• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Non-Markovianity Measure Based on Brukner–Zeilinger Invariant Information for Unital Quantum Dynamical Maps?

    2018-01-22 09:12:56ZhiHe賀志LieQiangZhu朱烈強(qiáng)andLiLi李莉
    Communications in Theoretical Physics 2017年3期
    關(guān)鍵詞:李莉

    Zhi He(賀志),Lie-Qiang Zhu(朱烈強(qiáng)),and Li Li(李莉)

    College of Physics and Electronics,Hunan Province Cooperative Innovation Center for The Construction and Development of Dongting Lake Ecological Economic Zone,Hunan University of Arts and Science,Changde 415000,China

    1 Introduction

    Recently,many attention has been devoted to understand and quantify the non-Markovian or memory effects of open quantum systems in theoretical research[1?2]and experimental realization.[3?7]Up to now,there may be four routes to define the non-Markovianity of open quantum systems. The first route is based on the monotonicity of physical quantity under completely positive and trace preserving(CPTP)maps,i.e.,trace distance,[8]fidelity,[9]quantum fisher information flow[10]and matrix,[11]geometry of quantum state,[12]quantum channel capacity.[13]The second route is based on the divisibility of maps of dynamical evolution.[14?18]The third route is based on the monotonicity of correlations under local quantum channels including entanglement,[15,19?20]quantum discord,[21]quantum mutual information,[22]local quantum uncertainty,[23]quantum interferometric power,[24]and multipartite correlation measures.[25]The fourth route is based on the departure between the exact two-time correlation function and one obtained from quantum regression theorem in the Born–Markov approximation.[26?27]So from different point of view,we can define various non-Markovianity measures for quantifying non-Markovian behavior of open quantum systems.

    At present,for single quantum channel model,i.e.,single phase damping channel or amplitude-damping channel in Refs.[22,28],it has been shown that popular information flow characterized by trace distance,divisibility by means of Choi–Jamiolkowski isomorphism and quantum mutual information give the same non-Markovian conditions.However,for multichannel case these non-Markovianity measures including information flow,divisibility and quantum mutual information do not coincide in general,[29]i.e.,random unitary channel.[30?33]The differences between popular information flow and divisibility in quantifying non-Markovian effect of multichannel case mainly stem from two different views.The information flow indicates that the non-Markovian dynamics of quantum system is determined by joint effect of multichannel of system.However,the divisibility shows that as long as one of multichannel of system violates the divisibility of the map,the system displays non-Markovian dynamics.Therefore,for multichannel case the two famous non-Markovianity measures are obviously different.A unified non-Markovianity measure for open quantum systems is still controversial and lacking.

    In present paper,based on an interesting physical quantity,namely Brukner–Zeilinger(BZ)invariant information[34]we introduce an alternative non-Markovianity measure. The measure takes advantage of non-increasing property of the BZ invariant information under completely positive and trace-preserving unitalmaps.The simplicity of computing the BZ invariant information is the main advantage of the proposed measure because of mainly depending on the purity of quantum state.The measure effectively captures the characteristics of non-Markovianity of unital dynamical maps.As some concrete application,we consider two typical non-Markovian noise channels,i.e.,the phase damping channel and the random unitary channel to show the sensitivity of the proposed measure.By investigation,we find that the conditions of detecting the non-Markovianity for the phase damping channel are consistent with the results of existing measures for non-Markovianity,i.e.,information flow,divisibility,and quantum mutual information.However,for the random unitary channel non-Markovian conditions are same to that of the information flow,but are different from that of the divisibility and quantum mutual information.The limitations of this approach also are pointed out in the paper.

    The paper is organized as follows.In Sec.2,the non-Markovianity measure based on BZ invariant information for an open quantum systems is introduced.The applications of the measure to two typical non-Markovian noise channels are examined in Sec.3.Finally,we give the conclusion of our results in Sec.4.

    2 Non-Markovianity via Brukner–Zeilinger Invariant Information

    In 1999,Brukner and Zeilinger[34]proposed the concept of an operationally invariant measure from quantum measurements,which is essentially the quantity

    where the Tr represents the trace anddis the dimension of the quantum system.As claimed in Ref.[34],theIBZ(ρ)can be treated as a quantum measure of total informational content of a given quantum state and it was successfully applied for entanglement teleportation[35]and state estimation.[36]Especially,Luo[37]has shown that the BZ invariant information is directly connected with usual quantum-mechanical variance averaged over every orthonormal basis.However,this approach was later criticized for its drawbacks.More recently,this approach reattracts people’s interest in Ref.[38],where it has been shown that some critical points can be overcome by means of natural extension or reformulation of the BZ approach.Actually,the quantityIBZ(ρ)can be also rewritten as[39]

    whereρ?=(1/d)with the identity matrixis completely mixed state and the‖ρ?σ‖2=Tr(ρ?σ)2=DHS(ρ,σ)is the Hilbert–Schmidt distance.Unfortunately,it has been shown that in Ref.[40]the Hilbert–Schmidt distanceDHS(ρ,σ)does not possess the contractivity under completely positive and trace preserving map as trace distance.[41]Therefore,it may be not proper to define the non-Markovianity by theIBZ(ρ)for open quantum systems under any completely positive and trace-preserving maps.However,more recently Rastegin[38]has also reexamined the property of theIBZ(ρ),and found that it is contract(non-increasing)under the action of bistochastic maps.Recall that a CPTP map is called a bistochastic map if it is also unital,[42]that is to say if it leaves the maximally mixed state invariant,or equally preserves identity,namely Φ(ρ?)=ρ?with the maximally mixed stateρ?=(1/d),or Φ()=.Moreover,from Eq.(1)we can easily learn that the BZ invariant informationIBZ(ρ)and the purity Tr(ρ2)obeys the same contractivity under the action of bistochastic maps(or called unital maps).

