• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical simulation of viscous flow past an oscillating square cylinder using a CIP-based model*

    2017-03-09 09:09:38YingnanFu付英男XizengZhao趙西增FeifengCao曹飛鳳DakeZhang張大可DuCheng程都LiLi李莉
    關(guān)鍵詞:李莉張大

    Ying-nan Fu (付英男), Xi-zeng Zhao (趙西增), Fei-feng Cao (曹飛鳳), Da-ke Zhang (張大可), Du Cheng (程都), Li Li (李莉),3

    1.Ocean College, Zhejiang University, Hangzhou 310058, China

    2.Shanghai Merchant Ship Design and Research Institute, Shanghai 201203, China, E-mail: fyn_zju@163.com

    3.State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Hangzhou 310012, China

    4.Institute of Harbor-Channel and Coastal Engineering, Department of Civil Engineering, Zhejiang University of Technology, Hangzhou 310014, China

    (Received February 11, 2015, Revised December 11, 2016)

    Numerical simulation of viscous flow past an oscillating square cylinder using a CIP-based model*

    Ying-nan Fu (付英男)1,2, Xi-zeng Zhao (趙西增)1,2, Fei-feng Cao (曹飛鳳)4, Da-ke Zhang (張大可)1, Du Cheng (程都)1, Li Li (李莉)1,3

    1.Ocean College, Zhejiang University, Hangzhou 310058, China

    2.Shanghai Merchant Ship Design and Research Institute, Shanghai 201203, China, E-mail: fyn_zju@163.com

    3.State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Hangzhou 310012, China

    4.Institute of Harbor-Channel and Coastal Engineering, Department of Civil Engineering, Zhejiang University of Technology, Hangzhou 310014, China

    (Received February 11, 2015, Revised December 11, 2016)

    The flow past an in-line forced oscillating square cylinder at Reynolds number of 200 is studied using an in-house code, named constrained interpolation profile method developed in Zhejiang University (CIP-ZJU). The model is established in the Cartesian coordinate system using the CIP method to discretise the Navier-Stokes equations. The fluid-structure interaction is treated as a multiphase flow of the liquid and solid phases to be solved simultaneously. An immersed boundary method is used to deal with the boundary of the solid body. The CFD model is first applied to the computation of the flow past a fixed square cylinder for its validation. Computations are then performed for the flow past a square cylinder oscillating in the streamwise direction. Considerable attention is paid to the symmetric and anti-symmetric modes of the vortex shedding in the oscillating square cylinder wake. Various oscillation amplitudes and frequencies are simulated and their effects on the vortex shedding modes are analyzed via Lissajous patterns of the unsteady lift coefficient. The relationship among the lift coefficient, the drag coefficient and the lock-on range is also investigated quantitatively.

    Flow past cylinder, oscillating square cylinder, lock-on, CIP method, immersed boundary method

    Introduction

    A flow past bluff or slender bodies can lead to vortex shedding from the tail and induce a considerable dynamic load on the bodies, resulting in the vibration of the structures[1,2]. The vortex shedding from bluff bodies involves an unsteady flow with a wide range of practical engineering applications. The flow past an in-line oscillating cylinder is one of the classic topics in this field. This study is a first step to investigate thecapability of coupled fluid-structure interactions with an in-house code which can be used later on for the vortex induced vibration of pipelines, like those in offshore engineering.

