• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Current advances in genome sequencing of common wheat and its ancestral species

    2018-01-23 04:32:45*
    The Crop Journal 2018年1期

    *

    aState Key Laboratory of Plant Cell and Chromosome Engineering,Institute of Genetics and Developmental Biology,Chinese Academy of Sciences,Beijing 100101,China

    bCollege of Life Sciences,University of Chinese Academy of Sciences,Beijing 100049,China

    1.Introduction

    Common wheat(Triticum aestivum L.),one of the important staple food crops in the world,feeds>30%of the human population[1].The world annual production of wheat is>620 million metric tons(http://www.fao.org/3/a-i4691e.pdf).China is the largest wheat producer and consumer.The Chinese annual wheat production is about 100 million tons[2].Wheat production needs to be constantly increased in order to satisfy the food demands of the increasing world.Accurate sequencing and assembly of wheat genomes are helpful for basic research and genetic improvement of wheat cultivars[3].

    The different ecotypes of common wheat(such as winter wheat and spring wheat)adapt well to a wide range of climates.Wheat is an allohexaploid(AABBDD)that arose from two wide hybridization events.The first occurred 0.5–-3.0 million years ago between two diploid ancestral species carrying the A(T.urartu)and B(an unknown species)genomes and after chromosome doubling formed wild tetraploid wheat(Triticum turgidum ssp.dicoccoides,AABB).This species was domesticated to cultivated emmer(T.turgidum ssp.dicoccum,AABB)[4].The second hybridization tookplaceabout 9000 years ago between cultivated emmer and diploid goat grass(Aegilops tauschii,DD)to form allohexaploid common wheat[5].Compared with other major crops the common wheat genome is very large in size(~17 gigabases,Gb)with each subgenome being approximately 5.5 Gb[6]and complex in composition,of which>80%is made up of repetitive sequences.Therefore,sequencing and assembly of the entire wheat genome was very challenging.During the past several years many effort was made in this area,and a series of draft and near completed genome/chromosome assemblies for common wheat and its diploid and tetraploid progenitors have been generated in succession[7–16].In this review,we mainly focus on contributions made by Chinese scientists in the area of wheat genome sequencing following a brief summary of international achievements.

    2.International progress in wheat genome sequencing

    In order to decode the mystery of the wheat genome and to expedite molecular breeding in wheat,a group of scientists and breeders initiated the International Wheat Genome Sequencing Consortium(IWGSC)in 2005.To overcome the difficulties caused by genome size and complexities,the 21 chromosomes of common wheat landrace Chinese Spring were separated by flow cytometric sorting.Bacterial artificial chromosome(BAC)libraries and physical maps were then constructed for each chromosome or chromosome arm.Chromosome sorting,DNA isolation and BAC library construction for each chromosome arm were performed in the laboratory of Prof.Jaroslav Dolezel at the Institute of Experimental Botany in the Czech Republic.Subsequent physical map construction and BAC sequencing were assigned to different laboratories of the International Wheat Genome Sequencing Consortium (IWGSC). Numerous projects by different groups were undertaken to produce reference sequences of single chromosome or chromosome arms.Chromosome 3B was the first chromosome to be sorted successfully due to its large size.A 3B physical map was generated using BAC clones originating from the purified 3B chromosome in 2008[17].BAC clones were selected by a minimal tiling path(MTP)approach and sequenced.The final pseudomolecule of 3B was 774 megabases(Mb)in length and carried 5326 protein-coding genes[13].Currently,all chromosomes/chromosome arms of Chinese Spring have been sorted and their physical maps have been constructed(http://www.wheatgenome.org/Projects/IWGSC-Bread-Wheat-Projects).

    Sequences of many chromosomes,or parts thereof,are publicly available,including 1AS,1BS,3DS,5DS,7DS,1AL,1BL,4A,5A,6A,6B,and 7B[16,18–29].

    In addition to the chromosome-based BAC-by-BAC sequencing strategy of IWGSC,Hall and colleagues in the UK applied a whole genome shotgun sequencing strategy with 454 pyro-sequencing technology to sequence Chinese Spring,and produced a five-fold coverage genome sequence of Chinese Spring in 2012.Based on the assemblies of 5.42 Gb,they predicted 94,000 to 96,000 genes,and assigned two-thirds of them to the three subgenomes(A,B,and D).The authors indicated that gene families were pronouncedly reduced in common wheat compared to the diploid progenitors,[7].Two years after the first wheat genome release,IWGSC published a chromosome-based draft sequence of Chinese Spring[1].Compared to the whole genome shotgun sequencing strategy,this approach differentiated the highly conserved gene copies in each chromosome.

    The 21 chromosomes of Chinese Spring were isolated by flow cytometric sorting and sequenced by a chromosome-based shotgun sequencing strategy using Illumina technology to yield 10.2 Gb of genome sequence.Abundant gene losses and duplications were observed by intra-and inter-specific comparisons,indicating that the wheat genome was somewhat dynamic in evolution[1].In 2017,Clarketal.[11]published an improved genome sequence of Chinese Spring.They used precisely sized mate-pair libraries and an optimized algorithm to generate a new assembly representing>78%of the genome,much higher than the scaffold proportion(~49%)produced previously by IWGSC.Genome-wide sequence rearrangements were revealed based on comparative analysis of the data.Zimin et al.[12]reported a more complete wheat genome assembly.The final sequences were generated by combining next generation(short Illumina reads)and third generation sequencing data(long Pacific Biosciences reads).>15 Gb of final assembly representing>90%of the Chinese Spring genome was created by merging two sets of sequences assembled using the MaSuRCA[30]and FALCON assemblers[31].This is the most complete wheat genome sequence published by far.Recently,IWGSC announced that they have completed a high quality sequence of Chinese Spring(IWGSC v1.0)and released the genomic data for public access (http://www.wheatgenome.org/News/Latest-news/RefSeq-v1.0-URGI).

    In addition to sequencing Chinese Spring at the genome and single chromosome level,sequencing of wild emmer,the tetraploid ancestor of common wheat,was reported in July 2017[10].A software package Denovo MAGIC2(NRGene,NesZiona,Israel)was applied to perform thescaffold assembly from short Illumina sequencing reads.The software took advantage of improvements in throughput and read length of Illumina sequencing technology capable of completing challenging assemblies within days.About 10 Gb sequence of wild emmer genome was obtained by using whole genome shotgun sequencing of various insert-size libraries.The quality of the assembly was further validated by genetic data and three-dimensional chromosome conformation capture sequencing(Hi-C)data[32].Decoding the genome of the tetraploid ancestor will help in understanding the evolution of common wheat.

    3.Wheat genome sequencing in China

    Chinese scientists have made considerable contributions in wheat genome sequencing.They were first achieved to generate drafts of the A and D genomes in the diploid progenitors in 2013[8,9].These provided good reference information for generating the polyploid wheat genome assembly and analysis.

    As described above,common wheat evolved from three diploid progenitors by two wide hybridization events.The diploid progenitors provide important foundations for understanding the evolution and domestication of hexaploid wheat.The progenitor species of the wheat A genome is T.urartu(wild einkorn)with an estimated genome size of 4.94 Gb.Ling et al.applied a whole genome shotgun sequencing strategy using an Illumina HiSequation(2000)sequencing platform,and successfully generated the draft genome of T.urartu with 4.66 Gb,accounting for 94%of the estimated genome size[9].The sequencing and assembly process was as follows:first,paired-end sequencing was performed to obtain genomic DNA sequence data from 57 DNA libraries with different insertion sizes.Then,low-quality,redundant and contaminated reads were removed to generate~91-fold coverage(448.49 Gb) high quality sequence data. Finally,the SOAPdenovo(version 1.05;http://soap.genomics.org.cn/)assembler was used to obtain 3.92 Gb of contigs with N50 size of 3.42 kilobases(kb)and the 4.66 Gb genome assembly with a scaffold N50 size of 63.69 kb.Assembly quality and coverage were validated using previously published BAC and expressed sequence tag(EST)sequences by PCR amplification.

