• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Wheat functional genomics in the era of next generation sequencing: An update

    2018-01-23 04:32:45**
    The Crop Journal 2018年1期

    **

    National Key Facility for Crop Gene Resources and Genetic Improvement,Institute of Crop Science,Chinese Academy of Agricultural Sciences,Beijing 100081,China

    1.Introduction

    Bread wheat or common wheat(Triticum aestivum L.)is one of the most important global foods.Common wheat originated by hybridization between cultivated tetraploid em mer(T.dicoccum,AABB)and diploid goat grass(Aegilops tauschii,DD)approximately 10,000 years ago[1].Wheat is one of the foundation species whose cultivation and domestication has been closely associated with the prosperity of agriculture and settled societies.Common wheat became one of the most widely grown crops due to its high yields and nutritional and processing qualities[2].By 2050 the world population will reach nine billion.The food needs of those people will require significantly increased wheat yield delivered by genetic improvement.This task is greatly assisted by advances in next-generation sequencing(NGS)technologies that will rapidly change wheat functional genomics studies and also make possible faster forward genetics studies.The wheat community has recently generated genome sequences not only for the wheat diploid donors of the A(T.urartu)[3]and D(Ae.tauschii)[4]genomes,but also the hexaploid wheat genome(T.aestivum)[5,6].More recently,updated genomic versions for Ae.tauschii[7]and Chinese Spring became available[8].Additional experimental approaches,resources,and computational tools are becoming available for gene identification that can be utilized in wheat breeding.

    In this review we summarize recent progress on wheat genomics and functional genomics studies that was achieved with the assistance of the NGS technology that focused on whole genome sequencing of hexaploid wheat and its donor species,genomic polymorphism,cloning of genes of agronomic importance,and development of technical platforms.We envisage that the future of wheat functional genomics will be accelerated under the combined applications of new strategies for genetic mapping and new resources for discovering genetic variation.Identification of gene function will contribute significantly to wheat improvement.

    2.Sequencing the large genomes of common wheat and its progenitors

    A major advantage of NGS technologies is to make draft sequences of genomes,especially the larger ones,more affordable relative to that of traditional technologies.NGS technologies also provide more possibilities to investigate gene structure and expression.Heritable genome variation that underlies important agronomic traits can be identified in a quicker and systematic manner.Advances in NGS technology provide necessary tools to dissect large and complicated genomes such as hexaploid wheat.Even so,the large genome and polyploid nature of common wheat has been a huge challenge,especially the high percentage(80%–90%)of repetitive sequences[9,10].It is nearly impossible to distinguish sequences from the highly similar homoeologous sub-genomes that have diverged over 2.5–6.0 million years[11,12].Therefore,sequencing the genomes of the diploid progenitors became an alternative and complementary choice,resulting in genome sequences of Ae.tauschii and T.urartu,the D and A genome donors,respectively.These sequences provide the necessary genetic information to identify homoeologs in common wheat[3,4].

    Due to the complexity of hexaploid wheat there were several early efforts to sequence the genome.An initial de novo assembly of sequence data was attempted in chromosome 7DS derived from flow-sorted chromosome arms,demonstrating that it was possible to assemble all known 7DS genes[13].The same approach confirmed the translocation between chromosome arms 7BS and 4AL in the Chinese Spring genome[14],that exemplified the types of genomic changes that occurred during early evolution and domestication[15].Such an approach was then applied to all wheat chromosome arms with the exception of 3B[6],which was isolated as an intact chromosome,resulting in the first draft genome assemblies for wheat chromosomes.The genomes of two additional cultivars,Opata M85 and W7984,were shotgun-sequenced by Illumina Solexa,albeit with only limited annotation performed on the assemblies[16].Among these efforts,the chromosome 3B sequence represented the highest quality sequence,which was based on a physical map[17].A better picture of wheat chromosome structure and functional partitioning was obtained by studying these sequences.Study of genomic diversity among wild and domesticated accessions can reveal genomic regions bearing the signature of selection under domestication[18].In 2017,a 10.1-gigabase assembly of the 14 chromosomes of wild em mer(T.turgidumssp.dicoccoides)was produced using the NRGene genome assembly algorithm and provided a detailed analysis on the gene content,genome architecture,and genetic diversity of this related AB genome donor to common wheat[19].

    The complete sequencing of these wheat genomes with the assistance of NGS technology are milestones for wheat biology and provide long needed resources for wheat functional genomics.Despite this,in order to link phenotypic traits to functional genes,wheat researchers had to work on additional technical platforms and resources such as mutant libraries,full-length cDNA clones,and SNP microarrays.

    3.NGS-based genotyping reveals the genetic diversity of wheat

    Sequencing mRNA pools is one of the most efficient single nucleotide polymorphism (SNP)-discovery approaches because it is economic and relatively straight-forward[20,21].Transcript assemblies can be utilized to develop probes for targeted resequencing of coding or low-copy genomic regions[21–23].This so-called exome capture approach can be used to target particular classes of genes as well[24,25].Using whole exome capture(WEC)developed from an early genome assembly of Chinese Spring,an expanded polymorphism discovery was performed by re-sequencing 62 diverse wheat lines[22].These wheat lines included landraces and cultivars so as to capture the genetic diversity of the major global wheat growing regions,gaining a better understanding of the selection that shaped current genetic diversity in wheat.

    Further evidence supported the role of gene presence absence variation as causes of variation in agronomic traits.To explore genetic diversity across 18 wheat cultivars,Monte-negro et al.[26]produced animproved Chinese Spring reference genome sequence.Apangenome of 140,500±102 genes was predicted,with a core set of 81,070±1631 genes and an average of128,656genes in each cultivar.In addition to variation in gene presence or absence,over 36 million inter-varietal single nucleotide polymorphisms(SNPs)were identified.A less costly approach to dissect the genetic diversity of wheat accessions is genotyping-by-sequencing(GBS),a restriction enzyme-based approach that reduces the sequence complexity by sequencing only the short regions close to the restriction sites hence representing a small fraction of the entire genome.This method does not rely on a fixed set of SNPs,such that it can detect population-specific variants.The unbiased nature of GBS makes it attractive for breeders[27],despite the difficulty in downstream bioinformatics compared with those based on array-based technologies.However,NGS-based technologies have provided a large amount of genetic information for wheat,and have already contributed to wheat breeding by providing information that was previously almost impossible to obtain in wheat.For example,high-resolution genome-wide association studies(GWAS)became a routine tool.

    4.Development of wheat SNP microarrays

    Despite continually decreasing NGS prices the wheat genome was still too large to work with,both in cost and in data processing.Thus,SNP-arrays became the first means for wheat researchers to gain genome-wide insights on specific wheat accessions.Microarrays with their numerous SNPs are powerful tools to reveal genomic diversity.The information can be utilized to infer ancestral relationships between individuals in populations and to study marker-traits associations in mapping experiments.In the past few years,a series of SNP-microarrays with various densities were produced.

    The first version of a wheat SNP microarray was developed from nine wheat accessions and used to genotype nearly 3000 world-wide accessions to reveal multiple targets of selection for improvement of land races and cultivars of common wheat[21].The 9K iSelect SNP array was used to genotype and phenotypically characterized a Chinese wheat mini-core collection of 262 accessions.Totals of 2420 and 2396 SNPs were detected in the respective A-and B-genome chromosomes.The results showed that intense selection(domestication and breeding)had stronger effects on A-genome than on B-genome chromosomes.Based on the available breeding pedigrees many yield-related blocks were traced back to the well-known Strampelli introduction from Italy about one century ago.Modern breeding has dramatically increased diversity in gene coding regions.Tagged SNP markers are potentially useful for marker assisted selection of such haplotype blocks as a wheat breeding strategy[28].

    The second version of a widely used SNP-array,the 90K array,was developed from 19 bread wheat accessions of diverse geographical origin[29].This array contains a large number of SNPs distributed across the common wheat genome.Currently,52,607 markers are mapped[30].A density-based spatial clustering algorithm was developed such that high-throughput geno-type calling in complex data sets can be achieved.The assays can also detect low-intensity clusters,which may represent the presence-absence variation(PAV)in wheat populations.

    The most recent SNP array contains about 630,517 SNPs(660K array)developed by low coverage sequencing of 192 common wheat and related species accessions,including 60 worldwide modern wheat varieties,72 wheat landraces,30 wild emmer accessions,and 30 Ae.tauschii accessions[31].SNPs were assigned to the Chinese Spring genome assembly(https://urgi.versailles.inra.fr/download/iwgsc/IWGSC

    WGASequences/).Although more probes mean higher cost,they provide more genetic information.Ahigh-density genetic map was constructed displaying good synteny with the 90K and 820K(unpublished)consensus maps.This array is unique by having added diversity from wheat donor accessions that are more polymorphic than wheat cultivars alone.