    Extensive experimental and numerical studies were reported about the flow past an in-line oscillating circular cylinder, focusing mainly on the appearance of the vortex shedding synchronization (lock-on). It is demonstrated that the lock-on occurs in a range nearfd/f0≈2(fdis the forcing frequency,f0is the frequency of the vortex shedding from a stationary cylinder, as is shown by an FFT analysis ofFl). Ongoren and Rockwell[3]concentrated on the modes of the vortex shedding by experimental studies, and five modes were identified: the symmetric S mode, the anti-symmetric A-I mode, the A-II mode, the A-III mode and the A-IV mode. Al-Mdallal et al.[4]analyzed the modes of the lock-on numerically through Lissajous patterns of the unsteady lift coefficient. Bai[5]employed the LES and the detached eddy simulation (DES) to study fixed and forced moving circular cylinders in turbulent flows, and the influences of oscillation amplitudes, frequencies and free stream velocities were discussed. Yokoi and Hirao[6]investigated the modes of the vortex shedding at the Reynolds number of 620 by laboratory experiments and numerical simulations. They found that the flow near the cylinder in the S mode is two-dimensional, but the vortex shedding along the cylinder is out of phase. Al-Mdallal[7]presented a computational study of the two-dimensional flow of a viscous fluid past a circular cylinder subject to a circular motion. The numerical simulations revealed the occurrence of multiple lock-in regions.

    Table 1 Comparison of mean drag coefficient (Cd)and Strouhal number (St)with those of other authors

    Most researches were focused on the oscillating circular cylinder, while the oscillating square cylinder was paid relatively less attention. Steggel and Rockliff[8]simulated the oscillatory flow past a rectangular-section cylinder at low Reynolds numbers using a discrete vortex method. It is shown that the aspect ratio has a great impact on the modes of the vortex shedding in the lock-on region. A strong regime of the symmetric vortex shedding is found atL/D=2.0 (whereLis the length along stream,Dis the width) when the forcing frequency is over twice of the natural shedding frequency. Chung and Kang[9]simulated the vortex shedding behind a square cylinder in an oscillatory incoming flow and obtained the relationship between the Reynolds shear stress and the phase difference between the flow velocity and the mean drag coefficient. Srikanth et al.[10]computed the flow past in-line oscillating rectangular cylinders of various aspect ratios and observed the competition between various modes by changing the aspect ratio of the rectangular section. Tudballsmith et al.[11]carried out experiments to investigate the response and the trends of the modes of streamwise oscillating cylinders, suggesting that the physical mechanism is similar regardless of the details of the body. In most of the studies listed above, the stationary cylinders with oscillatory flow were usually used. However, laboratory tests involve high costs and the technical limitation of experimental facilities. As a result, there is an increasing interest in numerically simulating such fluid-structure interactions.

    Fig.1 Sketch of computational domain for flow past an in-line oscillating square cylinder

    Fig.2 The computational mesh for flow past an in-line oscillating square cylinder

    One of the greatest challenges in the simulation of the fluid-structure interaction is to deal with the moving solid boundaries in complex geometries, especially for large amplitude body motions. The traditio-nal boundary-fitted, unstructured finite-element method is usually adopted to treat movable structure boundaries. However, the grid generation and the remeshing calculation are required and they are timeconsuming. In this paper, a computational fluid dynamics (CFD) model is proposed under the Cartesian grid system to avoid the grid updating. In the model, an immersed boundary method[12]is adopted to treat the movable structure boundaries. Meanwhile, the fluidstructure interaction is treated as a multi-phase problem. To do so, the constraint interpolation profile/ CIP combined, unified procedure (CIP/CCUP)[13]is combined with the Cartesian grid system where the multi-phase problem is solved in one set of equations. The CIP method has been applied for water-body intraction problems of free surface flow[14,15]. In the present study, the CIP method is used for the study of the flow over oscillating square cylinders without free surface.

    The objective of the present study is to extend the CIP-based method for investigating the vortex shedding and the lock-on phenomenon in the near-wake region of an oscillating square cylinder, characterized by a wide range of oscillation frequencies and large oscillation amplitudes.

    1. Mathematical modeling

    1.1Governing equations

    The basic equations governing the incompressible fluid flow are the mass conservation equation and the Navier-Stokes momentum equations as

    where the Cartesian tensor notation is used,(i=1,2),t,uj,pandxjare the time, the velocities, the hydrodynamic pressure and the spatial coordinates, respectively,firepresents the momentum forcing components, andSijis the viscous term given by

    whereρandμare the density and the viscosity, respectively, appropriate for the phase that occupies the particular spatial location at a given instant.