    About 67%of the assembly was annotated as repetitive elements,of which the most abundant were long terminal repeat retrotransposons (49.07%). In total, 34,879 protein-coding gene models were predicted by analyzing>100 Mb of transcriptomes generated with the HiSequation and Roche 454 sequencing platform,together with publicly available ESTs from hexaploid wheat and related grass genomes[33–37].Average gene size was 3207 bp and exon number per gene was 4.7.Compared with 28,000 genes predicated for the A subgenome of hexaploid wheat[7]6800 more genes were identified in T.urartu.Although partly caused by different annotation methods the difference indicated extensive gene loss in the A subgenome of hexaploid wheat.Comparative analysis also revealed that there was a specific expansion of resistant genes in the T.urartu genome[9].Furthermore,the authors found that the large genome size of T.urartu compared to Brachypodium distachyon was caused by greatly increased intergenic spaces enriched with Gypsy and Copia retrotransposons,and firstly provided genome-scale evidence for the role of repeat expansion in genome size enlargement during the evolution of the tribe Triticeae[9].The T.urartu draft genome sequence will enable discovery of agronomic important genes and the development of genetic markers for molecular breeding.For example,TuGASR7 was shown to be a homologue of a grain length control gene in rice.Two haplotypes of TuGASR7(H1 and H2)were identified among 92 T.urartu accessions and H1 was significantly associated with long grain[9]and potentially higher yield if transferred to common wheat.

    Genome sequencing of Ae.tauschii,the diploid progenitor of wheat D subgenome,was also reported by Chinese scientists[8].A whole genome shotgun sequencing strategy combined with paired-end Illumina sequencing was used to produce 557.55 Gb of raw data.Then low quality,adaptor-contaminated and PCR-duplicated reads were filtered to obtain a 378.86 Gb of high quality dataset.The Illumina reads were assembled by SOAPdenovo(version 1.05;http://soap.genomics.org.cn/)to yield 3.53 Gb of contigs with a N50 size of 4.5 kb.The assembled contigs were linked to a scaffold based on paired-end reads and an additional 18.4 Gb of 454 pyro-sequencing long reads.In total,4.23 Gb of scaffolds were achieved with a N50 size of 57.59 kb,representing 97%of the 4.36 Gb estimated genome size[8].The quality of the draft genome was evaluated by comparison with ESTs from two full-length cDNA libraries from leaf and root tissue of Ae.tauschii.About 91%of EST sequences were mapped to the scaffolds with>90%coverage.

    >65.9%of the Ae.tauschii genome was annotated as repetitive DNA with the assemblies,[8].A large scale Ae.tauschii genome extension caused by a burst of retrotransposons was dated to have occurred about 3–-4 million years ago based on the insertion date of the assembled LTR retrotransposons.Jia et al.generated 117 Mb transcriptomes involving eight tissues to facilitate gene annotation[8].Using both evidence-based and de novo gene prediction methods,34,498 high confidence and 8652 low confidence protein-coding genes were identified.The latter have incomplete gene structure or limited expression data support.The average gene size was 1203 bp and exon number per gene was 4.9.About 1.72 Gb of scaffold sequences,comprising 30,697(71.1%)protein-coding genes,were aligned to chromosomes based on a genetic map constructed from an F2population of 490 individuals from a cross between Ae.tauschii accessions Y2280 and Al8/78.Genome-wide analysis revealed expansion of several agronomical relevant gene families,such as NBS-LRR and cytochrome P450 genes.

    Researchers from China Agricultural University collaborating with several research groups in USA reported a high quality sequence of the short arm of Ae.tauschii chromosome 3D in 2017[15].To overcome the limitations of the whole genome shotgun sequencing strategy the authors used a BAC-by-BAC strategy to sequence 3176 BAC clones selected by MTP based on a previously reported Ae.tauschii physical map[38].These MTP clones were genetically anchored to the short arm of Ae.tauschii chromosome 3D,or co-assembled with the 3DS physical map of the common wheat.BAC DNA was used to construct 3 kb paired-end libraries and sequenced using the Roche GS FLX Titanium XL Chemistry protocol.Sequenced reads were assembled using the Roche 454 gs Assembler V2.6 package[39]and scaffolded by adding 3–5 kb mate-pair reads using the Consed package[40].The assembled sequences were merged according to MTP BAC order.A final assembly contained 689 scaffolds with a N50 of 766 kb and total length of 293 Mb.Two genetic maps[8,38]and a Radiation-Hybrid(RH)map[41]on3DS were used to build an At3DS pseudo molecule.In total,612 scaffolds(247 Mb)were anchored on to the pseudo molecule,covering 90%of the At3DS arm sequence.

    >81%of the At3DS pseudo molecule was annotated as transposable elements;this was higher than previously observated on the Ae. tauschii genome [8].Pericentromeric-centromeric region were localized from 170 to 247 Mb by plotting the density of the Cereba and Quinta repeat families.About 88%(1873)of the annotated high confidence protein-coding genes(2124)and 52%(51)of low confidence protein-coding genes(98)were expressed in Ae.tauschii.Average gene length was 3821 bp,which was longer than previous reports for the Ae.tauschii genome[8],and average exon number per gene was 4.3.At3DS was further compared with homologous segments in related grasses to reveal rapid evolution of Triticeae genomes.

    4.New sequencing and assembling technologies promote progress in wheat genome sequencing

    Past studies on wheat genome sequencing in China were mainly focused on whole genome or single chromosome arm of diploid ancestors.The most frequently used methods were second generation sequencing combined with whole genome shotgun or BAC-by-BAC strategies.The data produced have short read-lengths(<300 bp)and biased genome coverage,resulting in fragmented and incomplete genome assemblies,especially in genomic regions with complex repeat structures.A new sequencing technology,single molecule real-time(SMRT)sequencing technology(Pacific Biosciences,USA),produces significantly longer sequence reads of up to 40–50 kb.This platform enables production of genome sequences with fewer gaps and longer contigs even for large and complicated genomes[42].Two additional next-generation mapping technologies,BioNano genome mapping and 10×Genomics linked reads,are being increasingly applied in genome sequencing to develop high quality assemblies[43–46].Moreover,a method described as Hi-C can be used to determine the three-dimensional architecture of chromosomes,providing insights into chromatin structure.Hi-C technology is able to validate genome assembly and scaffold order on chromosomes[32].

    Combining these new technologies,our laboratory successfully generated high quality genome assemblies of T.urartu(in preparation for publication).We completed the genome sequencing using a BAC-by-BAC strategy combined with the SMRT sequencing technology and the new BioNano genome map and 10x Genomics linked reads mapping technologies.The assembly pipeline was briefly described as follows:Firstly,the Illumina clean reads in each BAC pool were separately assembled.Then,the sequence contigs of each BAC were connected using the best aligned PacBio reads.Thirdly,the BAC sequences were iteratively connected into FPC contigs based on the MTP physical map.Finally,the FPC contigs were merged into scaffolds by referring to BioNano consensus map,10x Genomics linked reads and mate-pair sequences.The assembly pipeline significantly increased the scaffold length and accuracy compared to the first version of the A genome sequence,where short reads sequencing data combined with whole genome shotgun sequencing were applied.Given the previously estimated genome size of 4.94 Gb,our new assembly accounts for 98.4%of the T.urartu genome.