    According to Refs.[34,38],we give some basic properties of theIBZ(ρ)in Eqs.(1)and(2)as:

    (a)TheIBZ(ρ)is invariant under unitary operation,i.e.,IBZ(UρU?)=IBZ(ρ),which is obvious from the definition of Eq.(1),namely

    (b)TheIBZ(ρ)is contract(or called non-increasing)under any completely positive and trace preserving bistochastic(or called unital)maps the action of bistochastic maps or operations,i.e.,IBZ(Φρ)≤IBZ(ρ)for any unital map Φ.

    It is clear that the property(b)of theIBZ(ρ)becomes a starting point of defining a measure based on theIBZ(ρ)to detect the non-Markovianty of open quantum systems.However,it is worth noting that the measure is effective only for any unital map Φ()=,i.e.,the phase damping channel and random unitary channel.As for the nonunital map Φ()/=,i.e.,the amplitude damping channel,the measure may be invalid,which is agreement with the assertion of Ref.[43],namely it has been revealed that the nonunitality is a necessary condition for the increase of the purity Trρ2under quantum channels.In other words,the non-unital map may increase the purity of quantum system.

    Before defining the measure of non-Markovianity based on the BZ invariant informationIBZ(ρ), first let us recall that if a quantum dynamical map{Φt}is called Markovian process in the sense of divisibility,[14]there will be that

    where Φt,τis the map of any middle quantum process.The relation Eq.(3)holds true for all time-dependent Markovian quantum processes including the canonical time independent Lindblad generators(which satisfies a dynamical semigroup property)and time-dependent generators(which satisfies a dynamical divisibility property).

    For the system’s density operator at any timetwithρ(t)= Φtρ(0),the BZ invariant informationIBZ(ρ)exists the following inequality relation as

    where the contractivity of theIBZ(ρ)under any completely positive and trace preserving bistochastic(or unital)maps has been used as the property(b)of theIBZ(ρ),i.e.,IBZ(Φρ)≤IBZ(ρ). Clearly,Eq.(4)means that theIBZ(ρ(t))is a monotonically decreasing function of time for any Markovian process of system,namely(d/dt)IBZ(ρ(t))≤0.On the contrary,the violation of this monotonicity of theIBZ(ρ(t)),namely(d/dt)IBZ(ρ(t))>0,can be used as an indicator for non-Markovian process of system.Thus we may define a measure via theIBZ(ρ(t))for non-Markovianity of system by

    where the sup is over all initial statesρ(0)on system.The non-Markovianity measure in Eq.(5)can be rewritten as wherebiandaicorrespond to the time points of the local maximum and minimum ofIBZ(ρ(t)),respectively.Obviously,the measures as in Eqs.(5)and(6)involve the formidable optimization problem,which generally is complicated for calculations.However,theIBZ(ρ(t))of the proposed measure only involves the purity of the quantum stateρ(t),which is very simple to compute.Especially,in the following we will show that the maximization in the proposed measure can be actually removed for the considered models without influencing the sensibility of measure to detect non-Markovianity.

    3 Applications to a Qubit Open Systems

    3.1 Non-Markovianity of a Phase Damping Channel

    First we consider a model of a qubit system undergoing non-Markovian phase damping channel,which is governed by the following equation[44]

    For any initial states of qubit withthe density operator of the qubit at any timetcan be given by

    Accordingly,the derivatives of theIBZ(ρ(t))can be easily given by

    Therefore,the dynamics of system exhibits a Markovian process if and only ifγ(t)≥0 for allt≥0.Once the conditionγ(t)<0 for some timet,the dynamics of system shows a non-Markovian process.This result is in accordance with that of information flow,[28]divisibility[28]and quantum mutual information.[22]

    Finally,we obtain the explicit expression of the non-Markovianity measureNBZ(Φt)as

    Obviously,the maximum in Eq.(11)is achieved with equatorial,antipodal states[45?46]i.e.,ρ(0)=|±〉〈±|withActually,the maximization can be removed due to the intervals in which non-Markovianity occurs are uniquely determined by the conditionγ(t)<0,which does not affect the sensibility ofNBZ(Φt)to detect non-Markovianity.Of course,the choice of initial states can influence the amount of non-Markovianity.Now,theNBZ(Φt)can be simplified as

    As a concrete example,using non-Markovianity measure Eq.(12)we discuss the non-Markovianity of an exact solved model consisting of a qubit interacting with a thermal environment by the dephasing mechanism,where thewith the time-dependent dephasing rateγ(t)with the dephasing rate at zero temperature case of the environment given by

    In what follows,we assume the spectral density of the environment is Ohmic-like form[44,47?48]

    whereωcis the environment cutoff frequency.By changing thesparameter one goes from sub-Ohmic environments(s<1)to Ohmic(s=1)and super-Ohmic(s>1)environments,respectively.Now the dephasing rate as Eq.(13)exists an explicit expression as[49]

    which leads to an exact form of thef(t)asf(t)=exp[?2∫t0γ(τ)dτ]=exp[?β(t)]with[50]where Γ[x]is the Euler gamma function.Having Eq.(16)in hand,we plot the non-MarkovianityNBZ(Φt)as a function of the ohmicity parametersin Fig.1.

    Fig.1 (Color online)The non-Markovianity NBZ(Φt)as a function of the ohmicity parameter s.