    SNP arrays represent convenient platforms to genotype large numbers of wheat accessions and are ideal for breeding applications[20,32,33].Smaller but representative and informative SNPs can further reduce experimental costs,such as the Breeders 35K Axiom Array available at CerealsDB[34].Moreover,array-based assays can be converted into genome-specific KASP markers[35],or STARP markers that are even better in terms of cost and accuracy[36].Since these SNPs are derived from a collection of germ plasm,including elite wheat cultivars,land races,progenitors and ancestral species,they should have much wider application.Furthermore,a large proportion of the SNPs is genetically mapped and therefore can be used in both breeding and research.

    5.Genome-wide association studies in wheat

    Genome-wide association study(GWAS)is an alternative approach to identify genetic variation in natural populations.It identifies multiple genetic recombination events that have occurred during divergence under both wild and domesticated conditions[37].The molecular mechanisms of how crop landraces adapt to different agroclimatic conditions are valuable information that can be applied in crop improvement.In common wheat,sequence-based GWAS are still rare.Most work has involved other more affordable technologies such as diversity arrays technology(DArT).Candidate loci for water-soluble carbohydrate accumulation,an important drought-avoidance characteristic in wheat,were identified using a GWAS approach[38].Significantly associated loci were identified on chromosomes 1A,1B,1D,2D,and 4A.These markers can be used in marker-assisted selection of drought tolerant wheat.In a recent study,723 landraces from 10 Chinese agro-ecological zones were evaluated for 23 agronomic traits in six environments[39].The GWAS was conducted using 52,303 DArT markers and 149 significant markers were identified for 21 agronomic traits,some of which were co-localized with 29 QTL associated with 15 traits,including previously reported genes for heading date,flag leaf width,peduncle length,and thousand kernel weight.Another GWAS was for pre-harvest sprouting(PHS)traits among 717 Chinese wheat landraces using 9740 DArT-seq and 178,803 SNP markers;194 landraces displayed high levels of PHS resistance with mean germination indices of<0.2,among which only nine were white-grained.This indicated that both natural and artificial selection had impacted on PHS response in Chinese landraces[40].

    GBS is another cost-effective approach for GWAS[41].Multiplexed samples can be tagged with barcodes and genome-wide molecular marker discovery can be coupled with genotyping.A population study of 177 Ae.tauschii accessions using GBS identified 11,489 single nucleotide polymorphic(SNP)markers that were used for genetic diversity analysis[42].GWAS analyses on 114 non-redundant accessions with 5249 SNP markers revealed 17 SNPs associated with grain size.Candidate genes for cell division and differentiation were predicted from the associated SNP markers.GWAS has been used in Ae.tauschii to study additional traits of economic importance such as cadmium stress[43],P-deficiency[44]and other morphological traits[45].SNPs in the format of microarrays are now becoming more frequently used for GWAS in wheat.Using the wheat 90K microarray Sun et al.[46]identified new allelic variation in 13 yield-related traits in 163 bread wheat cultivars.A total of 1769 significant loci explaining an average of~20%or higher of the phenotypic variation were identified,including previously reported loci and new genomic regions[46].

    GWAS with the assistance of NGS should reveal genetic variation linked to features within populations of germplasm and locate loci responsible for disease response or environmental adaptation[47,48].Further improvement in methods of sampling and accuracy in phenotyping should enable GWAS to have a much larger role in wheat functional genomics.

    6.Functional annotation of wheat genes by Targeted Induced Local Lesions in Genomes(TILLING)

    For most wheat genes,there are three similar but redundant copies.Conventional gene identification methods used for diploid species,such as rice and maize,become problematic and cumbersome for use in wheat.For functional analysis,each of the three homoeologs has to be individually evaluated and their combined effect on phenotypes should be considered.In this regard,TILLING has become a major approach for wheat gene functional annotation of genes in wheat[49–53].The first TILLING platform was developed in the diploid wheat T.monococcum,a cultivated A-genome diploid wheat species.T.monococcum is a model to study traits,genes,and alleles in bread wheat.That TILLING population contained 1532 M2families derived from ethyl methanesulfonate(EMS)treatment[54].The overall mutation frequency was detected as one in every92 kb by testingfour genes;namely,the WAXY gene involved in starch synthesis and three lignin-biosynthesis-pathway genes-COMT1,HCT2,and 4CL1[55,56].In theory,knowledge of gene function in diploid wheat should be transferrable to hexaploid wheat,but polyploidization may complicate the mode of function due to the multiple homoeologous copies.Thus,it is necessary to make TILLING populations in polyploid wheat.Several TILLING populations have been reported for tetraploid and hexaploid wheat[57–59].A population of 1920 EMS-derived individuals was generated in both hexaploid and allotetraploid wheat,among which 246 mutant alleles were detected for one or other of each of the homoeologous waxy genes[60].These mutants were claimed to represent more genetic diversity in polyploid wheat than had been found in the preceding 25 resources for durum and bread wheat was conducted by Uauy et al.[59],where1368tetraploid and 1536 hexaploid M2plants were produced.The mutation densities were high with a 1/38 kb mutation rate for hexaploid and a 1/51 kb rate for the tetraploid.These TILLING plants were shown to be useful in identifying gene function[52].For example,mutations in SBEIIa enzymes generated non-transgenic wheat plants that conferred high amylose contents and novel starch functionality[57].In another case,mutations were found in SBEIIa for both durum and bread wheat varieties with similar changes in amylose and resistant starch contents[59].With rapid accumulation of wheat genomics information,hopefully every wheat gene will soon have an available mutant for functional studies.

    Nevertheless,conventional TILLING platforms are tedious and time consuming[61].Application of NGS technology allowed sequencing of exome-captured DNA from 2735 tetraploid Kronos and hexaploid Cadenza EMS-induced mutants[62].This resource also provides users with online access(http://www.wheat-tilling.com/)to conveniently identify knockout alleles for over 90%of wheat genes.Moreover,predesigned SNP-based primers[35]are available to validate the mutations,which can be combined to develop double or triple null mutants in order to overcome the problem of redundant homoeologs.Such a resource makes stocks of mutant lines permanent and easy to access and should facilitate characterization of wheat gene function.

    More recently,genome-editing technologies provided additional tools to create DNA variation in polyploid wheat[63].The complete editing of all three homoeologs of target genes has been reported[64–66].Further optimization should establish an efficient genome editing system for wheat,with more versatile applications such as allele replacement[67]or targeted gene insertion[64].

    7.Dynamic wheat transcriptomes

    Deciphering the wheat genome sequence is the first step in understanding its physical structure and composition,providing genomic infrastructure for mapping actively transcribed regions,especially during plant development and adaptation to biotic and abiotic stresses.Transcriptome profiling is to identify expression patterns of all genes and their products in the wheat genome.Such information will facilitate in-depth analysis of gene function and regulation,as well as their interacting networks in complex biological processes.For a long time,cDNA microarrays have been the major tool for study of wheat transcriptomes[68–70].However,expression information from microarrays is limited because of the fixed number of probes on them,and that is largely dependent on the quality of genome annotation.For cDNA arrays,expression levels are representative,indirect measurement of gene expression levels by hybridization signals are short on precision in determining real transcript numbers in specific tissue or cell lines[71].

    Sequencing RNA pools using NGS technologies(RNA-seq)allows a thorough survey of the entire transcriptional landscape,revealing genome-wide gene activity and alternative splicing in a quantitative manner[72–76].A recent study by Pfeifer et al.set a good example for effective RNA-seq analysis that may provide more reliable and useful transcript expression information[77].This cell type-specific transcriptome profiling of homoeologous genes identified distinct co-expression clusters in the developing wheat grain.These expression patterns may reflect the spatiotemporal progression of gene activities during wheat endosperm development[77].No global genome dominance,which was expected prior to this work,was found,but there was cell type-and stage-dependent genome dominance.The work provided unprecedented information about subgenome interaction and its effect on gene transcription in individual cell types in wheat grains[77].Such analyses reveal expression patterns of the entire wheat gene model set and the relationship between gene expression, function, and regulation.Our laboratory recently studied the transcriptome profiles at four stages of early wheat reproductive development,from spikelet initiation to floral organ differentiation,and the results provided a first picture of gene regulatory networks in inflorescence development in wheat and highlighted potential targets for wheat yield improvement[72].

    8.NGS-supported map-based cloning

    Map-based cloning, the conventional forward-genetics approach,is an efficient method for identifying genes of agronomic importance in cereal crops.The change in the wheat genomics landscape with resources now including complete genome sequences and high-quality gene models(IWGSC R EFSEQ v.1.0;[6,8]),transcriptomics databases[78,79],and high-density SNP arrays[29,80]makes it much easier to conduct map-based cloning in wheat.As a result,fine mapping of QTL has been greatly facilitated with wheat genomic resources.For instance,a grain weight QTL Qtgw-cb.5A was mapped on chromosome 5A[81].It was then physically located using newly developed wheat genome sequences and genemodels.Detailed characterization of the QTL provided direct genetic evidence that expansion of pericarp cells was a determinant of final grain size[81].