    As described above,the company NRGene(NesZiona,Isreal)developed the Denovo MAGIC2 assembler for large and complicated genomes such as wheat.It enables assembles of Illumina short reads into large scaffolds with N50 up to several Mb[10].Using this software,we completed the genome sequencing and assembly of Chinese bread wheat cultivar Kenong 9204.At the same time Prof.Jizeng Jia and colleagues at the Chinese Academy of Agricultural Sciences generated high quality Ae. tauschii genome assemblies,comprising of large scaffolds with a N50 size of 14.1 Mb[47].

    5.Conclusions and perspectives

    In general,the advent of new sequencing,mapping and assembly technologies will greatly facilitate the productions of high-quality genome sequences of Triticeae,and the genomes of various wheat species and cultivars will be sequenced and released for public access.These will strongly enhance systematic study of the genetics,comparative genomics and evolution of wheat,and will expedite isolation and characterization of genes controlling agronomical important traits,such as yield and resistance to biotic and abiotic stress.The complete genome sequence of common wheat and its progenitors will greatly assist molecular breeding of wheat and thereby contribute in meeting the challenges of food security and sustainable agriculture.

    Acknowledgments

    This work was supported by the Chinese Academy of Sciences(QYZDJ-SSW-SMC001)and the National Key Research and Development Program of China(2016YFD0101004).

    R E F E R E N C E S

    [1]International Wheat Genome Sequencing Consortium,A chromosome-based draft sequence of the hexaploid bread wheat(Triticum aestivum)genome,Science 345(2014)1251788.

    [2]H.Q.Ling,Progress and perspectives of the genome sequencing in wheat and its relatives,J.Triticeae Crops 36(2016)397–403(in Chinese with English abstract).

    [3]M.W.Bevan,C.Uauy,B.B.Wulff,J.Zhou,K.Krasileva,M.D.Clark,Genomic innovation for crop improvement,Nature 543(2017)346–354.

    [4]J.Dubcovsky,J.Dvorak,Genome plasticity a key factor in the success of polyploid wheat under domestication,Science 316(2007)1862–1866.

    [5]J.H.Peng,D.F.Sun,E.Nevo,Domestication evolution,genetics and genomics in wheat,Mol.Breed.8(2011)281–301.

    [6]T.Marcussen,S.R.Sandve,L.Heier,M.Spannagl,M.Pfeifer,International wheat genome sequencing consortium,in:K.S.Jakobsen,B.B.Wulff,B.Steuernagel,K.F.Mayer,O.A.Olsen(Eds.),Ancient Hybridizations Among the Ancestral Genomes of Bread Wheat,Science,345,2014,p.1250092.

    [7]R.Brenchley,M.Spannagl,M.Pfeifer,G.L.Barker,R.D'Amore,A.M.Allen,N.McKenzie,M.Kramer,A.Kerhornou,D.Bolser,S.Kay,D.Waite,M.Trick,I.Bancroft,Y.Gu,N.Huo,M.C.Luo,S.Sehgal,B.Gill,S.Kianian,O.Anderson,P.Kersey,J.Dvorak,W.R.McCombie,A.Hall,K.F.Mayer,K.J.Edwards,M.W.Bevan,N.Hall,Analysis of the bread wheat genome using whole-genome shotgun sequencing,Nature 491(2012)705–710.

    [8]J.Jia,S.Zhao,X.Kong,Y.Li,G.Zhao,W.He,R.Appels,M.Pfeifer,Y.Tao,X.Zhang,R.Jing,C.Zhang,Y.Ma,L.Gao,C.Gao,M.Spannagl,K.F.Mayer,D.Li,S.Pan,F.Zheng,Q.Hu,X.Xia,J.Li,Q.Liang,J.Chen,T.Wicker,C.Gou,H.Kuang,G.He,Y.Luo,B.Keller,Q.Xia,P.Lu,J.Wang,H.Zou,R.Zhang,J.Xu,J.Gao,C.Middleton,Z.Quan,G.Liu,J.Wang,International Wheat Genome Sequencing Consortium,H.Yang,X.Liu,Z.He,L.Mao,J.Wang,Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation,Nature 496(2013)91–95.

    [9]H.Q.Ling,S.Zhao,D.Liu,J.Wang,H.Sun,C.Zhang,H.Fan,D.Li,L.Dong,Y.Tao,C.Gao,H.Wu,Y.Li,Y.Cui,X.Guo,S.Zheng,B.Wang,K.Yu,Q.Liang,W.Yang,X.Lou,J.Chen,M.Feng,J.Jian,X.Zhang,G.Luo,Y.Jiang,J.Liu,Z.Wang,Y.Sha,B.Zhang,H.Wu,D.Tang,Q.Shen,P.Xue,S.Zou,X.Wang,X.Liu,F.Wang,Y.Yang,X.An,Z.Dong,K.Zhang,X.Zhang,M.C.Luo,J.Dvorak,Y.Tong,J.Wang,H.Yang,Z.Li,D.Wang,A.Zhang,J.Wang,Draft genome of the wheat A-genome progenitor Triticum urartu,Nature 496(2013)87–90.

    [10]R.Avni,M.Nave,O.Barad,K.Baruch,S.O.Twardziok,H.Gundlach,I.Hale,M.Mascher,M.Spannagl,K.Wiebe,K.W.Jordan,G.Golan,J.Deek,B.Ben-Zvi,G.Ben-Zvi,A.Himmelbach,R.P.MacLachlan,A.G.Sharpe,A.Fritz,R.Ben-David,H.Budak,T.Fahima,A.Korol,J.D.Faris,A.Hernandez,M.A.Mikel,A.A.Levy,B.Steffenson,M.Maccaferri,R.Tuberosa,L.Cattivelli,P.Faccioli,A.Ceriotti,K.Kashkush,M.Pourkheirandish,T.Komatsuda,T.Eilam,H.Sela,A.Sharon,N.Ohad,D.A.Chamovitz,K.F.X.Mayer,N.Stein,G.Ronen,Z.Peleg,C.J.Pozniak,E.D.Akhunov,A.Distelfeld,Wild emmer genome architecture and diversity elucidate wheat evolution and domestication,Science 357(2017)93–97.

    [11]B.J.Clavijo,L.Venturini,C.Schudoma,G.G.Accinelli,G.Kaithakottil,J.Wright,P.Borrill,G.Kettleborough,D.Heavens,H.Chapman,J.Lipscombe,T.Barker,F.H.Lu,N.McKenzie,D.Raats,R.H.Ramirez-Gonzalez,A.Coince,N.Peel,L.Percival-Alwyn,O.Duncan,J.Trosch,G.Yu,D.M.Bolser,G.Namaati,A.Kerhornou,M.Spannagl,H.Gundlach,G.Haberer,R.P.Davey,C.Fosker,F.D.Palma,A.L.Phillips,A.H.Millar,P.J.Kersey,C.Uauy,K.V.Krasileva,D.Swarbreck,M.W.Bevan,M.D.Clark,An improved assembly and annotation of the allohexaploid wheat genome identifies complete families of agronomic genes and provides genomic evidence for chromosomal translocations,Genome Res.27(2017)885–896.

    [12]A.V.Zimin,D.Puiu,R.Hall,S.Kingan,S.L.Salzberg,The first near-complete assembly of the hexaploid bread wheat genome,Triticum aestivum,bioRxiv(2017)https://doi.org/10.1101/159111.

    [13]F.Choulet,A.Alberti,S.Theil,N.Glover,V.Barbe,J.Daron,L.Pingault,P.Sourdille,A.Couloux,E.Paux,P.Leroy,S.Mangenot,N.Guilhot,J.Le Gouis,F.Balfourier,M.Alaux,V.Jamilloux,J.Poulain,C.Durand,A.Bellec,C.Gaspin,J.Safar,J.Dolezel,J.Rogers,K.Vandepoele,J.M.Aury,K.Mayer,H.Berges,H.Quesneville,P.Wincker,C.Feuillet,Structural and functional partitioning of bread wheat chromosome 3B,Science 345(2014)1249721.