    From Fig.1,we can clearly see that when the ohmicity parameters>scrit=2 the non-MarkovianityNBZ(Φt)is always nonzero.Especially,fors>4 theNBZ(Φt)also exist,and only take very small values.This result agrees with the main result of Refs.[49–50]based on information flow in the same model,where using the convexity arguments it is shown that non-Markovian or memory effects leading to information flow and recoherence occur only if the reservoir spectrum is super-Ohmic withs>2.Moreover,the non-MarkovianityNBZ(Φt)shows a nonmonotonic behavior with increase of thesand the maximal non-Markovianity can be achieved at a specified values.Finally,compared with the popular non-Markovianity measure( first proposed by Breuer,Laine,and Piilo(BLP)in Ref.[8])based on information flow,we find that the amount of non-MarkovianityNBZ(Φt)have a subtle difference.The difference can be explained by taking into account the expression of non∫-Markovianity of the BLP measure withNBLP(Φt)=?2γ(t)<0γ(t)f(t)dt[28]for the same phase damping model,which is different from Eq.(12)of proposed non-Markovianity measure.

    3.2 Non-Markovianity of Random Unitary Channel

    Then we consider a model of a qubit(considered subsystemS)suffering from random unitary channel,which is governed by the master equation[30?31]

    whereγi(t),σi(i=1,2,3)represent time-dependent decay factors and the Pauli matrices,respectively.Obviously,the so-called random unitary channel as Eq.(17)is a generalization of Eq.(7)by introducing two additional decoherence channels.The corresponding random unitary dynamical map[31]can be given by

    whereσ0=1,pi(t)≥0,andEspecially,att=0 the Φ0=impliesp0(0)=1 andpi(0)=0(i=1,2,3).The relationships betweenpi(t)andγi(t)are associated with an additional parameterλi(t),namely[31]

    i

    0ii(i=0,1,2,3)satisfies the equation

    For the initial states of a qubit with the Bloch-sphere form

    in view of Eq.(20)the density operator at any timet ρ(t)= Φtρ(0)can be obtaine(das)

    whereh(t)=e?2[Γ1(t)+Γ2(t)],w(t)=e?2Γ3(t)[ae2Γ1(t)?ibe2Γ2(t)],aandbdenote the real and imaginary part ofw,respectively.Obviously,the unital relation Φ()=is satisfied for the random unitary channel.As an upshot,the explicit expression of theIBZ(ρ(t))can be easily represented as

    Correspondingly,the derivatives of theIBZ(ρ(t))can be easily given by

    Similar to the case of phase damping channel,the dynamics of system indicates a Markovian process,i.e.,(d/dt)IBZ(ρ(t))≤0 if and only if

    for allt≥0. Interestingly,these Markovian conditions are in accordance with that of information flow[31]and von Neumann entropy,[31,51]but are different from divisibility[31]and quantum mutual information.[32]For the random unitary channel,[31?32]it has been indicated that the the conditions of three non-Markovianity measures including information flow,divisibility and quantum mutual information are not equivalent each other.Actually,at present for multichannel model various non-Markovianity measures are not unified and even controversial in quantifying non-Markovian behavior of quantum processes.And each of them has some own advantages,such as information flow has a good operational interpretation in view of information exchange between the system and the environment.Moreover,clearly whenγ1(t)=γ2(t)=0,the random unitary channel reduces to the phase damping channel.Correspondingly,the condition of Markovian process of system reduces toγ3(t)≥0,which just is the condition of phase damping channel with Markovian dynamics as given in the above section.

    4 Conclusions

    We proposed an alternative non-Markovianity measure based on BZ invariant information for unital quantum dynamical maps.The main advantage of the proposed non-Markovianity measure is the simplicity of its calculations.Further,we applied the non-Markovianity measure to two typical noise channels including phase damping channel and random unitary channel(which possesses unital characterization)and found that the non-Markovian conditions of the phase damping channel is the same to other non-Markovianity measures,i.e.,information flow,divisibility and quantum mutual information,but for the random unitary channel the relation among proposed non-Markovianity measure and other non-Markovianity measures about the non-Markovian conditions is complex.Concretely,we obtained that the non-Markovian conditions are consistent with the measure based on information flow,but is different from other measures,i.e.,divisibility and quantum mutual information.Up to now,for the random unitary channel the conditions of various non-Markovianity measures are not unified and even debatable,which deserves further investigation.In a word,the proposed non-Markovianity measure in the paper may be potential applications in investigating non-Markovian dynamics of open quantum systems.More recently,we noted that Intravaiaet al.[52]investigated non-Markovianity in atom-surface dispersion forces and found that the Markov approximation can lead to erroneous predictions of such phenomena with regard to both strength and functional dependencies on system parameters,which further highlights the importance of non-Markovian effects in dispersion interactions.

    [1]A.Rivas,S.F.Huelga,and M.B.Plenio,Rep.Prog.Phys.77(2014)094001.

    [2]H.P.Breuer,E.M.Laine,J.Piilo,and B.Vacchini,Rev.Mod.Phys.88(2016)021002.

    [3]B.H.Liu,L.Li,Y.F.Huang,et al.,Nat.Phys.7(2011)931.

    [4]J.S.Tang,C.F.Li,Y.L.Li,et al.,Europhys.Lett.97(2012)10002.

    [5]F.F.Fanchini,G.Karpat,B.Akmak,et al.,Phys.Rev.Lett.112(2014)210402.

    [6]B.H.Liu,S.Wi?mann,X.M.Hu,et al.,Sci.Rep.4(2014)6327.