    In contrast to hexaploid wheat with its complex genome diploid,wheat relatives are more suitable for map-based gene cloning and inheritance studies.For example,Sr35,a gene for resistance to the widely virulent stem rust pathogen(Puccinia graminis f.sp.tritici(Pgt))race Ug99,was cloned from T.monococcum(AA)and was found to be absent in T.urartu(the donor of A-genome)and in polyploid wheat[82].Sr35 showed strong resistance to race Ug99 in common wheat after being transferred from diploid wheat by distant hybridization[82].

    Male Sterile 2(Ms2),another recently cloned gene,was also identified by map-based cloning[83,84].Using transgenic wheat and EMS-mediated mutagenesis, the authors identified aerminal-repeatetrotransposonsiniature(TRIM)in the promoter region of Ms2 that was responsible for activation of the gene,leading to its anther-specific expression and consequent male sterility.Ms2 is an“orphan”gene in that no homolog has been found outside the Triticeae family.The cloning of Ms2 provides substantial potential to assemble practical pipelines for recurrent selection in wheat breeding and possible hybrid seed production.Mutant screening and NGS sequencing played important roles in the process of cloning of this gene.

    9.Concluding remarks

    The application of NGS technology is rapidly expanding our knowledge of plant genomics.This is particularly true for wheat where functional genomics would never have been possible using earlier sequencing technologies.NGS enables the quest for higher quality common wheat reference genomes and resequencing of a large number of cultivated wheat genotypes and wild relative accessions in the foreseeable future.With the availability of these rich genetic resources and high quality genotyping platforms wheat functional genomics study is entering a new phase.A comprehensive survey of genetic diversity in wheat,including landraces and wild relatives,will deepen our understanding of the genetic basis underlying domestication and evolution of this vital crop.The use of the NGS technology and informatics combined with information on genetic variation will provide the thrust for wheat to catch up with other crops in studies on functional genomics.The time for genomics-assisted wheat breeding is finally arriving.

    Acknowledgments

    We apologize to authors whose work could be included in this review due to space limitations.This work was supported in partby the NationalKey R&D Program ofChina(2016YFD0101004,2016YFD0100300).

    R E F E R E N C E S

    [1]K.Tanno,G.Willcox,How fast was wild wheat domesticated?Science 311(2006)1886.

    [2]P.R.Shewry,S.J.Hey,The contribution of wheat to human diet and health,Food Energy Secur.4(2015)178–202.

    [3]H.Q.Ling,S.Zhao,D.Liu,J.Wang,H.Sun,C.Zhang,H.Fan,D.Li,L.Dong,Y.Tao,C.Gao,H.Wu,Y.Li,Y.Cui,X.Guo,S.Zheng,B.Wang,K.Yu,Q.Liang,W.Yang,X.Lou,J.Chen,M.Feng,J.Jian,X.Zhang,G.Luo,Y.Jiang,J.Liu,Z.Wang,Y.Sha,B.Zhang,H.Wu,D.Tang,Q.Shen,P.Xue,S.Zou,X.Wang,X.Liu,F.Wang,Y.Yang,X.An,Z.Dong,K.Zhang,X.Zhang,M.C.Luo,J.Dvorak,Y.Tong,J.Wang,H.Yang,Z.Li,D.Wang,A.Zhang,J.Wang,Draft genome of the wheat A-genome progenitor Triticum urartu,Nature 496(2013)87–90.

    [4]J.Jia,S.Zhao,X.Kong,Y.Li,G.Zhao,W.He,R.Appels,M.Pfeifer,Y.Tao,X.Zhang,R.Jing,C.Zhang,Y.Ma,L.Gao,C.Gao,M.Spannagl,K.F.Mayer,D.Li,S.Pan,F.Zheng,Q.Hu,X.Xia,J.Li,Q.Liang,J.Chen,T.Wicker,C.Gou,H.Kuang,G.He,Y.Luo,B.Keller,Q.Xia,P.Lu,J.Wang,H.Zou,R.Zhang,J.Xu,J.Gao,C.Middleton,Z.Quan,G.Liu,J.Wang,C.International Wheat Genome Sequencing,H.Yang,X.Liu,Z.He,L.Mao,J.Wang,Aegilops tauschii draft genome sequence reveals a gene repertoire for wheat adaptation,Nature 496(2013)91–95.

    [5]R.Brenchley,M.Spannagl,M.Pfeifer,G.L.A.Barker,R.D'Amore,A.M.Allen,N.McKenzie,M.Kramer,A.Kerhornou,D.Bolser,S.Kay,D.Waite,M.Trick,I.Bancroft,Y.Gu,N.Huo,M.C.Luo,S.Sehgal,B.Gill,S.Kianian,O.Anderson,P.Kersey,J.Dvorak,W.R.McCombie,A.Hall,K.F.X.Mayer,K.J.Edwards,M.W.Bevan,N.Hall,Analysis of the bread wheat genome using whole-genome shotgun sequencing,Nature491(2012)705–710.

    [6]C.International Wheat Genome Sequencing,A chromosome-based draft sequence of the hexaploid bread wheat(Triticum aestivum)genome,Science 345(2014)1251788.

    [7]A.V.Zimin,D.Puiu,M.C.Luo,T.Zhu,S.Koren,G.Marcais,J.A.Yorke,J.Dvorak,S.L.Salzberg,Hybrid assembly of the large and highly repetitive genome of Aegilops tauschii,a progenitor of bread wheat,with the MaSuRCA mega-reads algorithm,Genome Res.27(2017)787–792.

    [8]B.J.Clavijo,L.Venturini,C.Schudoma,G.G.Accinelli,G.Kaithakottil,J.Wright,P.Borrill,G.Kettleborough,D.Heavens,H.Chapman,J.Lipscombe,T.Barker,F.H.Lu,N.McKenzie,D.Raats,R.H.Ramirez-Gonzalez,A.Coince,N.Peel,L.Percival-Alwyn,O.Duncan,J.Trosch,G.Yu,D.M.Bolser,G.Namaati,A.Kerhornou,M.Spannagl,H.Gundlach,G.Haberer,R.P.Davey,C.Fosker,F.D.Palma,A.L.Phillips,A.H.Millar,P.J.Kersey,C.Uauy,K.V.Krasileva,D.Swarbreck,M.W.Bevan,M.D.Clark,An improved assembly and annotation of the allohexaploid wheat genome identifies complete families of agronomic genes and provides genomic evidence for chromosomal translocations,Genome Res.27(2017)885–896.

    [9]J.Safar,H.Simkova,M.Kubalakova,J.Cihalikova,P.Suchankova,J.Bartos,J.Dolezel,Development of chromosome-specific bac resources for genomics of bread wheat,Cytogenet.Genome Res.129(2010)211–223.

    [10]H.Wanjugi,D.Coleman-Derr,N.Huo,S.F.Kianian,M.C.Luo,J.Wu,O.Anderson,Y.Q.Gu,Rapid development of PCR-based genome-specific repetitive DNA junction markers in wheat,Genome 52(2009)576–587.

    [11]N.Chantret,J.Salse,F.Sabot,S.Rahman,A.Bellec,B.Laubin,I.Dubois,C.Dossat,P.Sourdille,P.Joudrier,M.F.Gautier,L.Cattolico,M.Beckert,S.Aubourg,J.Weissenbach,M.Caboche,M.Bernard,P.Leroy,B.Chalhoub,Molecular basis of evolutionary events that shaped the hardness locus in diploid and polyploid wheat species(Triticum and Aegilops),Plant Cell 17(2005)1033–1045.

    [12]Q.Huang,A.Borner,S.R?der,W.Ganal,Assessing genetic diversity of wheat(Triticum aestivum L.)germplasm using microsatellite markers,Theor.Appl.Genet.105(2002)699–707.

    [13]P.J.Berkman,A.Skarshewski,M.T.Lorenc,K.Lai,C.Duran,E.Y.Ling,J.Stiller,L.Smits,M.Imelfort,S.Manoli,M.McKenzie,M.Kubalakova,H.Simkova,J.Batley,D.Fleury,J.Dolezel,D.Edwards,Sequencing and assembly of low copy and genic regions of isolated Triticum aestivum chromosome arm 7DS,Plant Biotechnol.J.9(2011)768–775.

    [14]P.J.Berkman,A.Skarshewski,S.Manoli,M.T.Lorenc,J.Stiller,L.Smits,K.Lai,E.Campbell,M.Kubalakova,H.Simkova,J.Batley,J.Dolezel,P.Hernandez,D.Edwards,Sequencing wheat chromosome arm 7BS delimits the 7BS/4AL translocation and reveals homoeologous gene conservation,Theor.Appl.Genet.124(2012)423–432.

    [15]P.J.Berkman,P.Visendi,H.C.Lee,J.Stiller,S.Manoli,M.T.Lorenc,K.Lai,J.Batley,D.Fleury,H.Simkova,M.Kubalakova,S.Weining,J.Dolezel,D.Edwards,Dispersion and domestication shaped the genome of bread wheat,Plant Biotechnol.J.11(2013)564–571.