    [14]M.Liu,J.Stiller,K.Holusova,J.Vrana,D.Liu,J.Dolezel,C.Liu,Chromosome-specific sequencing reveals an extensive dispensable genome component in wheat,Sci.Rep.6(2016)36398.

    [15]J.Xie,N.Huo,S.Zhou,Y.Wang,G.Guo,K.R.Deal,S.Ouyang,Y.Liang,Z.Wang,L.Xiao,T.Zhu,T.Hu,V.Tiwari,J.Zhang,H.Li,Z.Ni,Y.Yao,H.Peng,S.Zhang,O.D.Anderson,P.E.McGuire,J.Dvorak,M.C.Luo,Z.Liu,Y.Q.Gu,Q.Sun,Sequencing and comparative analyses of Aegilops tauschii chromosome arm 3DS reveal rapid evolution of Triticeae genomes,J.Genet.Genomics 44(2017)51–61.

    [16]K.Holusova,J.Vrana,J.Safar,H.Simkova,B.Balcarkova,Z.Frenkel,B.Darrier,E.Paux,F.Cattonaro,H.Berges,T.Letellier,M.Alaux,J.Dolezel,J.Bartos,Physical map of the short arm of bread wheat chromosome 3D,Plant Genome 10(2017)1.

    [17]E.Paux,P.Sourdille,J.Salse,C.Saintenac,F.Choulet,P.Leroy,A.Korol,M.Michalak,S.Kianian,W.Spielmeyer,E.Lagudah,D.Somers,A.Kilian,M.Alaux,S.Vautrin,H.Berges,K.Eversole,R.Appels,J.Safar,H.Simkova,J.Dolezel,M.Bernard,C.Feuillet,A physical map of the 1-gigabase bread wheat chromosome 3B,Science 322(2008)101–104.

    [18]P.Hernandez,M.Martis,G.Dorado,M.Pfeifer,S.Galvez,S.Schaaf,N.Jouve,H.Simkova,M.Valarik,J.Dolezel,K.F.Mayer,Next-generation sequencing and syntenic integration of flow-sorted arms of wheat chromosome 4A exposes the chromosome structure and gene content,Plant J.69(2012)377–386.

    [19]J.Breen,T.Wicker,M.Shatalina,Z.Frenkel,I.Bertin,R.Philippe,W.Spielmeyer,H.Simkova,J.Safar,F.Cattonaro,S.Scalabrin,F.Magni,S.Vautrin,H.Berges,International wheat genome sequencing consortium,in:E.Paux,T.Fahima,J.Dolezel,A.Korol,C.Feuillet,B.Keller(Eds.),A Physical Map of the Short Arm of Wheat Chromosome 1A,PLoS One,8,2013,p.e80272.

    [20]S.J.Lucas,B.A.Akpinar,M.Kantar,Z.Weinstein,F.Aydinoglu,J.Safar,H.Simkova,Z.Frenkel,A.Korol,F.Magni,F.Cattonaro,S.Vautrin,A.Bellec,H.Berges,J.Dolezel,H.Budak,Physical mapping integrated with syntenic analysis to characterize the gene space of the long arm of wheat chromosome 1A,PLoS One 8(2013),e59542..

    [21]T.Belova,L.Gronvold,A.Kumar,S.Kianian,X.He,M.Lillemo,N.M.Springer,S.Lien,O.A.Olsen,S.R.Sandve,Utilization of deletion bins to anchor and order sequences along the wheat 7B chromosome,Theor.Appl.Genet.127(2014)2029–2040.

    [22]N.Poursarebani,T.Nussbaumer,H.Simkova,J.Safar,H.Witsenboer,J.van Oeveren,J.Dolezel,K.F.Mayer,N.Stein,T.Schnurbusch,Whole-genome profiling and shotgun sequencing delivers an anchored,gene-decorated,physical map assembly of bread wheat chromosome 6A,Plant J.79(2014)334–347.

    [23]T.Tanaka,F.Kobayashi,G.P.Joshi,R.Onuki,H.Sakai,H.Kanamori,J.Wu,H.Simkova,S.Nasuda,T.R.Endo,K.Hayakawa,J.Dolezel,Y.Ogihara,T.Itoh,T.Matsumoto,H.Handa,Next-generation survey sequencing and the molecular organization of wheat chromosome 6B,DNA Res.21(2014)103–114.

    [24]F.Kobayashi,J.Wu,H.Kanamori,T.Tanaka,S.Katagiri,W.Karasawa,S.Kaneko,S.Watanabe,T.Sakaguchi,Y.Hanawa,H.Fujisawa,K.Kurita,C.Abe,J.C.Iehisa,R.Ohno,J.Safar,H.Simkova,Y.Mukai,M.Hamada,M.Saito,G.Ishikawa,Y.Katayose,T.R.Endo,S.Takumi,T.Nakamura,K.Sato,Y.Ogihara,K.Hayakawa,J.Dolezel,S.Nasuda,T.Matsumoto,H.Handa,A high-resolution physical map integrating an anchored chromosome with the BAC physical maps of wheat chromosome 6B,BMC Genomics 16(2015)595.

    [25]B.A.Akpinar,F.Magni,M.Yuce,S.J.Lucas,H.Simkova,J.Safar,S.Vautrin,H.Berges,F.Cattonaro,J.Dolezel,H.Budak,The physical map of wheat chromosome 5DS revealed gene duplications and small rearrangements,BMC Genomics 16(2015)453.

    [26]H.Stankova,A.R.Hastie,S.Chan,J.Vrana,Z.Tulpova,M.Kubalakova,P.Visendi,S.Hayashi,M.Luo,J.Batley,D.Edwards,J.Dolezel,H.Simkova,BioNano genome mapping of individual chromosomes supports physical mapping and sequence assembly in complex plant genomes,Plant Biotechnol.J.14(2016)1523–1531.

    [27]R.Philippe,E.Paux,I.Bertin,P.Sourdille,F.Choulet,C.Laugier,H.Simkova,J.Safar,A.Bellec,S.Vautrin,Z.Frenkel,F.Cattonaro,F.Magni,S.Scalabrin,M.M.Martis,K.F.Mayer,A.Korol,H.Berges,J.Dolezel,C.Feuillet,A high density physical map of chromosome 1BL supports evolutionary studies,map-based cloning and sequencing in wheat,Genome Biol.14(2013)R64.

    [28]D.Raats,Z.Frenkel,T.Krugman,I.Dodek,H.Sela,H.Simkova,F.Magni,F.Cattonaro,S.Vautrin,H.Berges,T.Wicker,B.Keller,P.Leroy,R.Philippe,E.Paux,J.Dolezel,C.Feuillet,A.Korol,T.Fahima,The physical map of wheat chromosome 1BS provides insights into its gene space organization and evolution,Genome Biol.14(2013)R138.

    [29]D.Barabaschi,F.Magni,A.Volante,A.Gadaleta,H.?imková,S.Scalabrin,M.L.Prazzoli,P.Bagnaresi,K.Lacrima,V.Michelotti,F.Desiderio,L.Orru,V.Mazzamurro,A.Fricano,A.M.Mastrangelo,P.Tononi,N.Vitulo,I.Jurman,Z.Frenkel,F.Cattonaro,M.Morgante,A.Blanco,J.Dole?el,M.Delledonne,A.M.Stanca,L.Cattivelli,G.Vale,Physical mapping of bread wheat chromosome 5A:an integrated approach,Plant Genome 8(2015)24.

    [30]A.V.Zimin,G.Marcais,D.Puiu,M.Roberts,S.L.Salzberg,J.A.Yorke,The MaSuRCA genome assembler,Bioinformatics 29(2013)2669–2677.

