 精品国产露脸久久av麻豆| 亚洲婷婷狠狠爱综合网| 久久久久国产网址| a级毛片免费高清观看在线播放| 一级毛片aaaaaa免费看小| 五月玫瑰六月丁香| 99热这里只有是精品50| 中国三级夫妇交换| 真实男女啪啪啪动态图| 色吧在线观看| 亚洲天堂国产精品一区在线| 精品国产三级普通话版| 如何舔出高潮| 亚洲成人中文字幕在线播放| 日本黄色片子视频| 亚洲成人精品中文字幕电影| 99热6这里只有精品| av在线观看视频网站免费| 亚洲欧美日韩另类电影网站 | 久久久欧美国产精品| 在线观看国产h片| 免费看不卡的av| 综合色av麻豆| 久久久欧美国产精品| 久久久精品94久久精品| 亚洲av中文字字幕乱码综合| 有码 亚洲区| 久久精品熟女亚洲av麻豆精品| 中文精品一卡2卡3卡4更新| 一级爰片在线观看| 黑人高潮一二区| 成人美女网站在线观看视频| 国产精品国产三级国产av玫瑰| av在线老鸭窝| 日韩三级伦理在线观看| 午夜精品一区二区三区免费看| 欧美精品国产亚洲| 日韩电影二区| 一级片'在线观看视频| 国产伦精品一区二区三区四那| 欧美少妇被猛烈插入视频| 80岁老熟妇乱子伦牲交| 亚洲最大成人av| 欧美高清成人免费视频www| 国产高清国产精品国产三级 | 中国美白少妇内射xxxbb| 噜噜噜噜噜久久久久久91| 欧美日本视频| 国国产精品蜜臀av免费| 午夜免费观看性视频| 一级毛片电影观看| 欧美变态另类bdsm刘玥| av在线天堂中文字幕| 国产精品99久久久久久久久| 最近中文字幕高清免费大全6| 亚洲在久久综合| 啦啦啦中文免费视频观看日本| www.av在线官网国产| 国产成人免费无遮挡视频| 国产男女超爽视频在线观看| 插阴视频在线观看视频| 身体一侧抽搐| 51国产日韩欧美| 免费看a级黄色片| 美女视频免费永久观看网站| 美女主播在线视频| 别揉我奶头 嗯啊视频| 我的女老师完整版在线观看| 日本一本二区三区精品| 九色成人免费人妻av| 国产淫语在线视频| 欧美少妇被猛烈插入视频| 久久精品国产亚洲av涩爱| 69av精品久久久久久| 国产精品一区二区在线观看99| 欧美日韩国产mv在线观看视频 | 国产爱豆传媒在线观看| av女优亚洲男人天堂| 亚洲av中文av极速乱| 啦啦啦啦在线视频资源| 国内揄拍国产精品人妻在线| 别揉我奶头 嗯啊视频| 国产精品国产三级国产av玫瑰| 精品视频人人做人人爽| 国产亚洲最大av| 欧美人与善性xxx| 亚洲aⅴ乱码一区二区在线播放| 黄色日韩在线| 国产精品嫩草影院av在线观看| 91午夜精品亚洲一区二区三区| 久久精品久久久久久久性| 亚洲欧美成人综合另类久久久| 尤物成人国产欧美一区二区三区| 免费不卡的大黄色大毛片视频在线观看| 联通29元200g的流量卡| 国产精品三级大全| 国产毛片在线视频| av卡一久久| 大话2 男鬼变身卡| 人妻系列 视频| 欧美bdsm另类| 国产亚洲av片在线观看秒播厂| 五月玫瑰六月丁香| 国产成人午夜福利电影在线观看| 日本av手机在线免费观看| 国产精品.久久久| 久久久久九九精品影院| 国产高潮美女av| 女人被狂操c到高潮| 少妇人妻久久综合中文|