    [16]J.A.Chapman,M.Mascher,A.Buluc,K.Barry,E.Georganas,A.Session,V.Strnadova,J.Jenkins,S.Sehgal,L.Oliker,J.Schmutz,K.A.Yelick,U.Scholz,R.Waugh,J.A.Poland,G.J.Muehlbauer,N.Stein,D.S.Rokhsar,A whole-genome shotgun approach for assembling and anchoring the hexaploid bread wheat genome,Genome Biol.16(2015)26.

    [17]F.Choulet,A.Alberti,S.Theil,N.Glover,V.Barbe,J.Daron,L.Pingault,P.Sourdille,A.Couloux,E.Paux,P.Leroy,S.Mangenot,N.Guilhot,J.Le Gouis,F.Balfourier,M.Alaux,V.Jamilloux,J.Poulain,C.Durand,A.Bellec,C.Gaspin,J.Safar,J.Dolezel,J.Rogers,K.Vandepoele,J.M.Aury,K.Mayer,H.Berges,H.Quesneville,P.Wincker,C.Feuillet,Structural and functional partitioning of bread wheat chromosome 3B,Science 345(2014)1249721.

    [18]M.B.Hufford,X.Xu,J.van Heerwaarden,T.Pyh?j?rvi,J.M.Chia,R.A.Cartwright,R.J.Elshire,J.C.Glaubitz,K.E.Guill,S.M.Kaeppler,J.Lai,P.L.Morrell,L.M.Shannon,C.Song,N.M.Springer,R.A.Swanson-Wagner,P.Tiffin,J.Wang,G.Zhang,J.Doebley,M.D.McMullen,D.Ware,E.S.Buckler,S.Yang,J.Ross-Ibarra,Comparative population genomics of maize domestication and improvement,Nat.Genet.44(2012)808–811.

    [19]R.Avni,M.Nave,O.Barad,K.Baruch,S.O.Twardziok,H.Gundlach,I.Hale,M.Mascher,M.Spannagl,K.Wiebe,K.W.Jordan,G.Golan,J.Deek,B.Ben-Zvi,G.Ben-Zvi,A.Himmelbach,R.P.MacLachlan,A.G.Sharpe,A.Fritz,R.Ben-David,H.Budak,T.Fahima,A.Korol,J.D.Faris,A.Hernandez,M.A.Mikel,A.A.Levy,B.Steffenson,M.Maccaferri,R.Tuberosa,L.Cattivelli,P.Faccioli,A.Ceriotti,K.Kashkush,M.Pourkheirandish,T.Komatsuda,T.Eilam,H.Sela,A.Sharon,N.Ohad,D.A.Chamovitz,K.F.X.Mayer,N.Stein,G.Ronen,Z.Peleg,C.J.Pozniak,E.D.Akhunov,A.Distelfeld,Wild emmer genome architecture and diversity elucidate wheat evolution and domestication,Science 357(2017)93–97.

    [20]C.R.Cavanagh,S.Chao,S.Wang,B.E.Huang,S.Stephen,S.Kiani,K.Forrest,C.Saintenac,G.L.Brown-Guedira,A.Akhunova,D.See,G.Bai,M.Pumphrey,L.Tomar,D.Wong,S.Kong,M.Reynolds,M.L.da Silva,H.Bockelman,L.Talbert,J.A.Anderson,S.Dreisigacker,S.Baenziger,A.Carter,V.Korzun,P.L.Morrell,J.Dubcovsky,M.K.Morell,M.E.Sorrells,M.J.Hayden,E.Akhunov,Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars,Proc.Natl.Acad.Sci.U.S.A.110(2013)8057–8062.

    [21]A.M.Allen,G.L.Barker,P.Wilkinson,A.Burridge,M.Winfield,J.Coghill,C.Uauy,S.Griffiths,P.Jack,S.Berry,P.Werner,J.P.Melichar,J.McDougall,R.Gwilliam,P.Robinson,K.J.Edwards,Discovery and development of exome-based,co-dominant single nucleotide polymorphism markers in hexaploid wheat(Triticum aestivum L.),Plant Biotechnol.J.11(2013)279–295.

    [22]K.W.Jordan,S.Wang,Y.Lun,L.J.Gardiner,R.MacLachlan,P.Hucl,K.Wiebe,D.Wong,K.L.Forrest,I.Consortium,A.G.Sharpe,C.H.Sidebottom,N.Hall,C.Toomajian,T.Close,J.Dubcovsky,A.Akhunova,L.Talbert,U.K.Bansal,H.S.Bariana,M.J.Hayden,C.Pozniak,J.A.Jeddeloh,A.Hall,E.Akhunov,A haplotype map of allohexaploid wheat reveals distinct patterns of selection on homoeologous genomes,Genome Biol.16(2015)48.

    [23]M.O.Winfield,P.A.Wilkinson,A.M.Allen,G.L.Barker,J.A.Coghill,A.Burridge,A.Hall,R.C.Brenchley,R.D'Amore,N.Hall,M.W.Bevan,T.Richmond,D.J.Gerhardt,J.A.Jeddeloh,K.J.Edwards,Targeted re-sequencing of the allohexaploid wheat exome,Plant Biotechnol.J.10(2012)733–742.

    [24]F.Jupe,K.Witek,W.Verweij,J.Sliwka,L.Pritchard,G.J.Etherington,D.Maclean,P.J.Cock,R.M.Leggett,G.J.Bryan,L.Cardle,I.Hein,J.D.Jones,Resistance gene enrichment sequencing(RenSeq)enables reannotation of the NB-LRR gene family from sequenced plant genomes and rapid mapping of resistance loci in segregating populations,Plant J.76(2013)530–544.

    [25]B.B.H.Wulff,M.J.Moscou,Strategies for transferring resistance into wheat:from wide crosses to GM cassettes,Front.Plant Sci.5(2014)1–11.

    [26]J.D.Montenegro,A.A.Golicz,P.E.Bayer,B.Hurgobin,H.Lee,C.K.K.Chan,P.Visendi,K.Lai,J.Dolezel,J.Batley,D.Edwards,The pangenome of hexaploid bread wheat,Plant J.90(2017)1007–1013.

    [27]J.A.Poland,P.J.Brown,M.E.Sorrells,J.L.Jannink,Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach,PLoS One 7(2012),e32253.

    [28]C.Hao,Y.Wang,S.Chao,T.Li,H.Liu,L.Wang,X.Zhang,The iSelect 9 K SNP analysis revealed polyploidization induced revolutionary changes and intense human selection causing strong haplotype blocks in wheat,Sci Rep 7(2017)41247.

    [29]G.T.Wang,B.Peng,S.M.Leal,Variant association tools for quality control and analysis of large-scale sequence and genotyping array data,Am.J.Hum.Genet.94(2014)770–783.

    [30]W.Wen,Z.He,F.Gao,J.Liu,H.Jin,S.Zhai,Y.Qu,X.Xia,A high-density consensus map of common wheat integrating four mapping populations scanned by the 90K SNP array,Front.Plant Sci.8(2017)1389.

    [31]F.Cui,N.Zhang,X.L.Fan,W.Zhang,C.H.Zhao,L.J.Yang,R.Q.Pan,M.Chen,J.Han,X.Q.Zhao,J.Ji,Y.P.Tong,H.X.Zhang,J.Z.Jia,G.Y.Zhao,J.M.Li,Utilization of a Wheat660K SNP array-derived high-density genetic map for high-resolution mapping of a major QTL for kernel number,Sci Rep 7(2017)3788.

    [32]A.M.Allen,G.L.Barker,S.T.Berry,J.A.Coghill,R.Gwilliam,S.Kirby,P.Robinson,R.C.Brenchley,R.D'Amore,N.McKenzie,D.Waite,A.Hall,M.Bevan,N.Hall,K.J.Edwards,Transcriptspecific,single-nucleotide polymorphism discovery and linkage analysis in hexaploid bread wheat(Triticum aestivum L.),Plant Biotechnol.J.9(2011)1086–1099.

    [33]Y.Wang,X.Cheng,Q.Shan,Y.Zhang,J.Liu,C.Gao,J.L.Qiu,Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew,Nat.Biotechnol.32(2014)947–951.

    [34]P.A.Wilkinson,M.O.Winfield,G.L.Barker,A.M.Allen,A.Burridge,J.A.Coghill,K.J.Edwards,CerealsDB 2.0:an integrated resource for plant breeders and scientists,BMC Bioinf.13(2012)219.

    [35]R.H.Ramirez-Gonzalez,C.Uauy,M.Caccamo,PolyMarker:a fast polyploid primer design pipeline,Bioinformatics 31(2015)2038–2039.

    [36]Y.M.Long,W.S.Chao,G.J.Ma,S.S.Xu,L.L.Qi,An innovative SNP genotyping method adapting to multiple platforms and throughputs,Theor.Appl.Genet.130(2017)597–607.

    [37]J.Yu,E.S.Buckler,Genetic association mapping and genome organization of maize,Curr.Opin.Biotechnol.17(2006)155–160.

    [38]K.Wisniewski,B.Zagdanska,Genotype-dependent proteolytic response of spring wheat to water deficiency,J.Exp.Bot.52(2001)1455–1463.