    Fig.3 Lissajous patterns inside lock-on range atA/D=0.1

    Fig.4 Vorticity contours in lock-on range over two periods of oscillation,2TatA/D=0.1,Re=200and different oscillation frequencies

    In the numerical model, the fluid-body interaction is considered as a multi-phase problem including the fluid and the structure. A fixed Cartesian grid that covers the whole computation domain is used. A volume function (or the color function)φm(m=1 and 2 indicate the water and the solid, respectively) is defined to represent and track the interface. The total volume function for the water and the body is solved by using the following advection equation

    Hereφ12=φ1+φ2. The density and the viscosity of the solid phase are assumed to be the same as those of a liquid phase to ensure stability. The volume function for the solid bodyφ2is determined by a Lagrangian method in which a rigid body is assumed. The volume function for the fluidφ1is then determined byφ1= 1.0?φ2. After all volume functions have been calculated, the physical propertyλ, such as the density and the viscosity, is calculated by the following formula.

    More details can be found in the Refs.[15-17].

    1.2Numerical methods

    Following Zhao and Hu[16], the governing equations are discretized using a high-order finite difference method on a Cartesian grid system. A staggered grid configuration is used to discretize the dependent variables. The governing Eqs.(1) and (2) are solved using a fractional step scheme.

    Fig.5 Lissajous patterns outside lock-on range atA/D=0.1 forfd/f0=0.5, 1.0, 1.4 and 2.4

    In the advection phase, the spatial derivatives of the velocities are needed in the CIP method[13]for this phase. In the first non-advection phase, the terms of diffusion and external forces are solved by the explicit method and the intermediate velocities are updated. In the final phase, the velocities are updated coupling with the pressure field.

    Fig.6 Lissajous patterns and vorticity contours in 3 periods atfd/f0=2.9 andA/D=0.1

    To model the body motions, the fluid-structure interaction is coupled by using the fractional area volume obstacle representation (FAVOR) method. The FAVOR was shown to be one of the most efficient methods to treat the immersed solid bodies[17]. Theeffect of a moving solid body on the flow is included by imposing the velocity field of the solid body in the flow at the solid edge. The following equation is introduced to update the local information of the fluid domain covered by the body.

    HereUbis the local velocity of the solid body andudenotes the flow velocity obtained from the fluid flow solver.Ub, the local velocity of the solid body, is tracked by a Lagrange method. By integrating the pressure on the body surface, the hydrodynamic forces on the body are first calculated. With the Newton’s law, the body accelerations and velocities are calculated. More details can be found in previous references[15-17].

    Fig.7 Mean values ofCd, maximum values ofCland the amplitudes ofCdversusfd/f0atA/D=0.1

    Fig.8 Lissajous patterns inside lock-on range atA/D=0.2 forfd/f0=1.3, 1.6, 1.9 and 2.2

    1.3Definition of the parameters

    The Reynolds number is defined asRe=ρUD/μ, whereρis the density of the liquid,Uis theinflow velocity,Dis the side length of the square cylinder andμis the dynamic viscosity coefficient.

    The drag coefficient is defined asCd=2Fd/ρU2D, whereFdis the force on the cylinder along the inflow velocity.

    The lift coefficient is defined asCl=2Fl/ρU2D, whereFlis the force on the cylinder perpendicular to the inflow velocity.

    The Strouhal number is defined asSt=f0D/U.

    2. Numerical results

    2.1Flow past a fixed square cylinder

    The convergence study is first performed for the flow past a stationary square cylinder at a low Reynolds number (Re=200)as a reference for further investigation. Three different non-uniform meshes are used with a minimum grid size ofΔx=Δy= 0.01D,0.03Dand 0.05D, respectively. Numerical results of the mean value of the drag coefficient(Cd) and the Strouhal number (St)are shown in Table 1 and compared with previous experimental and numerical results. It can be seen that the computation results converge fast and the results of Mesh 1 and Mesh 2 are in excellent agreements with both the experimental and numerical data in the existing literature. Thus mesh 2 is adopted in the following calculations.