    [7]N.K.Bernardes,A.Cuevas,A.Orieux,et al.,Sci.Rep.5(2015)17520.

    [8]H.P.Breuer,E.M.Laine,and J.Piilo,Phys.Rev.Lett.103(2009)210401;H.P.Breuer,J.Phys.B:At.Mol.Opt.Phys.45(2012)154001.

    [9]A.K.Rajagopal,A.R.Usha Devi,and R.W.Rendell,Phys.Rev.A 82(2010)042107.

    [10]X.M.Lu,X.G.Wang,and C.P.Sun,Phys.Rev.A 82(2010)042103.

    [11]H.Song,S.Luo,and Y.Hong,Phys.Rev.A 91(2015)042110.

    [12]S.Lorenzo,F.Plastina,and M.Paternostro,Phys.Rev.A 88(2013)020102.

    [13]B.Bylicka,D.Chruscinski,and S.Maniscalco,Sci.Rep.4(2014)5720.

    [14]M.M.Wolf,J.Eisert,T.S.Cubitt,and J.I.Cirac,Phys.Rev.Lett.101(2008)150402.

    [15]A.Rivas,S.F.Huelga,and M.B.Plenio,Phys.Rev.Lett.105(2010)050403.

    [16]D.Chru?ciński,A.Kossakowski,and A.Rivas,Phys.Rev.A 83(2011)052128.

    [17]S.C.Hou,X.X.Yi,S.X.Yu,and C.H.Oh,Phys.Rev.A 83(2011)062115;S.C.Hou,S.L.Liang,and X.X.Yi,Phys.Rev.A 91(2011)012109.

    [18]D.Chru?ciński and S.Maniscalco,Phys.Rev.Lett.112(2014)120404.

    [19]Z.Y.Gao,Y.K.Ren,and H.S.Zeng,Quant.Inf.Process.15(2016)3043.

    [20]Z.L.Fan,Y.K.Ren,and H.S.Zeng,Chin.Phys.B 25(2016)010303.

    [21]S.Alipour,A.Mani,and A.T.Rezakhani,Phys.Rev.A 85(2012)052108.

    [22]S.Luo,S.Fu,and H.Song,Phys.Rev.A 86(2012)044101.

    [23]Z.He,C.Yao,Q.Wang,and J.Zou,Phys.Rev.A 90(2014)042101.

    [24]H.S.Dhar,M.N.Bera,and G.Adesso,Phys.Rev.A 91(2015)032115.

    [25]F.M.Paula,P.C.Obando,and M.S.Sarandy,Phys.Rev.A 93(2015)042337.

    [26]G.Guarnieri,A.Smirne,and B.Vacchini,Phys.Rev.A 90(2014)022110.

    [27]M.M.Ali,P.Y.Lo,M.W.Y.Tu,and W.M.Zhang,Phys.Rev.A 92(2015)062306.

    [28]H.S.Zeng,N.Tang,Y.P.Zheng,and G.Y.Wang,Phys.Rev.A 84(2011)032118.

    [29]P.Haikka,J.D.Cresser,and S.Maniscalco,Phys.Rev.A 83(2011)012112.

    [30]B.Vacchini,J.Phys.B:At.Mol.Opt.Phys.45(2012)154007.

    [31]D.Chru?ciński and F.Wudarski,Phys.Lett.A 377(2013)1425.

    [32]M.Jiang and S.Luo,Phys.Rev.A 88(2013)034101.

    [33]D.Chru?ciński and F.Wudarski,Phys.Rev.A 91(2015)012104.

    [34]C.Brukner and A.Zeilinger,Phys.Rev.Lett.83(1999)3354.

    [35]J.Lee and M.S.Kim,Phys.Rev.Lett.84(2000)4236.

    [36]J.Rehacek and M.S.Kim,Phys.Rev.Lett.88(2002)130401.

    [37]S.Luo,Theor.Math.Phys.151(2007)693.

    [38]A.E.Rastegin,Proc.R.Soc.A 471(2015)20150435.

    [39]J.Lee,M.S.Kim,and Z.Hradil,Phys.Rev.Lett.91(2003)087902.

    [40]M.Ozawa,Phys.Lett.A 268(2000)158.

    [41]M.A.Nielsen and I.L.Chuang,Quantum Computation and Quantum Information,Cambridge University Press,Cambridge(2000).

    [42]I.Bengtsson and K.Zyczkowski,Geometry of Quantum States:An Introduction to Quanutm Entanglement,Cambridge University Press,Cambridge(2006).

    [43]D.A.Lidar,A.Shabini,and R.Alicki,Chem.Phys.322(2006)82.

    [44]H.P.Breuer and F.Petruccione,The Theory of Open Quantum Systems,Oxford University Press,Oxford(2002).

    [45]Z.Y.Xu,W.L.Yang,and M.Feng,Phys.Rev.A 81(2010)044105.

    [46]Z.He,J.Zou,L.Li,and B.Shao,Phys.Rev.A 83(2011)012108.

    [47]A.J.Leggett,S.Chakravarty,A.T.Dorsey,M.P.A.Fisher,A.Garg,and W.Zwerger,Rev.Mod.Phys.59(1987)1.

    [48]G.M.Palma,K.Suominen,and A.Ekert,Proc.R.Soc.London A 452(1996)567.

    [49]P.Haikka,T.H.Johnson,and S.Maniscalco,Phys.Rev.A 87(2013)010103.

    [50]C.Addis,B.Bylicka,D.Chru?ciński,and S.Maniscalco,Phys.Rev.A 90(2014)052103.