    [39]Y.Liu,Y.Lin,S.Gao,Z.Li,J.Ma,M.Deng,G.Chen,Y.Wei,Y.Zheng,A genome-wide association study of 23 agronomic traits in Chinese wheat landraces,Plant J.91(2017)861–873.

    [40]Y.Zhou,H.Tang,M.P.Cheng,K.O.Dankwa,Z.X.Chen,Z.Y.Li,S.Gao,Y.X.Liu,Q.T.Jiang,X.J.Lan,Z.E.Pu,Y.M.Wei,Y.L.Zheng,L.T.Hickey,J.R.Wang,Genome-wide association study for pre-harvest sprouting resistance in a large germplasm collection of Chinese wheat landraces,Front.Plant Sci.8(2017)401.

    [41]R.J.Elshire,J.C.Glaubitz,Q.Sun,J.A.Poland,K.Kawamoto,E.S.Buckler,S.E.Mitchell,A robust,simple genotyping-by-sequencing(GBS)approach for high diversity species,PLoS One 6(2011),e19379.

    [42]S.Arora,N.Singh,S.Kaur,N.S.Bains,C.Uauy,J.Poland,P.Chhuneja,Genome-wide association study of grain architecture in wild wheat Aegilops tauschii,Front.Plant Sci.8(2017)886.

    [43]Q.Qin,X.Li,J.Zhuang,L.Weng,W.Liu,P.Tai,Long-distance transport of cadmium from roots to leaves of Solanum melongena,Ecotoxicology 24(2015)2224–2232.

    [44]Y.Liu,L.Wang,M.Deng,Z.Li,Y.Lu,J.Wang,Y.Wei,Y.Zheng,Genome-wide association study of phosphorus-deficiency-tolerance traits in Aegilops tauschii,Theor.Appl.Genet.128(2015)2203–2212.

    [45]Y.Liu,L.Wang,S.Mao,K.Liu,Y.Lu,J.Wang,Y.Wei,Y.Zheng,Genome-wide association study of 29 morphological traits in Aegilops tauschii,Sci Rep 5(2015)15562.

    [46]C.Sun,F.Zhang,X.Yan,X.Zhang,Z.Dong,D.Cui,F.Chen,Genome-wide association study for 13 agronomic traits reveals distribution of superior alleles in bread wheat from the Yellow and Huai Valley of China,Plant Biotechnol.J.15(2017)953–969.

    [47]M.Maccaferri,J.Zhang,P.Bulli,Z.Abate,S.Chao,D.Cantu,E.Bossolini,X.Chen,M.Pumphrey,J.Dubcovsky,A genomewide association study of resistance to stripe rust(Puccinia striiformis f.sp.tritici)in a worldwide collection of hexaploid spring wheat(Triticum aestivum L.),G3,Genes Genomes Genet.5(2015)449–465.

    [48]B.Ovenden,A.Milgate,L.J.Wade,G.J.Rebetzke,J.B.Holland,Genome-wide associations for water-soluble carbohydrate concentration and relative maturity in wheat using SNP and DArT marker arrays,G3,Genes Genomes Genet.7(2017)2821–2830.

    [49]A.J.Slade,S.I.Fuerstenberg,D.Loeffler,M.N.Steine,D.Facciotti,A reverse genetic,nontransgenic approach to wheat crop improvement by TILLING,Nat.Biotechnol.23(2005)75–81.

    [50]A.J.Slade,C.McGuire,D.Loeffler,J.Mullenberg,W.Skinner,G.Fazio,A.Holm,K.M.Brandt,M.N.Steine,J.F.Goodstal,V.C.Knauf,Development of high amylose wheat through TILLING,BMC Plant Biol.12(2012)69.

    [51]H.Tsai,T.Howell,R.Nitcher,V.Missirian,B.Watson,K.J.Ngo,M.Lieberman,J.Fass,C.Uauy,R.K.Tran,A.A.Khan,V.Filkov,T.H.Tai,J.Dubcovsky,L.Comai,Discovery of rare mutations in populations:TILLING by sequencing,Plant Physiol.156(2011)1257–1268.

    [52]C.Uauy,F.Paraiso,P.Colasuonno,R.K.Tran,H.Tsai,S.Berardi,L.Comai,J.Dubcovsky,A modified TILLING approach to detect induced mutations in tetraploid and hexaploid wheat,BMC Plant Biol.9(2009)115.

    [53]Z.Xin,M.L.Wang,N.A.Barkley,G.Burow,C.Franks,G.Pederson,J.Burke,Applying genotyping(TILLING)and phenotyping analyses to elucidate gene function in a chemically induced sorghum mutant population,BMC Plant Biol.8(2008)103.

    [54]N.Rawat,S.K.Sehgal,A.Joshi,N.Rothe,D.L.Wilson,N.McGraw,P.V.Vadlani,W.L.Li,B.S.Gill,A diploid wheat TILLING resource for wheat functional genomics,BMC Plant Biol.12(2012)205.

    [55]J.Dubcovsky,J.Dvorak,Genome plasticity a key factor in the success of polyploid wheat under domestication,Science 316(2007)1862–1866.

    [56]T.L.Wang,C.Uauy,F.Robson,B.Till,TILLING in extremis,Plant Biotechnol.J.10(2012)761–772.

    [57]E.Botticella,F.Sestili,A.Hernandez-Lopez,A.Phillips,D.Lafiandra,High resolution melting analysis for the detection of EMS induced mutations in wheat SBEIIa genes,BMC Plant Biol.11(2011)156.

    [58]C.M.Dong,J.Dalton-Morgan,K.Vincent,P.Sharp,A modified TILLING method for wheat breeding,Plant Genome 2(2009)39–47.

    [59]B.Hazard,X.Zhang,P.Colasuonno,C.Uauy,D.M.Beckles,J.Dubcovsky,Induced mutations in the starch branching enzyme II(SBEII)genes increase amylose and resistant starch content in durum wheat,Crop Sci.52(2012)1754–1766.

    [60]A.J.Slade,V.C.Knauf,TILLING moves beyond functional genomics into crop improvement,Transgenic Res.14(2005)109–115.

    [61]B.J.Till,T.Zerr,L.Comai,S.Henikoff,A protocol for TILLING and ecotilling in plants and animals,Nat.Protoc.1(2006)2465–2477.

    [62]K.V.Krasileva,H.A.Vasquez-Gross,T.Howell,P.Bailey,F.Paraiso,L.Clissold,J.Simmonds,R.H.Ramirez-Gonzalez,X.Wang,P.Borrill,C.Fosker,S.Ayling,A.L.Phillips,C.Uauy,J.Dubcovsky,Uncovering hidden variation in polyploid wheat,Proc.Natl.Acad.Sci.U.S.A.114(2017)E913–E921.

    [63]Q.Shan,Y.Wang,J.Li,C.Gao,Genome editing in rice and wheat using the CRISPR/Cas system,Nat.Protoc.9(2014)2395–2410.

    [64]J.Gil-Humanes,Y.Wang,Z.Liang,Q.Shan,C.V.Ozuna,S.Sanchez-Leon,N.J.Baltes,C.Starker,F.Barro,C.Gao,D.F.Voytas,High-efficiency gene targeting in hexaploid wheat using DNA replicons and CRISPR/Cas9,Plant J.89(2017)1251–1262.

    [65]Y.Zhang,Z.Liang,Y.Zong,Y.P.Wang,J.X.Liu,K.L.Chen,J.L.Qiu,C.X.Gao,Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA,Nat.Commun.7(2016)12617.

    [66]Y.Zong,Y.Wang,C.Li,R.Zhang,K.Chen,Y.Ran,J.L.Qiu,D.Wang,C.Gao,Precise base editing in rice,wheat and maize with a Cas9-cytidine deaminase fusion,Nat.Biotechnol.35(2017)438–440.

    [67]Y.Zhao,C.Zhang,W.Liu,W.Gao,C.Liu,G.Song,W.X.Li,L.Mao,B.Chen,Y.Xu,X.Li,C.Xie,An alternative strategy for targeted gene replacement in plants using a dual-sgRNA/Cas9 design,Sci Rep 6(2016)23890.

    [68]F.Gao,M.C.Jordan,B.T.Ayele,Transcriptional programs regulating seed dormancy and its release by after-ripening in common wheat(Triticum aestivum L.),Plant Biotechnol.J.10(2012)465–476.

    [69]Y.Wan,R.L.Poole,A.K.Huttly,C.Toscano-Underwood,K.Feeney,S.Welham,M.J.Gooding,C.Mills,K.J.Edwards,P.R.Shewry,R.A.Mitchell,Transcriptome analysis of grain development in hexaploid wheat,BMC Genomics 9(2008)121.

    [70]H.Zhang,B.Zhu,B.Qi,X.Gou,Y.Dong,C.Xu,B.Zhang,W.Huang,C.Liu,X.Wang,C.Yang,H.Zhou,K.Kashkush,M.Feldman,J.F.Wendel,B.Liu,Evolution of the BBAA component of bread wheat during its history at the allohexaploid level,Plant Cell 26(2014)2761–2776.