    [31]C.S.Chin,P.Peluso,F.J.Sedlazeck,M.Nattestad,G.T.Concepcion,A.Clum,C.Dunn,R.O'Malley,R.Figueroa-Balderas,A.Morales-Cruz,G.R.Cramer,M.Delledonne,C.Luo,J.R.Ecker,D.Cantu,D.R.Rank,M.C.Schatz,Phased diploid genome assembly with single-molecule real-time sequencing,Nat.Methods 13(2016)1050–1054.

    [32]E.Lieberman-Aiden,N.L.van Berkum,L.Williams,M.Imakaev,T.Ragoczy,A.Telling,I.Amit,B.R.Lajoie,P.J.Sabo,M.O.Dorschner,R.Sandstrom,B.Bernstein,M.A.Bender,M.Groudine,A.Gnirke,J.Stamatoyannopoulos,L.A.Mirny,E.S.Lander,J.Dekker,Comprehensive mapping of long-range interactions reveals folding principles of the human genome,Science 326(2009)289–293.

    [33]International Rice Genome Sequencing Project,The mapbased sequence of the rice genome,Nature 436(2005)793–800.

    [34]P.S.Schnable,D.Ware,R.S.Fulton,J.C.Stein,F.Wei,S.Pasternak,C.Liang,J.Zhang,L.Fulton,T.A.Graves,P.Minx,A.D.Reily,L.Courtney,S.S.Kruchowski,C.Tomlinson,C.Strong,K.Delehaunty,C.Fronick,B.Courtney,S.M.Rock,E.Belter,F.Du,K.Kim,R.M.Abbott,M.Cotton,A.Levy,P.Marchetto,K.Ochoa,S.M.Jackson,B.Gillam,W.Chen,L.Yan,J.Higginbotham,M.Cardenas,J.Waligorski,E.Applebaum,L.Phelps,J.Falcone,K.Kanchi,T.Thane,A.Scimone,N.Thane,J.Henke,T.Wang,J.Ruppert,N.Shah,K.Rotter,J.Hodges,E.Ingenthron,M.Cordes,S.Kohlberg,J.Sgro,B.Delgado,K.Mead,A.Chinwalla,S.Leonard,K.Crouse,K.Collura,D.Kudrna,J.Currie,R.He,A.Angelova,S.Rajasekar,T.Mueller,R.Lomeli,G.Scara,A.Ko,K.Delaney,M.Wissotski,G.Lopez,D.Campos,M.Braidotti,E.Ashley,W.Golser,H.Kim,S.Lee,J.Lin,Z.Dujmic,W.Kim,J.Talag,A.Zuccolo,C.Fan,A.Sebastian,M.Kramer,L.Spiegel,L.Nascimento,T.Zutavern,B.Miller,C.Ambroise,S.Muller,W.Spooner,A.Narechania,L.Ren,S.Wei,S.Kumari,B.Faga,M.J.Levy,L.McMahan,P.Van Buren,M.W.Vaughn,K.Ying,C.T.Yeh,S.J.Emrich,Y.Jia,A.Kalyanaraman,A.P.Hsia,W.B.Barbazuk,R.S.Baucom,T.P.Brutnell,N.C.Carpita,C.Chaparro,J.M.Chia,J.M.Deragon,J.C.Estill,Y.Fu,J.A.Jeddeloh,Y.Han,H.Lee,P.Li,D.R.Lisch,S.Liu,Z.Liu,D.H.Nagel,M.C.McCann,P.SanMiguel,A.M.Myers,D.Nettleton,J.Nguyen,B.W.Penning,L.Ponnala,K.L.Schneider,D.C.Schwartz,A.Sharma,C.Soderlund,N.M.Springer,Q.Sun,H.Wang,M.Waterman,R.Westerman,T.K.Wolfgruber,L.Yang,Y.Yu,L.Zhang,S.Zhou,Q.Zhu,J.L.Bennetzen,R.K.Dawe,J.Jiang,N.Jiang,G.G.Presting,S.R.Wessler,S.Aluru,R.A.Martienssen,S.W.Clifton,W.R.McCombie,R.A.Wing,R.K.Wilson,The B73 maize genome:complexity,diversity,and dynamics,Science 326(2009)1112–1115.

    [35]A.H.Paterson,J.E.Bowers,R.Bruggmann,I.Dubchak,J.Grimwood,H.Gundlach,G.Haberer,U.Hellsten,T.Mitros,A.Poliakov,J.Schmutz,M.Spannagl,H.Tang,X.Wang,T.Wicker,A.K.Bharti,J.Chapman,F.A.Feltus,U.Gowik,I.V.Grigoriev,E.Lyons,C.A.Maher,M.Martis,A.Narechania,R.P.Otillar,B.W.Penning,A.A.Salamov,Y.Wang,L.Zhang,N.C.Carpita,M.Freeling,A.R.Gingle,C.T.Hash,B.Keller,P.Klein,S.Kresovich,M.C.McCann,R.Ming,D.G.Peterson,D.Ware Mehboob-ur-Rahman,P.Westhoff,K.F.Mayer,J.Messing,D.S.Rokhsar,The Sorghum bicolor genome and the diversification of grasses,Nature 457(2009)551–556.

    [36]International Brachypodium Initiative,Genome sequencing and analysis of the model grass Brachypodium distachyon,Nature 463(2010)763–768.

    [37]International Barley Genome Sequencing Consortium,K.F.Mayer,R.Waugh,J.W.Brown,A.Schulman,P.Langridge,M.Platzer,G.B.Fincher,G.J.Muehlbauer,K.Sato,T.J.Close,R.P.Wise,N.Stein,A physical,genetic and functional sequence assembly of the barley genome,Nature 491(2012)711–716.

    [38]M.C.Luo,Y.Q.Gu,F.M.You,K.R.Deal,Y.Ma,Y.Hu,N.Huo,Y.Wang,J.Wang,S.Chen,C.M.Jorgensen,Y.Zhang,P.E.McGuire,S.Pasternak,J.C.Stein,D.Ware,M.Kramer,W.R.McCombie,S.F.Kianian,M.M.Martis,K.F.Mayer,S.K.Sehgal,W.Li,B.S.Gill,M.W.Bevan,H.Simkova,J.Dolezel,S.Weining,G.R.Lazo,O.D.Anderson,J.Dvorak,A 4-gigabase physical map unlocks the structure and evolution of the complex genome of Aegilops tauschii,the wheat D-genome progenitor,Proc.Natl.Acad.Sci.U.S.A.110(2013)7940–7945.

    [39]M.Margulies,M.Egholm,W.E.Altman,S.Attiya,J.S.Bader,L.A.Bemben,J.Berka,M.S.Braverman,Y.J.Chen,Z.Chen,S.B.Dewell,L.Du,J.M.Fierro,X.V.Gomes,B.C.Godwin,W.He,S.Helgesen,C.H.Ho,G.P.Irzyk,S.C.Jando,M.L.Alenquer,T.P.Jarvie,K.B.Jirage,J.B.Kim,J.R.Knight,J.R.Lanza,J.H.Leamon,S.M.Lefkowitz,M.Lei,J.Li,K.L.Lohman,H.Lu,V.B.Makhijani,K.E.McDade,M.P.McKenna,E.W.Myers,E.Nickerson,J.R.Nobile,R.Plant,B.P.Puc,M.T.Ronan,G.T.Roth,G.J.Sarkis,J.F.Simons,J.W.Simpson,M.Srinivasan,K.R.Tartaro,A.Tomasz,K.A.Vogt,G.A.Volkmer,S.H.Wang,Y.Wang,M.P.Weiner,P.Yu,R.F.Begley,J.M.Rothberg,Genome sequencing in microfabricated high-density picolitre reactors,Nature 437(2005)376–380.