    [51]S.Hasenli,S.Salimi,and A.S.Khorashad,Quant.Inf.Process.14(2015)3581.

    [52]F.Intravaia,R.O.Behunin,C.Henkel,K.Busch,and D.A.R.Dalvit,Phys.Rev.A 94(2016)042114.

    猜你喜歡
    李莉
    Impact renaming non-alcoholic fatty liver disease to metabolic associated fatty liver disease in prevalence, characteristics and risk factors
    THE REGULARITY CRITERIA OF WEAK SOLUTIONS TO 3D AXISYMMETRIC INCOMPRESSIBLE BOUSSINESQ EQUATIONS?
    李莉作品(一)
    大眾文藝(2021年17期)2021-09-29 03:03:20
    李莉作品(二)
    大眾文藝(2021年17期)2021-09-29 03:03:20
    疏解后顧之憂,防患于未然
    Dynamic and inner-dressing control of four-wave mixing in periodically-driven atomic system?
    故鄉(xiāng)一把土
    裝錯(cuò)芯片的機(jī)器人
    樹(shù)葉上的優(yōu)點(diǎn)
    Numerical simulation of viscous flow past an oscillating square cylinder using a CIP-based model*
    久久韩国三级中文字幕| 亚洲精品一二三| 欧美+日韩+精品| 久久精品国产亚洲av涩爱| 欧美成人精品欧美一级黄| 亚洲va在线va天堂va国产| 欧美一区二区亚洲| 亚洲国产精品专区欧美| 一区二区三区精品91| 亚洲精品视频女| 一级毛片黄色毛片免费观看视频| 国产精品国产av在线观看| 亚洲美女搞黄在线观看| 韩国av在线不卡| 国产精品一区www在线观看| 黄色视频在线播放观看不卡| h视频一区二区三区| 欧美xxⅹ黑人| 久久久久久伊人网av| 卡戴珊不雅视频在线播放| 婷婷色av中文字幕| 日韩国内少妇激情av| 国产精品国产三级专区第一集| 精品午夜福利在线看| 亚洲综合精品二区| 久久久久久久久久久丰满| 黄色一级大片看看| 亚洲欧洲国产日韩| 午夜老司机福利剧场| 亚洲av在线观看美女高潮| 国产欧美亚洲国产| 男女下面进入的视频免费午夜| 成人18禁高潮啪啪吃奶动态图 | 国产黄色免费在线视频| 国产成人精品婷婷| 亚洲欧美中文字幕日韩二区| 日韩欧美一区视频在线观看 | 久久久久视频综合| 色婷婷久久久亚洲欧美| 日韩欧美一区视频在线观看 | 国国产精品蜜臀av免费| 少妇人妻精品综合一区二区| 亚洲无线观看免费| 成人黄色视频免费在线看| 深爱激情五月婷婷| 久久久久久久大尺度免费视频| 内射极品少妇av片p| 国产午夜精品久久久久久一区二区三区| 亚洲国产精品一区三区| 一级av片app| 人妻 亚洲 视频| 久久精品熟女亚洲av麻豆精品| 国产精品免费大片| 久久久成人免费电影| av一本久久久久| av在线播放精品| 高清欧美精品videossex| 97精品久久久久久久久久精品| 又黄又爽又刺激的免费视频.| 国产成人精品福利久久| 男人舔奶头视频| 亚洲精品自拍成人| 精品人妻偷拍中文字幕| 91久久精品电影网| 日韩大片免费观看网站| 精品久久久久久久久av| 深夜a级毛片| 国产免费一级a男人的天堂| 国产精品久久久久久久电影| 国产有黄有色有爽视频| 国产熟女欧美一区二区| 永久网站在线| 国产黄色免费在线视频| 久久久久精品久久久久真实原创| 日本色播在线视频| 成人毛片a级毛片在线播放| 夫妻性生交免费视频一级片| 日本av免费视频播放| 欧美一区二区亚洲| 内地一区二区视频在线| 肉色欧美久久久久久久蜜桃| 激情五月婷婷亚洲| 91精品国产九色| 亚洲中文av在线| 成人国产麻豆网| 欧美日韩国产mv在线观看视频 | 免费高清在线观看视频在线观看| 久久99热这里只频精品6学生| 国产一级毛片在线| 人体艺术视频欧美日本| 亚洲内射少妇av| 最近的中文字幕免费完整| 免费看不卡的av| 国产一区二区三区av在线| 观看美女的网站| 如何舔出高潮| 插逼视频在线观看| a级毛片免费高清观看在线播放| 午夜激情福利司机影院| 黄色配什么色好看| 99热网站在线观看| 女性被躁到高潮视频| 80岁老熟妇乱子伦牲交| 一区在线观看完整版| 亚洲色图综合在线观看| 丝袜喷水一区| 婷婷色麻豆天堂久久| 天堂8中文在线网| 狠狠精品人妻久久久久久综合| 久久国产精品大桥未久av | 我要看黄色一级片免费的| 亚洲国产毛片av蜜桃av| 亚洲精品视频女| 久久久久久久精品精品| 老女人水多毛片| 国产女主播在线喷水免费视频网站| 欧美少妇被猛烈插入视频| 国产精品一二三区在线看| 蜜桃在线观看..