    [71]Z.Wang,M.Gerstein,M.Snyder,RNA-Seq:a revolutionary tool for transcriptomics,Nat.Rev.Genet.10(2009)57–63.

    [72]N.Feng,G.Song,J.Guan,K.Chen,M.Jia,D.Huang,J.Wu,L.Zhang,X.Kong,S.Geng,J.Liu,A.Li,L.Mao,Transcriptome profiling of wheat inflorescence development from spikelet initiation to floral patterning identified stage-specific regulatory genes,Plant Physiol.174(2017)1779–1794.

    [73]S.A.Filichkin,H.D.Priest,S.A.Givan,R.Shen,D.W.Bryant,S.E.Fox,W.K.Wong,T.C.Mockler,Genome-wide mapping of alternative splicing in Arabidopsis thaliana,Genome Res.20(2010)45–58.

    [74]A.Li,D.Liu,J.Wu,X.Zhao,M.Hao,S.Geng,J.Yan,X.Jiang,L.Zhang,J.Wu,L.Yin,R.Zhang,L.Wu,Y.Zheng,L.Mao,mRNA and small RNA transcriptomes reveal insights into dynamic homoeolog regulation of allopolyploid heterosis in nascent hexaploid wheat,Plant Cell 26(2014)1878–1900.

    [75]R.Lister,R.C.O'Malley,J.Tonti-Filippini,B.D.Gregory,C.C.Berry,A.H.Millar,J.R.Ecker,Highly integrated single-base resolution maps of the epigenome in Arabidopsis,Cell 133(2008)523–536.

    [76]A.Mortazavi,B.A.Williams,K.McCue,L.Schaeffer,B.Wold,Mapping and quantifying mammalian transcriptomes by RNA-Seq,Nat.Methods 5(2008)621–628.

    [77]M.Pfeifer,K.G.Kugler,S.R.Sandve,B.Zhan,H.Rudi,T.R.Hvidsten,C.International Wheat Genome Sequencing Consortium,K.F.Mayer,O.A.Olsen,Genome interplay in the grain transcriptome of hexaploid bread wheat,Science 345(2014)1250091.

    [78]P.Borrill,R.Ramirez-Gonzalez,C.Uauy,ExpVIP:a customizable RNA-seq data analysis and visualization platform,Plant Physiol.170(2016)2172–2186.

    [79]S.Pearce,H.Vazquez-Gross,S.Y.Herin,D.Hane,Y.Wang,Y.Q.Gu,J.Dubcovsky,WheatExp:an RNA-seq expression database for polyploid wheat,BMC Plant Biol.15(2015)299.

    [80]M.O.Winfield,A.M.Allen,A.J.Burridge,G.L.Barker,H.R.Benbow,P.A.Wilkinson,J.Coghill,C.Waterfall,A.Davassi,G.Scopes,A.Pirani,T.Webster,F.Brew,C.Bloor,J.King,C.West,S.Griffiths,I.King,A.R.Bentley,K.J.Edwards,Highdensity SNP genotyping array for hexaploid wheat and its secondary and tertiary gene pool,Plant Biotechnol.J.14(2016)1195–1206.

    [81]J.Brinton,J.Simmonds,F.Minter,M.Leverington-Waite,J.Snape,C.Uauy,Increased pericarp cell length underlies a major quantitative trait locus for grain weight in hexaploid wheat,New Phytol.215(2017)1026–1038.

    [82]C.Saintenac,W.Zhang,A.Salcedo,M.N.Rouse,H.N.Trick,E.Akhunov,J.Dubcovsky,Identification of wheat gene Sr35 that confers resistance to Ug99 stem rust race group,Science 341(2013)783–786.

    [83]F.Ni,J.Qi,Q.Q.Hao,B.Lyu,M.C.Luo,Y.Wang,F.J.Chen,S.Y.Wang,C.Z.Zhang,L.Epstein,X.Y.Zhao,H.G.Wang,X.S.Zhang,C.X.Chen,L.Z.Sun,D.L.Fu,Wheat Ms2 encodes for an orphan protein that confers male sterility in grass species,Nat.Commun.8(2017)15121.

    [84]C.Xia,L.C.Zhang,C.Zou,Y.Q.Gu,J.L.Duan,G.Y.Zhao,J.J.Wu,Y.Liu,X.H.Fang,L.F.Gao,Y.N.Jiao,J.Q.Sun,Y.H.Pan,X.Liu,J.Z.Jia,X.Y.Kong,A TRIM insertion in the promoter of Ms2 causes male sterility in wheat,Nat.Commun.8(2017)15407.

    [85]A.K.Thind,T.Wicker,H.?imková,D.Fossati,O.Moullet,C.Brabant,J.Vrána,J.Dole?el,S.G.Krattinger,Rapid cloning of genes in hexaploid wheat using cultivar-specific long-range chromosome assembly,Nat.Biotechnol.35(2017)793–796.

    [86]R.W.Michelmore, I. Paran, R.V.Kesseli, Identification ofmarkers linked to disease-resistance genes by bulked segregant analysis:a rapid method to detect markers in specific genomic regions by using segregating populations, Proc. Natl. Acad. Sci. U. S. A. 88 (1991) 9828–9832.

    [87]M.Trick,N.M.Adamski,S.G.Mugford,C.C.Jiang,M.Febrer,C.Uauy,Combining SNP discovery from next-generation sequencing data with bulked segregant analysis(BSA)to finemap genes in polyploid wheat,BMC Plant Biol.12(2012)14.