    [40]D.Gordon,P.Green,Consed:a graphical editor for nextgeneration sequencing,Bioinformatics 29(2013)2936–2937.

    [41]A.Kumar,R.Seetan,M.Mergoum,V.K.Tiwari,M.J.Iqbal,Y.Wang,O.Al-Azzam,H.Simkova,M.C.Luo,J.Dvorak,Y.Q.Gu,A.Denton,A.Kilian,G.R.Lazo,S.F.Kianian,Radiation hybrid maps of the D-genome of Aegilops tauschii and their application in sequence assembly of large and complex plant genomes,BMC Genomics 16(2015)800.

    [42]M.Ferrarini,M.Moretto,J.A.Ward,N.Surbanovski,V.Stevanovic,L.Giongo,R.Viola,D.Cavalieri,R.Velasco,A.Cestaro,D.J.Sargent,An evaluation of the PacBio RS platform for sequencing and de novo assembly of a chloroplast genome,BMC Genomics 14(2013)670.

    [43]K.M.Moll,P.Zhou,T.Ramaraj,D.Fajardo,N.P.Devitt,M.J.Sadowsky,R.M.Stupar,P.Tiffin,J.R.Miller,N.D.Young,K.A.T.Silverstein,J.Mudge,Strategies for optimizing BioNano and Dovetail explored through a second reference quality assembly for the legume model,Medicago truncatula,BMC Genomics 18(2017)578.

    [44]P.Chen,X.Jing,B.Liao,Y.Zhu,J.Xu,R.Liu,Y.Zhao,X.Li,BioNano genome map resource for Oryza sativa ssp.japonica and indica and its application in rice genome sequence correction and gap filling,Mol.Plant 10(2017)895–898.

    [45]L.Coombe,R.L.Warren,S.D.Jackman,C.Yang,B.P.Vandervalk,R.A.Moore,S.Pleasance,R.J.Coope,J.Bohlmann,R.A.Holt,S.J.Jones,I.Birol,Assembly of the complete sitka spruce chloroplast genome using 10X Genomics'GemCode sequencing data,PLoS One 11(2016),e0163059..

    [46]M.Eslami Rasekh,G.Chiatante,M.Miroballo,J.Tang,M.Ventura,C.T.Amemiya,E.E.Eichler,F.Antonacci,C.Alkan,Discovery of large genomic inversions using long range information,BMC Genomics 18(2017)65.

    [47]G.Zhao,C.Zou,K.Li,K.Wang,T.Li,L.Gao,X.Zhang,Z.Yang,W.Jiang,L.Mao,X.Kong,Y.Jiao,J.Jia,Generation and analysis of the high quality genome sequence of goat grass(Aegilops tauschii),the donor of wheat D genome,Proceedings of the 8th Wheat Genomics and Molecular Breeding Conference of China,August 7–9,2017,2017(Shijiazhuang,Hebei,China,in Chinese).