| 国产白丝娇喘喷水9色精品| 视频区图区小说| 最黄视频免费看| 日韩精品有码人妻一区| 国产精品无大码| 精品久久久久久电影网| 亚洲美女视频黄频| 欧美精品一区二区免费开放| 一区在线观看完整版| 久久久久久久久大av| 日本vs欧美在线观看视频 | 亚洲精品色激情综合| 2018国产大陆天天弄谢| 国产精品久久久久久精品古装| 黄色配什么色好看| 国产男女内射视频| 美女视频免费永久观看网站| 国产精品一区二区在线观看99| 黑人高潮一二区| 国产黄色视频一区二区在线观看| 大香蕉久久网| 免费久久久久久久精品成人欧美视频 | 国产精品精品国产色婷婷| 欧美3d第一页| 肉色欧美久久久久久久蜜桃| 视频中文字幕在线观看| 国产免费又黄又爽又色| 国产精品成人在线| 最近手机中文字幕大全| 人人妻人人爽人人添夜夜欢视频 | 高清av免费在线| 成年免费大片在线观看| 国产有黄有色有爽视频| 亚洲国产精品一区三区| 国产久久久一区二区三区| 身体一侧抽搐| 嫩草影院新地址| 精品亚洲成国产av| 街头女战士在线观看网站| av卡一久久| 日韩视频在线欧美| 日韩伦理黄色片| 婷婷色综合www| a级一级毛片免费在线观看| 精品人妻视频免费看| 欧美xxxx黑人xx丫x性爽| 国产色婷婷99| 精品国产乱码久久久久久小说| 久久国内精品自在自线图片| 久久精品国产亚洲av涩爱| 99久久中文字幕三级久久日本| 水蜜桃什么品种好| 精品少妇黑人巨大在线播放| 又粗又硬又长又爽又黄的视频| 麻豆乱淫一区二区| av.在线天堂| 狂野欧美激情性xxxx在线观看| 国产欧美日韩一区二区三区在线 | 一个人看的www免费观看视频| 国产国拍精品亚洲av在线观看| 性色av一级| 欧美最新免费一区二区三区| 激情 狠狠 欧美| 高清毛片免费看| 两个人的视频大全免费| 免费观看无遮挡的男女| 少妇的逼水好多| 亚洲成人中文字幕在线播放| 亚洲国产色片| 黄色日韩在线| 亚洲国产精品一区三区| 老师上课跳d突然被开到最大视频| 一级a做视频免费观看| 久久久久精品性色| 老司机影院毛片| a级毛片免费高清观看在线播放| 国产91av在线免费观看| 日韩人妻高清精品专区| 一区二区三区乱码不卡18| 成人午夜精彩视频在线观看| 成人国产麻豆网| 乱系列少妇在线播放| 色综合色国产| 久久影院123| av在线app专区| 亚洲真实伦在线观看| 欧美日韩国产mv在线观看视频 | av卡一久久| 日韩欧美一区视频在线观看 | 大片免费播放器 马上看| a级一级毛片免费在线观看| 日韩不卡一区二区三区视频在线| 色视频www国产| 国产白丝娇喘喷水9色精品| 欧美国产精品一级二级三级 | 色网站视频免费| 青春草亚洲视频在线观看| 涩涩av久久男人的天堂| 亚洲美女黄色视频免费看| 欧美xxxx黑人xx丫x性爽| 亚洲精品一二三| 深夜a级毛片| 视频中文字幕在线观看| 另类亚洲欧美激情| 又大又黄又爽视频免费| 一级毛片我不卡| 中文资源天堂在线| 亚洲内射少妇av| 直男gayav资源| 只有这里有精品99| 国产成人aa在线观看| 国产精品一区二区在线观看99| 国产视频首页在线观看| 一级爰片在线观看| 日本vs欧美在线观看视频 | 日韩国内少妇激情av| 啦啦啦在线观看免费高清www| 纯流量卡能插随身wifi吗| 男的添女的下面高潮视频| 美女内射精品一级片tv| 黄色配什么色好看| 午夜免费鲁丝| 国产精品人妻久久久久久| 美女国产视频在线观看| 中文字幕免费在线视频6| 91午夜精品亚洲一区二区三区| 97热精品久久久久久| 中国美白少妇内射xxxbb| 黑人高潮一二区| 精品99又大又爽又粗少妇毛片| 亚洲精品日韩在线中文字幕| 乱系列少妇在线播放| 久久国产精品大桥未久av | 亚洲国产成人一精品久久久| 亚洲欧美精品专区久久| 久久人人爽人人片av| 在线天堂最新版资源| 亚洲精品久久午夜乱码| 成年女人在线观看亚洲视频| 在线观看av片永久免费下载| 欧美少妇被猛烈插入视频| 青青草视频在线视频观看| 国产 精品1| 国产精品不卡视频一区二区| 日韩中文字幕视频在线看片 | 国产亚洲欧美精品永久| 国产 一区 欧美 日韩| 一区在线观看完整版| 狂野欧美白嫩少妇大欣赏| 国产精品久久久久久久电影| 亚洲国产最新在线播放| 国产黄片美女视频| 卡戴珊不雅视频在线播放| 欧美老熟妇乱子伦牲交| av一本久久久久| 日本欧美视频一区| 十分钟在线观看高清视频www | 国产精品麻豆人妻色哟哟久久| 黄片wwwwww| 少妇熟女欧美另类| 