    免费观看精品视频网站| 中文字幕精品亚洲无线码一区| 特大巨黑吊av在线直播| 亚洲无线观看免费| 欧美日韩精品网址| 日韩欧美 国产精品| 久久久久亚洲av毛片大全| 一进一出好大好爽视频| 神马国产精品三级电影在线观看| 亚洲国产高清在线一区二区三| 两个人的视频大全免费| 成人特级黄色片久久久久久久| 国产精品影院久久| 少妇丰满av| 亚洲激情在线av| 亚洲精品色激情综合| 99热只有精品国产| 美女高潮喷水抽搐中文字幕| 一二三四社区在线视频社区8| 久久久久久大精品| 欧美日韩乱码在线| а√天堂www在线а√下载| 亚洲精华国产精华精| 国产精品嫩草影院av在线观看 | 精品午夜福利视频在线观看一区| 国产又黄又爽又无遮挡在线| 免费av观看视频| 欧美日韩综合久久久久久 | 手机成人av网站| 国产精品影院久久| 亚洲狠狠婷婷综合久久图片| 很黄的视频免费| 啦啦啦观看免费观看视频高清| 99视频精品全部免费 在线| 久久精品夜夜夜夜夜久久蜜豆| 天天添夜夜摸| 18禁黄网站禁片午夜丰满| 日韩大尺度精品在线看网址| 久久精品人妻少妇| 日本免费a在线| xxxwww97欧美| 757午夜福利合集在线观看| 亚洲欧美日韩无卡精品| 欧美激情在线99| 亚洲第一欧美日韩一区二区三区| 老司机在亚洲福利影院| 国产精品久久久人人做人人爽| 免费搜索国产男女视频| 国产 一区 欧美 日韩| 亚洲专区国产一区二区| 亚洲18禁久久av| 久久九九热精品免费| 中文字幕人妻熟人妻熟丝袜美 | 可以在线观看的亚洲视频| 午夜精品一区二区三区免费看| 午夜福利在线观看免费完整高清在 | 亚洲精品456在线播放app | 免费人成在线观看视频色| 精品国产超薄肉色丝袜足j| 丰满人妻一区二区三区视频av | 国产乱人伦免费视频| 国内揄拍国产精品人妻在线| 老鸭窝网址在线观看| 一卡2卡三卡四卡精品乱码亚洲| 免费看光身美女| 亚洲成人中文字幕在线播放| 日韩av在线大香蕉| 国产aⅴ精品一区二区三区波| 女同久久另类99精品国产91| 床上黄色一级片| 成人性生交大片免费视频hd| 中文资源天堂在线| av欧美777| 老鸭窝网址在线观看| 高清在线国产一区| 国产一级毛片七仙女欲春2| 中文字幕人妻丝袜一区二区| 可以在线观看的亚洲视频| 中文字幕av在线有码专区| 国产男靠女视频免费网站| 丰满乱子伦码专区| 国产v大片淫在线免费观看| 日韩精品中文字幕看吧| 美女黄网站色视频| 国内精品久久久久久久电影| 成人国产综合亚洲| 波多野结衣高清作品| av女优亚洲男人天堂| 丁香六月欧美| 亚洲成人中文字幕在线播放| 母亲3免费完整高清在线观看| 日韩欧美在线二视频| 三级男女做爰猛烈吃奶摸视频| 高清日韩中文字幕在线| 熟女人妻精品中文字幕| 国产精品乱码一区二三区的特点| 免费电影在线观看免费观看| 在线免费观看不下载黄p国产 | 99久久精品一区二区三区| 亚洲精品亚洲一区二区| 免费人成视频x8x8入口观看| 天堂网av新在线| 悠悠久久av| 丰满乱子伦码专区| 首页视频小说图片口味搜索| 女同久久另类99精品国产91| 午夜福利免费观看在线| 亚洲avbb在线观看| 老汉色∧v一级毛片| 国产精品日韩av在线免费观看| 国内精品久久久久久久电影| 国内精品一区二区在线观看| 亚洲片人在线观看| 在线观看免费午夜福利视频| 婷婷亚洲欧美| 欧美黑人欧美精品刺激| 免费在线观看亚洲国产| 少妇熟女aⅴ在线视频| 色噜噜av男人的天堂激情| 亚洲精品久久国产高清桃花| 日韩欧美在线乱码| 国产精品香港三级国产av潘金莲| 成人无遮挡网站| 午夜精品一区二区三区免费看| 久久精品人妻少妇| 69人妻影院| av黄色大香蕉| 人人妻,人人澡人人爽秒播| а√天堂www在线а√下载| 久久伊人香网站| 精品国产亚洲在线| 亚洲不卡免费看| 网址你懂的国产日韩在线| 99热只有精品国产| 欧美黄色淫秽网站| 国产精品1区2区在线观看.| 五月玫瑰六月丁香| 免费看日本二区| h日本视频在线播放| 久久久久久久久久黄片| 欧美日韩福利视频一区二区| 99久久九九国产精品国产免费| 午夜免费观看网址| 中文字幕精品亚洲无线码一区| 欧美+日韩+精品| 精品国产三级普通话版| 亚洲人成电影免费在线| 国产伦一二天堂av在线观看| 日韩欧美三级三区| 国产视频内射| 99视频精品全部免费 在线| 亚洲精品国产精品久久久不卡| 精品无人区乱码1区二区| 国产精品乱码一区二三区的特点| 免费高清视频大片| 成年女人毛片免费观看观看9| 波野结衣二区三区在线 | av黄色大香蕉| 亚洲精品一区av在线观看| 超碰av人人做人人爽久久 | 在线观看舔阴道视频| 日韩精品青青久久久久久| 乱人视频在线观看| 亚洲精品乱码久久久v下载方式 | 亚洲av不卡在线观看| 精品不卡国产一区二区三区| 欧美性猛交黑人性爽| 亚洲第一欧美日韩一区二区三区| 一区二区三区高清视频在线| 91在线精品国自产拍蜜月 | 亚洲狠狠婷婷综合久久图片| 国产综合懂色| 日韩欧美精品v在线| 免费看十八禁软件| 一本综合久久免费| 亚洲内射少妇av| 免费看日本二区| 亚洲国产高清在线一区二区三| 国产欧美日韩一区二区三| 女人十人毛片免费观看3o分钟| 一个人观看的视频www高清免费观看| av福利片在线观看| 草草在线视频免费看| 亚洲五月天丁香| 国产精品 欧美亚洲| 免费一级毛片在线播放高清视频| 午夜免费男女啪啪视频观看 | 在线观看日韩欧美| 一级作爱视频免费观看| 亚洲天堂国产精品一区在线| 在线天堂最新版资源| 深夜精品福利| 久久久国产成人免费| 国产精品久久久久久精品电影| 亚洲av第一区精品v没综合| 99热6这里只有精品| 成人18禁在线播放| 国产精品99久久久久久久久| 国产午夜精品久久久久久一区二区三区 | av专区在线播放| 国产99白浆流出| 国产精品免费一区二区三区在线| 免费人成视频x8x8入口观看| 欧美极品一区二区三区四区| 一个人看视频在线观看www免费 | 又爽又黄无遮挡网站| 国产精品亚洲美女久久久| 欧美日本亚洲视频在线播放| 90打野战视频偷拍视频| 毛片女人毛片| 久久久精品大字幕| 亚洲成人免费电影在线观看| 国产精品一及| 成人无遮挡网站| 欧美黄色淫秽网站| 日本熟妇午夜| 日本精品一区二区三区蜜桃| 亚洲精品乱码久久久v下载方式 | 午夜久久久久精精品| 国产精品影院久久| 久久久国产成人免费| 成人国产综合亚洲| 听说在线观看完整版免费高清| 国产在视频线在精品| 婷婷精品国产亚洲av在线| 在线观看午夜福利视频| 成人高潮视频无遮挡免费网站| 美女高潮喷水抽搐中文字幕| 日本在线视频免费播放| 亚洲成人精品中文字幕电影| 国产美女午夜福利| 成年女人看的毛片在线观看| 亚洲av熟女| 天堂av国产一区二区熟女人妻| 国产精品香港三级国产av潘金莲| 欧美黄色淫秽网站| 嫩草影视91久久| 在线观看午夜福利视频| 欧美日韩国产亚洲二区| 亚洲精品粉嫩美女一区| 欧美国产日韩亚洲一区| 欧美在线黄色| 桃色一区二区三区在线观看| 国产精品综合久久久久久久免费| 桃红色精品国产亚洲av| 亚洲专区国产一区二区| 91在线精品国自产拍蜜月 | 91在线精品国自产拍蜜月 | 99国产精品一区二区蜜桃av| 国产精品亚洲美女久久久| 国产精品一区二区三区四区久久| 尤物成人国产欧美一区二区三区| 精华霜和精华液先用哪个| 操出白浆在线播放| 国产一级毛片七仙女欲春2| 最近最新中文字幕大全免费视频| 天堂av国产一区二区熟女人妻| 一进一出好大好爽视频| 亚洲不卡免费看| 免费看a级黄色片| 男人和女人高潮做爰伦理| 手机成人av网站| 国产精品自产拍在线观看55亚洲| 亚洲av中文字字幕乱码综合| 中文字幕人妻丝袜一区二区| 欧美大码av| xxx96com| 亚洲美女黄片视频| 日韩有码中文字幕| 1000部很黄的大片| 国产亚洲精品久久久com| 天天一区二区日本电影三级| 极品教师在线免费播放| 中文字幕av在线有码专区| 久久中文看片网| 人妻久久中文字幕网| 每晚都被弄得嗷嗷叫到高潮| 免费观看的影片在线观看| 成人高潮视频无遮挡免费网站| 欧美日韩中文字幕国产精品一区二区三区| 国内精品久久久久精免费| 久久精品国产亚洲av香蕉五月| 成年免费大片在线观看| 99国产极品粉嫩在线观看| 久久午夜亚洲精品久久| 日本黄色视频三级网站网址| 久久精品91无色码中文字幕| 成人国产综合亚洲| av视频在线观看入口| 国产亚洲精品综合一区在线观看| 麻豆国产97在线/欧美| 天堂影院成人在线观看| 国产精品久久久久久精品电影| 蜜桃亚洲精品一区二区三区| 国产午夜精品久久久久久一区二区三区 | 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 18禁国产床啪视频网站| 国内久久婷婷六月综合欲色啪| 亚洲国产精品sss在线观看| 久99久视频精品免费| 一区二区三区激情视频| 成人无遮挡网站| 少妇熟女aⅴ在线视频| 国产精品自产拍在线观看55亚洲| 欧美高清成人免费视频www| 亚洲av成人av| 