    欧美一级a爱片免费观看看| 精品久久久久久久久亚洲| 99久久中文字幕三级久久日本| 97在线视频观看| 精品久久久久久电影网| 在线观看美女被高潮喷水网站| 99九九在线精品视频| 亚洲精品第二区| 久久久久久久大尺度免费视频| 51国产日韩欧美| 婷婷成人精品国产| 日韩视频在线欧美| .国产精品久久| 母亲3免费完整高清在线观看 | av一本久久久久| 91精品伊人久久大香线蕉| 老司机亚洲免费影院| 国产一级毛片在线| 人妻一区二区av| 欧美日韩综合久久久久久| 亚洲av国产av综合av卡| 国产欧美另类精品又又久久亚洲欧美| 久久午夜福利片| 性色av一级| 国产一区有黄有色的免费视频| 人人妻人人爽人人添夜夜欢视频| 亚洲伊人久久精品综合| 亚洲欧洲精品一区二区精品久久久 | 国产男女内射视频| 天美传媒精品一区二区| 亚洲精品乱久久久久久| 日本欧美视频一区| 18禁观看日本| 国产精品熟女久久久久浪| 久久午夜福利片| 欧美日韩在线观看h| 在线播放无遮挡| 亚洲国产毛片av蜜桃av| 欧美丝袜亚洲另类| 色视频在线一区二区三区| 国产亚洲最大av| 国产精品国产三级国产av玫瑰| 精品久久久久久电影网| 精品久久久久久电影网| 久久精品国产自在天天线| 最新中文字幕久久久久| 少妇丰满av| 亚洲av成人精品一二三区| 久久久久精品久久久久真实原创| 观看av在线不卡| 久久精品国产自在天天线| 亚洲精品乱码久久久久久按摩| 成人毛片a级毛片在线播放| 欧美日本中文国产一区发布| 欧美激情 高清一区二区三区| 黄色一级大片看看| 女性生殖器流出的白浆| 日本黄色日本黄色录像| 国产精品麻豆人妻色哟哟久久| 在线亚洲精品国产二区图片欧美 | 老熟女久久久| 亚洲少妇的诱惑av| 日日啪夜夜爽| 十八禁高潮呻吟视频| tube8黄色片| videos熟女内射| 免费黄频网站在线观看国产| 男女无遮挡免费网站观看| 91成人精品电影| 久久久久国产网址| 熟女电影av网| 精品一区二区免费观看| 亚洲成人手机| 亚洲av在线观看美女高潮| 欧美激情国产日韩精品一区| 国产精品成人在线| 视频中文字幕在线观看| 超碰97精品在线观看| 赤兔流量卡办理| 亚洲欧美一区二区三区黑人 | 看免费成人av毛片| 国产黄频视频在线观看| 一边亲一边摸免费视频| 免费观看的影片在线观看| 丰满饥渴人妻一区二区三| 日韩一区二区视频免费看| 熟女电影av网| 桃花免费在线播放| 精品卡一卡二卡四卡免费| 欧美亚洲日本最大视频资源| 国产成人一区二区在线| 超色免费av| 国产亚洲欧美精品永久| 一本久久精品| videos熟女内射| 亚洲成色77777| 久久99精品国语久久久| 国产精品女同一区二区软件| 香蕉精品网在线| 国产不卡av网站在线观看| 母亲3免费完整高清在线观看 | 最近中文字幕高清免费大全6| 久久久精品94久久精品| 在线观看三级黄色| www.色视频.com| 少妇丰满av| 一本色道久久久久久精品综合| av又黄又爽大尺度在线免费看| 男女边吃奶边做爰视频| 校园人妻丝袜中文字幕| 亚洲欧美日韩卡通动漫| 亚洲综合精品二区| 亚洲人与动物交配视频| 亚洲av不卡在线观看| 精品一区二区三卡| 永久网站在线| 精品午夜福利在线看| 成人无遮挡网站| 内地一区二区视频在线| 欧美日韩综合久久久久久| 最新中文字幕久久久久| 性色avwww在线观看| 久久精品国产a三级三级三级| 午夜免费男女啪啪视频观看| av在线观看视频网站免费| 色哟哟·www| 久久久久久久精品精品| 美女视频免费永久观看网站| 黄色配什么色好看| 亚洲精品久久久久久婷婷小说| 大片电影免费在线观看免费| 秋霞在线观看毛片| 中国美白少妇内射xxxbb| 国产成人精品久久久久久| 最近最新中文字幕免费大全7| 美女内射精品一级片tv| 丝袜喷水一区| 亚洲欧美精品自产自拍| 免费不卡的大黄色大毛片视频在线观看| 久久97久久精品| 亚洲成人一二三区av| 高清视频免费观看一区二区| freevideosex欧美| 国产高清国产精品国产三级| 日本黄色片子视频| 欧美人与善性xxx| 国产精品偷伦视频观看了| 亚洲精品国产色婷婷电影| 秋霞在线观看毛片| 久久亚洲国产成人精品v| 午夜日本视频在线| 日韩成人av中文字幕在线观看| 亚洲av综合色区一区| 午夜福利,免费看| freevideosex欧美| 国产片内射在线| 亚洲国产最新在线播放| 国内精品宾馆在线| 亚洲欧美清纯卡通| 欧美成人精品欧美一级黄| 欧美一级a爱片免费观看看| 国产欧美亚洲国产| 午夜日本视频在线| 国产精品秋霞免费鲁丝片| 精品久久久久久久久av| 欧美少妇被猛烈插入视频| 亚洲,一卡二卡三卡| 久久久久人妻精品一区果冻| 免费观看无遮挡的男女| av女优亚洲男人天堂| 丝袜在线中文字幕| 日韩欧美一区视频在线观看| 亚洲中文av在线| 婷婷色麻豆天堂久久| 一级毛片 在线播放| 搡老乐熟女国产| 午夜91福利影院| 久久精品久久久久久久性| 熟妇人妻不卡中文字幕| 亚洲人成网站在线观看播放| 亚洲成人av在线免费| 午夜av观看不卡| 日韩中文字幕视频在线看片| 在线观看免费高清a一片| 亚洲精品乱码久久久v下载方式| 成人亚洲精品一区在线观看| 一级片'在线观看视频| 少妇 在线观看| 欧美人与善性xxx| 久久久久精品久久久久真实原创| 一本一本综合久久| 日韩欧美一区视频在线观看| 日本与韩国留学比较| 国产黄片视频在线免费观看| videos熟女内射| 纵有疾风起免费观看全集完整版| 亚洲av电影在线观看一区二区三区| 亚洲国产欧美日韩在线播放| 你懂的网址亚洲精品在线观看| 五月玫瑰六月丁香| 亚洲人与动物交配视频| 久久精品国产亚洲av涩爱| 最黄视频免费看| 18禁在线无遮挡免费观看视频| 国产高清三级在线| 18在线观看网站| 久久久久久久精品精品| 免费黄频网站在线观看国产| 日本免费在线观看一区| 国产片内射在线| 久久精品国产鲁丝片午夜精品| 全区人妻精品视频| 青春草亚洲视频在线观看| 免费看av在线观看网站| 22中文网久久字幕| 色视频在线一区二区三区| 久久精品国产a三级三级三级| 国产精品一区二区三区四区免费观看| 又粗又硬又长又爽又黄的视频| 午夜激情福利司机影院| 久久鲁丝午夜福利片| 日本vs欧美在线观看视频| 老司机亚洲免费影院| 免费看不卡的av| 欧美人与性动交α欧美精品济南到 | 国产一级毛片在线| 最近中文字幕2019免费版| 少妇的逼好多水| 另类精品久久| 午夜日本视频在线| 在线 av 中文字幕| 亚洲成人av在线免费| 18禁在线播放成人免费| 两个人免费观看高清视频| 又大又黄又爽视频免费| 建设人人有责人人尽责人人享有的| 熟女电影av网| 久久久国产一区二区| 少妇人妻精品综合一区二区| 日本欧美视频一区| 交换朋友夫妻互换小说| 久久人人爽人人爽人人片va| videossex国产| 丝瓜视频免费看黄片| 熟女av电影| 成人亚洲欧美一区二区av| 久久99蜜桃精品久久| 一级片'在线观看视频| a级毛色黄片| 波野结衣二区三区在线| 国产精品欧美亚洲77777| 晚上一个人看的免费电影| av.在线天堂| 一级二级三级毛片免费看| 高清毛片免费看| 91久久精品电影网| 久久影院123| 亚洲人成网站在线播| 男女免费视频国产| 久久99热这里只频精品6学生| 国产精品蜜桃在线观看| 最近中文字幕2019免费版| 欧美精品国产亚洲| 高清欧美精品videossex| 全区人妻精品视频| 美女福利国产在线| 久久久欧美国产精品| 少妇被粗大猛烈的视频| 老司机亚洲免费影院| 人妻 亚洲 视频| 国产一区二区三区av在线| 99九九在线精品视频| 国产精品人妻久久久久久| 久久久久久久久大av| 免费黄色在线免费观看| 色94色欧美一区二区| 久久人人爽人人爽人人片va| 伊人久久国产一区二区| 国产精品 国内视频| 91久久精品国产一区二区成人| 天天影视国产精品| 天天躁夜夜躁狠狠久久av| 制服人妻中文乱码| 国产免费又黄又爽又色| 26uuu在线亚洲综合色| 男人爽女人下面视频在线观看| 99re6热这里在线精品视频| 各种免费的搞黄视频| 欧美3d第一页| 亚洲欧美精品自产自拍| 一区二区三区四区激情视频| 国产免费又黄又爽又色| 观看av在线不卡| 美女国产高潮福利片在线看| 波野结衣二区三区在线| 国产综合精华液| 国产高清三级在线| 精品久久久久久久久亚洲| 男人爽女人下面视频在线观看| 一个人看视频在线观看www免费| 最近最新中文字幕免费大全7| 99热全是精品| 久久女婷五月综合色啪小说| 国产精品女同一区二区软件| 久久狼人影院| 一区在线观看完整版| 国精品久久久久久国模美| 精品一区二区三卡| 