久久热精品热| 国产 精品1| 久久人妻熟女aⅴ| 91久久精品国产一区二区成人| 亚洲精华国产精华液的使用体验| 一级a做视频免费观看| 在线观看人妻少妇| 99久久中文字幕三级久久日本| 国产欧美日韩一区二区三区在线 | 精品人妻偷拍中文字幕| 久久久久精品性色| 日韩欧美 国产精品| 丰满少妇做爰视频| 欧美最新免费一区二区三区| 亚洲成人手机| 少妇高潮的动态图| av在线播放精品| 亚洲国产精品999| 国产男女内射视频| h视频一区二区三区| 日韩中文字幕视频在线看片 | 黑人猛操日本美女一级片| 丝袜喷水一区| 各种免费的搞黄视频| 亚洲美女搞黄在线观看| 国产一区二区在线观看日韩| 国产精品一二三区在线看| 日韩人妻高清精品专区| 狂野欧美激情性bbbbbb| 人妻夜夜爽99麻豆av| 性色avwww在线观看| 国产白丝娇喘喷水9色精品| 天美传媒精品一区二区| 不卡视频在线观看欧美| 观看美女的网站| 国产精品不卡视频一区二区| 青春草亚洲视频在线观看| a级一级毛片免费在线观看| 国产男人的电影天堂91| 日本欧美视频一区| 高清av免费在线| 亚洲av成人精品一区久久| 国产精品秋霞免费鲁丝片| 国产欧美日韩一区二区三区在线 | 亚洲精品视频女| a 毛片基地| 寂寞人妻少妇视频99o| 91精品国产国语对白视频| 一个人看视频在线观看www免费| 国产精品爽爽va在线观看网站| 久久婷婷青草| 欧美另类一区| 人人妻人人看人人澡| 有码 亚洲区| 免费少妇av软件| 日韩大片免费观看网站| 国产成人a区在线观看| 成人国产av品久久久| 人妻少妇偷人精品九色| 精品人妻偷拍中文字幕| 亚洲欧美日韩另类电影网站 | 99久久精品国产国产毛片| 人体艺术视频欧美日本| 国产精品久久久久成人av| 国产熟女欧美一区二区| 毛片女人毛片| 国产女主播在线喷水免费视频网站| 毛片女人毛片| 我的老师免费观看完整版| 中文字幕精品免费在线观看视频 | 在线观看美女被高潮喷水网站| 久久毛片免费看一区二区三区| 男女边吃奶边做爰视频| av视频免费观看在线观看| 九色成人免费人妻av| 精品视频人人做人人爽| 国产精品三级大全| 97超碰精品成人国产| 国国产精品蜜臀av免费| 久久亚洲国产成人精品v| 成人18禁高潮啪啪吃奶动态图 | 三级国产精品片| 久久久午夜欧美精品| 水蜜桃什么品种好| av在线观看视频网站免费| 日韩一区二区三区影片| 国产一区二区三区av在线| 成人二区视频| 婷婷色综合大香蕉| 亚洲不卡免费看| 亚洲国产av新网站| 乱码一卡2卡4卡精品| 久久久久久伊人网av| 极品少妇高潮喷水抽搐| 国产欧美另类精品又又久久亚洲欧美| 成人一区二区视频在线观看| 97在线视频观看| 小蜜桃在线观看免费完整版高清| 中国国产av一级| 亚洲性久久影院| 视频中文字幕在线观看| 成人免费观看视频高清| 久久韩国三级中文字幕| 大陆偷拍与自拍| 能在线免费看毛片的网站| 一级毛片黄色毛片免费观看视频| 久久久色成人| 男女啪啪激烈高潮av片| 国产精品国产三级国产专区5o| 亚洲欧美精品专区久久| 99热这里只有精品一区| 十分钟在线观看高清视频www | 人人妻人人爽人人添夜夜欢视频 | 我要看黄色一级片免费的| 精品熟女少妇av免费看| 国产成人aa在线观看| 婷婷色麻豆天堂久久| 久久99热6这里只有精品| 国产精品成人在线| 99热这里只有精品一区| 中国三级夫妇交换| 99久久精品一区二区三区| 久久久精品94久久精品| 国产伦在线观看视频一区| 超碰av人人做人人爽久久| 日韩国内少妇激情av| 女人十人毛片免费观看3o分钟| 看十八女毛片水多多多| 国产精品久久久久成人av| 亚洲精品aⅴ在线观看| 简卡轻食公司| 国产精品偷伦视频观看了| 美女视频免费永久观看网站| 日韩制服骚丝袜av| 国产成人a区在线观看| 免费久久久久久久精品成人欧美视频 | 午夜福利高清视频| 99热这里只有是精品在线观看| 久久国产乱子免费精品| 久久精品国产a三级三级三级| 国产精品国产三级国产av玫瑰| 亚洲人成网站高清观看| 欧美另类一区| 亚洲欧美日韩东京热| 亚洲婷婷狠狠爱综合网| 国产精品一区二区性色av| 国产人妻一区二区三区在| 国产精品国产三级专区第一集| 亚洲精品456在线播放app| 少妇丰满av| 亚洲不卡免费看| 免费人妻精品一区二区三区视频| 最近2019中文字幕mv第一页| 精品国产一区二区三区久久久樱花 | 久久久成人免费电影| 狂野欧美激情性bbbbbb| 欧美最新免费一区二区三区| 欧美日韩视频高清一区二区三区二| 青青草视频在线视频观看| 国产人妻一区二区三区在| 国产精品一区二区三区四区免费观看| 丰满乱子伦码专区| 免费黄频网站在线观看国产| www.色视频.com| 在线亚洲精品国产二区图片欧美 | 在线观看免费高清a一片| 精品一区二区三卡| 国产一区亚洲一区在线观看| 新久久久久国产一级毛片| 国产精品福利在线免费观看| 国产精品嫩草影院av在线观看| av.