精品一区二区三区av网在线观看| 亚洲精品色激情综合| 国内久久婷婷六月综合欲色啪| 啦啦啦免费观看视频1| 免费在线观看成人毛片| 久久久久久人人人人人| 欧美日韩一级在线毛片| 一区二区三区高清视频在线| 在线观看日韩欧美| 午夜福利高清视频| 国产真实乱freesex| 亚洲国产高清在线一区二区三| 老鸭窝网址在线观看| 在线十欧美十亚洲十日本专区| 精品久久久久久久毛片微露脸| 免费观看精品视频网站| 变态另类丝袜制服| 99久久精品一区二区三区| 五月玫瑰六月丁香| 高潮久久久久久久久久久不卡| 一进一出好大好爽视频| 中文在线观看免费www的网站| 国产精品香港三级国产av潘金莲| 亚洲国产中文字幕在线视频| 在线观看一区二区三区| 亚洲精品乱码久久久v下载方式 | 麻豆一二三区av精品| 亚洲av成人av| 成人欧美大片| 国产三级黄色录像| 午夜免费男女啪啪视频观看 | 免费看光身美女| 99国产综合亚洲精品| 一区二区三区国产精品乱码| 一个人免费在线观看的高清视频| 在线播放无遮挡| 久久久久久久午夜电影| 午夜日韩欧美国产| 国产精品精品国产色婷婷| 中文字幕高清在线视频| 久久久久久大精品| 中文资源天堂在线| 在线观看美女被高潮喷水网站 | 日本成人三级电影网站| 欧美xxxx黑人xx丫x性爽| 成年版毛片免费区| 国模一区二区三区四区视频| 99视频精品全部免费 在线| 中亚洲国语对白在线视频| 天天一区二区日本电影三级| 欧美zozozo另类| 成人高潮视频无遮挡免费网站| 日本免费a在线| 成人永久免费在线观看视频| 天美传媒精品一区二区| 成人国产综合亚洲| 国产精品久久视频播放| 一区二区三区激情视频| 久久久国产成人免费| 两个人的视频大全免费| 亚洲成人久久爱视频| 精品人妻偷拍中文字幕| 少妇人妻精品综合一区二区 | 国产一区在线观看成人免费| 蜜桃久久精品国产亚洲av| 精品国产三级普通话版| aaaaa片日本免费| 精品不卡国产一区二区三区| 桃色一区二区三区在线观看| h日本视频在线播放| 十八禁网站免费在线| e午夜精品久久久久久久| 中文亚洲av片在线观看爽| 琪琪午夜伦伦电影理论片6080| 亚洲人成网站在线播| 午夜福利在线观看免费完整高清在 | e午夜精品久久久久久久| 亚洲成人免费电影在线观看| 在线观看美女被高潮喷水网站 | 性欧美人与动物交配| 国内精品美女久久久久久| 亚洲av第一区精品v没综合| 啦啦啦韩国在线观看视频| 久久婷婷人人爽人人干人人爱| 亚洲成a人片在线一区二区| 亚洲 欧美 日韩 在线 免费| 亚洲欧美一区二区三区黑人| 免费人成在线观看视频色| 久久99热这里只有精品18| av片东京热男人的天堂| 两个人的视频大全免费| 久99久视频精品免费| 91字幕亚洲| 国内精品久久久久久久电影| 97人妻精品一区二区三区麻豆| 成年女人毛片免费观看观看9| 一级a爱片免费观看的视频| 亚洲精品456在线播放app | 国产野战对白在线观看| 成熟少妇高潮喷水视频| 日韩欧美一区二区三区在线观看| 真实男女啪啪啪动态图| 亚洲熟妇熟女久久| 日韩欧美在线乱码| 国产高清有码在线观看视频| 精品不卡国产一区二区三区| 久久久国产成人免费| 又粗又爽又猛毛片免费看| 国产成人av教育| av中文乱码字幕在线| 99久久精品国产亚洲精品| 精品久久久久久,| 午夜福利成人在线免费观看| 宅男免费午夜| 久久久久精品国产欧美久久久| 亚洲欧美日韩无卡精品| 亚洲欧美精品综合久久99| 精品国产三级普通话版| 日本a在线网址| 成人鲁丝片一二三区免费| 国产真人三级小视频在线观看| 内地一区二区视频在线| 亚洲,欧美精品.| 日韩大尺度精品在线看网址| 久久久精品欧美日韩精品| 99国产精品一区二区三区| 啪啪无遮挡十八禁网站| 精品国产亚洲在线| 精品无人区乱码1区二区| 日韩成人在线观看一区二区三区| 欧美国产日韩亚洲一区| 长腿黑丝高跟| 一本综合久久免费| 亚洲精华国产精华精| 亚洲精品在线美女| bbb黄色大片| 精品久久久久久,| 亚洲国产中文字幕在线视频| 亚洲18禁久久av| 久久久久久久久中文| 天美传媒精品一区二区| 国产精品亚洲一级av第二区| 欧美日韩福利视频一区二区| 国产真实伦视频高清在线观看 | e午夜精品久久久久久久| 3wmmmm亚洲av在线观看| 黑人欧美特级aaaaaa片| 嫩草影院精品99| 成人国产综合亚洲| 毛片女人毛片| 国产男靠女视频免费网站| 精品99又大又爽又粗少妇毛片 | 草草在线视频免费看| 精品久久久久久久久久免费视频| 国产精品爽爽va在线观看网站| 免费看光身美女| 在线观看午夜福利视频| 亚洲 国产 在线| 欧美一级毛片孕妇| 丰满人妻一区二区三区视频av | 岛国视频午夜一区免费看| 少妇的逼水好多| 亚洲七黄色美女视频| 欧美日韩综合久久久久久 | 午夜福利免费观看在线| 成人国产综合亚洲| 1024手机看黄色片| 亚洲美女黄片视频| 一本精品99久久精品77| 久久久国产精品麻豆| 757午夜福利合集在线观看| 黄片大片在线免费观看| 亚洲精品亚洲一区二区| 亚洲久久久久久中文字幕| 国产高清视频在线观看网站| 欧美乱码精品一区二区三区| 中亚洲国语对白在线视频| 99久久久亚洲精品蜜臀av| 成年免费大片在线观看| 免费av毛片视频| av专区在线播放| 亚洲欧美一区二区三区黑人| 精品一区二区三区视频在线观看免费| 99久久精品国产亚洲精品| 搡女人真爽免费视频火全软件 | 色吧在线观看| 午夜日韩欧美国产| 最近最新免费中文字幕在线| 日本免费一区二区三区高清不卡| 成年女人毛片免费观看观看9| 国产私拍福利视频在线观看| 18+在线观看网站| 欧美黑人巨大hd| 国产精品98久久久久久宅男小说| 欧美xxxx黑人xx丫x性爽| 亚洲人成网站在线播放欧美日韩| 99精品久久久久人妻精品| 少妇人妻一区二区三区视频| 国产精品一区二区免费欧美| 久久久精品欧美日韩精品| 天天一区二区日本电影三级| 18禁美女被吸乳视频| 亚洲va日本ⅴa欧美va伊人久久| 俺也久久电影网| 欧美三级亚洲精品| 久久久色成人| 午夜福利高清视频| 特大巨黑吊av在线直播| 国产欧美日韩精品亚洲av| 国产免费男女视频| 青草久久国产| 午夜影院日韩av| 国产aⅴ精品一区二区三区波| 国产精品爽爽va在线观看网站| 亚洲色图av天堂| 久久久国产成人免费| 18禁黄网站禁片免费观看直播| 国产成人a区在线观看| 日韩欧美免费精品| 亚洲 欧美 日韩 在线 免费| 首页视频小说图片口味搜索| 深夜精品福利| 伊人久久精品亚洲午夜| 亚洲欧美日韩高清专用| 亚洲精品日韩av片在线观看 | 99久久精品热视频| 小蜜桃在线观看免费完整版高清| 国产精品 国内视频| 一进一出抽搐gif免费好疼| 人妻久久中文字幕网| 久久精品影院6| 亚洲国产精品合色在线| 别揉我奶头~嗯~啊~动态视频| av国产免费在线观看| 一级毛片女人18水好多| 两个人视频免费观看高清| 亚洲一区二区三区色噜噜| 蜜桃亚洲精品一区二区三区| АⅤ资源中文在线天堂| 手机成人av网站| 一进一出抽搐动态| 热99在线观看视频| 成人精品一区二区免费| 国模一区二区三区四区视频| 免费看a级黄色片| 国产色爽女视频免费观看| 少妇裸体淫交视频免费看高清| 亚洲人成网站在线播放欧美日韩| 美女高潮的动态| 亚洲18禁久久av| 欧美精品啪啪一区二区三区| 精品熟女少妇八av免费久了| 国产高清激情床上av| 少妇的逼水好多| 午夜老司机福利剧场| 国产男靠女视频免费网站| 黑人欧美特级aaaaaa片| 日日干狠狠操夜夜爽| 久久久久久九九精品二区国产| 精品99又大又爽又粗少妇毛片 | 男女床上黄色一级片免费看| 天天一区二区日本电影三级| 成人av在线播放网站| 草草在线视频免费看| 9191精品国产免费久久| 国产精华一区二区三区| 美女免费视频网站| 啦啦啦韩国在线观看视频| 天天躁日日操中文字幕| 亚洲真实伦在线观看| 国产高清三级在线| 性色av乱码一区二区三区2| av在线蜜桃| 蜜桃久久精品国产亚洲av| 中文字幕熟女人妻在线| 亚洲中文字幕日韩| 精品午夜福利视频在线观看一区| 国产亚洲欧美在线一区二区| 国产老妇女一区| 国产精品亚洲av一区麻豆| 亚洲av成人av| 黄色日韩在线| 欧美色欧美亚洲另类二区| 中文字幕人妻丝袜一区二区| 手机成人av网站| aaaaa片日本免费| 天堂动漫精品| 亚洲av五月六月丁香网| 日本撒尿小便嘘嘘汇集6| www.999成人在线观看| 亚洲色图av天堂| 亚洲成a人片在线一区二区| 亚洲av成人av| 国产精品1区2区在线观看.| 成人鲁丝片一二三区免费| 亚洲精品粉嫩美女一区| 精品不卡国产一区二区三区| 蜜桃亚洲精品一区二区三区| 欧美一区二区国产精品久久精品| 在线天堂最新版资源| 精品午夜福利视频在线观看一区| 九九热线精品视视频播放| 精品国产亚洲在线| 亚洲久久久久久中文字幕| 叶爱在线成人免费视频播放| 一区二区三区高清视频在线| 天堂影院成人在线观看| 最近最新中文字幕大全免费视频| 亚洲av成人不卡在线观看播放网|