人人妻人人澡人人看| 中文乱码字字幕精品一区二区三区| 亚洲精品久久成人aⅴ小说 | 激情五月婷婷亚洲| 精品亚洲成国产av| 成人手机av| 免费观看的影片在线观看| 十八禁网站网址无遮挡| 色吧在线观看| 在线亚洲精品国产二区图片欧美 | 日韩 亚洲 欧美在线| 伦精品一区二区三区| 十分钟在线观看高清视频www| 日韩一区二区三区影片| 国产高清不卡午夜福利| 久久 成人 亚洲| 亚洲人成网站在线观看播放| 中文精品一卡2卡3卡4更新| 中文字幕人妻熟人妻熟丝袜美| 精品熟女少妇av免费看| 成人漫画全彩无遮挡| 少妇精品久久久久久久| 日韩精品有码人妻一区| 99热这里只有是精品在线观看| 你懂的网址亚洲精品在线观看| 日本av手机在线免费观看| 亚洲精品成人av观看孕妇| 中国美白少妇内射xxxbb| 久久久久视频综合| 国产精品一区www在线观看| 人妻一区二区av| 日日撸夜夜添| 国产精品久久久久久久久免| 男女边摸边吃奶| 亚洲精品国产av成人精品| 欧美变态另类bdsm刘玥| 中国三级夫妇交换| 黑人巨大精品欧美一区二区蜜桃 | freevideosex欧美| 综合色丁香网| 青春草视频在线免费观看| 草草在线视频免费看| a级毛色黄片| 成人毛片60女人毛片免费| 久久99热这里只频精品6学生| 免费人成在线观看视频色| 男女边摸边吃奶| 最近手机中文字幕大全| 久久国产精品大桥未久av| 天美传媒精品一区二区| 在线播放无遮挡| 一级a做视频免费观看| 精品亚洲成a人片在线观看| 观看av在线不卡| 中文字幕精品免费在线观看视频 | 黄色欧美视频在线观看| 成人国语在线视频| 亚洲av在线观看美女高潮| 国产 一区精品| 成人无遮挡网站| 99国产精品免费福利视频| 18禁在线播放成人免费| 免费看光身美女| 久久免费观看电影| 亚洲国产精品一区三区| 国产成人一区二区在线| 久久97久久精品| 久久精品国产亚洲av涩爱| 日本av手机在线免费观看| 一个人看视频在线观看www免费| 天美传媒精品一区二区| 亚洲中文av在线| 少妇猛男粗大的猛烈进出视频| 国产精品.久久久| 91精品国产国语对白视频| 久久精品人人爽人人爽视色| 欧美日韩国产mv在线观看视频| 精品国产一区二区三区久久久樱花| 午夜91福利影院| 国产av码专区亚洲av| 一区二区三区乱码不卡18| 全区人妻精品视频| 亚洲国产色片| 国产极品天堂在线| 婷婷成人精品国产| 搡女人真爽免费视频火全软件| 久久精品国产a三级三级三级| 亚洲伊人久久精品综合| 亚洲欧美色中文字幕在线| 国产精品人妻久久久影院| 欧美97在线视频| 九色成人免费人妻av| 秋霞伦理黄片| √禁漫天堂资源中文www| 久久毛片免费看一区二区三区| 久久午夜综合久久蜜桃| 麻豆成人av视频| 观看美女的网站| 久久久久国产网址| 久久韩国三级中文字幕| 亚洲人成77777在线视频| 性色avwww在线观看| 日本-黄色视频高清免费观看| 国产片特级美女逼逼视频| 日韩人妻高清精品专区| 久久精品国产亚洲网站| 国产精品无大码| 午夜精品国产一区二区电影| 国产精品秋霞免费鲁丝片| 亚洲图色成人| 亚洲精品日韩av片在线观看| 51国产日韩欧美| 99国产综合亚洲精品| 成人18禁高潮啪啪吃奶动态图 | 免费看不卡的av| 日韩大片免费观看网站| 一区二区三区四区激情视频| av黄色大香蕉| 91国产中文字幕| 精品人妻熟女av久视频| 色网站视频免费| 91在线精品国自产拍蜜月| 亚洲精品久久成人aⅴ小说 | 久久综合国产亚洲精品| 在线观看免费视频网站a站| 桃花免费在线播放| 中文字幕免费在线视频6| 免费人妻精品一区二区三区视频| 日本欧美国产在线视频| 国产精品一区二区在线观看99| 亚洲国产精品一区三区| 久久久精品免费免费高清| 最近最新中文字幕免费大全7| 少妇精品久久久久久久| 一边亲一边摸免费视频| 91精品一卡2卡3卡4卡| 久久久久久久精品精品| 波野结衣二区三区在线| 国内精品宾馆在线| 亚洲精品视频女| 另类精品久久| 日本wwww免费看| 亚洲第一av免费看| 免费av中文字幕在线| 国产伦理片在线播放av一区| 高清不卡的av网站| 国产熟女欧美一区二区| 人妻少妇偷人精品九色| 在线观看免费日韩欧美大片 | 一级片'在线观看视频| 免费看不卡的av| 久久久久人妻精品一区果冻| 欧美日本中文国产一区发布| 丰满少妇做爰视频| 成人毛片60女人毛片免费| a级毛色黄片| 视频区图区小说| 亚洲欧美色中文字幕在线| av一本久久久久| 国产成人freesex在线| 最后的刺客免费高清国语| 欧美精品一区二区大全| 国产日韩欧美视频二区| 3wmmmm亚洲av在线观看| 久久久a久久爽久久v久久| 日本猛色少妇xxxxx猛交久久| 亚洲精华国产精华液的使用体验| 国产男人的电影天堂91| 日韩一区二区视频免费看| 视频中文字幕在线观看| 99国产综合亚洲精品| 水蜜桃什么品种好| 日韩伦理黄色片| 国产色爽女视频免费观看| 一级毛片电影观看| 五月开心婷婷网| 99久久精品国产国产毛片| 久久久午夜欧美精品| 飞空精品影院首页| 成人国产av品久久久| 少妇的逼好多水| 欧美激情国产日韩精品一区| 午夜福利影视在线免费观看| 亚洲精品日韩在线中文字幕| av线在线观看网站| 国国产精品蜜臀av免费| 欧美激情极品国产一区二区三区 | 久久国产精品男人的天堂亚洲 | 91精品国产九色| 成人国语在线视频| 亚洲国产精品999| 精品卡一卡二卡四卡免费| 美女大奶头黄色视频| 亚洲av综合色区一区| 成人国产av品久久久| av一本久久久久| 伦理电影大哥的女人| 日韩亚洲欧美综合| 一区在线观看完整版| 亚洲欧美色中文字幕在线| 99九九线精品视频在线观看视频| 亚洲成人av在线免费| 简卡轻食公司| 久久精品久久久久久噜噜老黄| 国产色婷婷99| 欧美日韩视频高清一区二区三区二| 大陆偷拍与自拍| 亚洲精品成人av观看孕妇| 日韩不卡一区二区三区视频在线| 精品一品国产午夜福利视频| 午夜免费鲁丝| 免费观看在线日韩| 啦啦啦啦在线视频资源| 久久久久视频综合| 亚洲,欧美,日韩| 丰满少妇做爰视频| 一区二区三区精品91| 国产一级毛片在线| 亚洲综合色网址| 国产精品99久久久久久久久| 亚洲精品国产av成人精品| av在线观看视频网站免费| 国产日韩欧美亚洲二区| 免费日韩欧美在线观看| 一区二区三区精品91| 91成人精品电影| 9色porny在线观看| 国产有黄有色有爽视频| 久久99热6这里只有精品| 色婷婷av一区二区三区视频| 91精品一卡2卡3卡4卡| 一区二区三区乱码不卡18| 亚洲精品,欧美精品| 久久久a久久爽久久v久久| 免费大片18禁| 日本黄大片高清| 欧美 日韩 精品 国产| 啦啦啦在线观看免费高清www| 国产一区二区三区综合在线观看 | 精品一区二区三卡| 中文字幕av电影在线播放| 美女大奶头黄色视频| 亚洲不卡免费看| 日韩强制内射视频| 全区人妻精品视频| 欧美亚洲日本最大视频资源| 欧美精品国产亚洲| 伦理电影大哥的女人| 狂野欧美激情性bbbbbb| 美女国产视频在线观看| 午夜福利,免费看| 日本欧美国产在线视频| 69精品国产乱码久久久| 亚洲丝袜综合中文字幕| 精品卡一卡二卡四卡免费| 超色免费av| 久久久久久久亚洲中文字幕| 日本av手机在线免费观看| 纵有疾风起免费观看全集完整版| 免费黄网站久久成人精品| 欧美另类一区| 九九在线视频观看精品| 久久精品久久久久久久性| 亚洲av福利一区| 国产精品.久久久| 99热6这里只有精品| 18禁裸乳无遮挡动漫免费视频| 伊人久久精品亚洲午夜| 九草在线视频观看| 老司机影院成人| 最新中文字幕久久久久| 97超碰精品成人国产| 婷婷色综合www| 观看av在线不卡| 80岁老熟妇乱子伦牲交| 日韩欧美精品免费久久| 国产黄频视频在线观看| 男人添女人高潮全过程视频| 丝袜美足系列| 欧美精品一区二区免费开放| 成人综合一区亚洲| 亚洲成人手机| 亚洲精品日韩在线中文字幕| 18禁观看日本| 国产男人的电影天堂91| 色5月婷婷丁香| 26uuu在线亚洲综合色| 黄色视频在线播放观看不卡| 国产精品人妻久久久久久| 精品少妇久久久久久888优播| 亚洲欧美精品自产自拍| 亚洲色图综合在线观看| 亚洲国产精品一区二区三区在线| 最近的中文字幕免费完整| 成人黄色视频免费在线看| 亚洲国产精品国产精品| 免费久久久久久久精品成人欧美视频 | 大香蕉久久网| 国产国拍精品亚洲av在线观看| 91成人精品电影| 亚洲国产精品一区三区| 国产欧美亚洲国产| 精品久久久精品久久久| 91午夜精品亚洲一区二区三区| 女的被弄到高潮叫床怎么办| 欧美bdsm另类| 精品视频人人做人人爽|