在线天堂| 国产精品久久久久久av不卡| 国产精品99久久久久久久久| 国产成人精品婷婷| 人妻系列 视频| 欧美亚洲 丝袜 人妻 在线| 成年免费大片在线观看| 亚洲欧美一区二区三区黑人 | 色婷婷av一区二区三区视频| 亚洲av综合色区一区| 日韩av在线免费看完整版不卡| 国产淫片久久久久久久久| 精品人妻偷拍中文字幕| 18禁在线无遮挡免费观看视频| 日韩一本色道免费dvd| 日本vs欧美在线观看视频 | 国产91av在线免费观看| 黄片无遮挡物在线观看| 青春草国产在线视频| 亚洲精品亚洲一区二区| 狂野欧美激情性bbbbbb| 边亲边吃奶的免费视频| 国产男女内射视频| 精品一区二区三卡| 国产精品人妻久久久影院| 国产久久久一区二区三区| 亚洲欧美日韩无卡精品| 久久久久国产精品人妻一区二区| 国产有黄有色有爽视频| 国模一区二区三区四区视频| 精品酒店卫生间| 午夜免费鲁丝| 国产成人精品福利久久| 国产高清有码在线观看视频| 国产伦理片在线播放av一区| 日本猛色少妇xxxxx猛交久久| 亚洲美女搞黄在线观看| 日日撸夜夜添| 国产久久久一区二区三区| 亚洲真实伦在线观看| 国产69精品久久久久777片| 午夜福利高清视频| 热99国产精品久久久久久7| 男的添女的下面高潮视频| 国产片特级美女逼逼视频| 人体艺术视频欧美日本| 天天躁日日操中文字幕| 十八禁网站网址无遮挡 | 在线观看av片永久免费下载| 久久久久精品性色| 国产av码专区亚洲av| 日韩免费高清中文字幕av| 精品国产一区二区三区久久久樱花 | 亚洲综合色惰| 美女视频免费永久观看网站| 男女啪啪激烈高潮av片| 亚洲欧美日韩另类电影网站 | 多毛熟女@视频| 久热这里只有精品99| 2018国产大陆天天弄谢| 精品视频人人做人人爽| 日本猛色少妇xxxxx猛交久久| av专区在线播放| 国产国拍精品亚洲av在线观看| 在线观看一区二区三区激情| 各种免费的搞黄视频| 亚洲av成人精品一区久久| 亚洲av电影在线观看一区二区三区| 亚洲精品一二三| 久久影院123| 久久亚洲国产成人精品v| 欧美一区二区亚洲| 在线精品无人区一区二区三 | 中文资源天堂在线| 卡戴珊不雅视频在线播放| 日本黄大片高清| 干丝袜人妻中文字幕| 99热网站在线观看| 午夜免费男女啪啪视频观看| 王馨瑶露胸无遮挡在线观看| 久久久亚洲精品成人影院| 九九爱精品视频在线观看| 亚洲av.av天堂| 日本欧美视频一区| 欧美少妇被猛烈插入视频| 亚洲av二区三区四区| 久久久久网色| 2022亚洲国产成人精品| 嘟嘟电影网在线观看| 色婷婷av一区二区三区视频| 蜜桃在线观看..| 一区二区三区乱码不卡18| 免费人妻精品一区二区三区视频| 国产色爽女视频免费观看| 青青草视频在线视频观看| 亚洲欧美精品自产自拍| 国产一级毛片在线| 国产精品免费大片| 亚洲成色77777| 最近2019中文字幕mv第一页| 久久久成人免费电影| 亚洲精品一二三| 午夜福利影视在线免费观看| 亚洲欧美日韩无卡精品| 美女中出高潮动态图| 久久国产亚洲av麻豆专区| 久久精品人妻少妇| 99久久人妻综合| 亚洲一级一片aⅴ在线观看| 成人一区二区视频在线观看| a级毛片免费高清观看在线播放| 国产伦精品一区二区三区四那| 九色成人免费人妻av| 在线观看免费视频网站a站| 我要看日韩黄色一级片| 国产精品一区二区在线观看99| 亚洲综合精品二区| 日本黄大片高清| 亚洲精品第二区| 在线观看免费日韩欧美大片 | 国产真实伦视频高清在线观看| 在线观看一区二区三区激情| 国精品久久久久久国模美| 国产乱人视频| 精品人妻一区二区三区麻豆| 舔av片在线| 大话2 男鬼变身卡| 熟妇人妻不卡中文字幕| 亚洲精品国产色婷婷电影| 精品国产一区二区三区久久久樱花 | 在线播放无遮挡| 国产免费一区二区三区四区乱码| 国产精品福利在线免费观看| 亚洲三级黄色毛片| 观看美女的网站| 久久久久久久久久人人人人人人| 高清欧美精品videossex| 日本黄色片子视频| 国内少妇人妻偷人精品xxx网站| 免费在线观看成人毛片| 国产精品偷伦视频观看了| 婷婷色av中文字幕| 久久久久精品久久久久真实原创| 涩涩av久久男人的天堂| 精品久久国产蜜桃| 十八禁网站网址无遮挡 | 亚洲,一卡二卡三卡| 夜夜看夜夜爽夜夜摸| 久久精品夜色国产| 精华霜和精华液先用哪个| 精品亚洲成a人片在线观看 | 亚洲av中文字字幕乱码综合| 日本av手机在线免费观看| 国产男女超爽视频在线观看| 亚洲国产色片| 精品人妻视频免费看| 新久久久久国产一级毛片| 免费av中文字幕在线| 日韩,欧美,国产一区二区三区| 婷婷色综合www| 久久久午夜欧美精品| 久久久久久人妻| 久久人人爽人人爽人人片va| 伦精品一区二区三区| 国产精品99久久99久久久不卡 |