    Fig.9 Vorticity contours atA/D=0.2forfd/f0=1.3, 1.6, 1.9 and 2.2

    Fig.10 Lissajous patterns inside S mode atA/D=0.2forfd/f0=2.3, 2.7 and 3.0

    2.2Flow past an oscillating square cylinder

    In this section, the flow past an oscillating square cylinder is computed atRe=200. A computational domain of30D×40Dis employed, as shown in Fig.1 and the corresponding arrangement of the mesh is plotted in Fig.2. The inlet boundary is located15Dupstream the center of the square cylinder and the outlet boundary is25Ddownstream. The upper and lower boundaries are located15Daway from the horizontal centerline of the computational domain. On the inlet, the streamwise velocity is set to makeRe=200for the fixed squa re cylinder and the transverse velocity is equaltozero.On the outlet, a zero gradient boundarycondition is specified. The horizontal motion of the square cylinder is set asX(t)=Asin(2πfdt). Various oscillation amplitudes,A/D=0.1, 0.2, 0.3 and a wide range of oscillation frequencies,0.5≤fd/f0≤3.0 are used in the following computations.

    Fig.11 Vorticity contours of S mode atA/D=0.2forfd/f0=2.3, 2.7 and 3.0

    2.2.1 AmplitudeA/D=0.1

    The case for a small oscillation amplitudeA/D= 0.1 is firstly considered with different oscillation frequencies. The Lissajous patterns (X(t)/AversusCl(t)) are shown in Fig.3 for 1.5≤fd/f0≤2.3. It is clear that these curves show the phase-locked pattern over two cycles of the cylinder oscillation,2T(Tis the period of the oscillation, equal to 1/fd), which suggests that the near wake is in the lock-on in the range offd/f0=1.5-2.3. Figure 4 displays the corresponding vorticity contours forfd/f0=1.5, 1.7, 1.9, 2.1 and 2.3 in two periods of the cylinder oscillation. Positive contours are plotted in solid lines and negative contours in dashed lines. It can be seen that the contours at 0Tand 2Tin these cases are almost identical. The vortex shedding from the cylinder in the nearwake region is locked-on over two periods. From Figs.4(a)-4(c), it is observed that a strong and a weak vortex shed from each side of the cylinder. Consequently, it is locked to the anti-symmetric A-IV mode per 2Tfor 0.5≤fd/f0≤1.9. The second weaker vortex soon decays downward owing to the lower power. In Fig.4(d), two vortexes from each side of the cylinder of nearly the same size are formed atfd/f0=2.1and soon coalesced with each other to form the A-II mode. And it is the A-II mode completely in Fig.4(e). It is observed that the primary wavelength is decreasing, while the width of the vortex street increases firstly and then decreases. They are both influenced by the second weaker vortex during the mode transition.

    Fig.12 Mean values ofCd, maximum values ofCland amplitudes ofCdversusfd/f0atA/D=0.2

    Figure 5 shows the Lissajous patterns atfd/f0=0.5 , 1.0, 1. 4, 2.4 outside the lock-on region. None of these curves shows a phase-locked form. Figure 6displays the Lissajous pattern and the corresponding vorticity contours forfd/f0=2.9in three oscillation periods. The motion of the cylinder andCl(t)are phase-locked again. The vorticity contours at 0Tand 3Tare nearly identical in the near-wake region. One vortex sheds from the upper side of the cylinder and simultaneously two shed from the lower side. This mode is referred as the anti-symmetricP+Smode every three oscillating periods,3T. It should be noted that this pattern is not observed for any other oscillating frequency. The effects of the oscillation frequency,fd/f0on the mean value of the drag coefficientCd, the maximum value of the lift coefficientCland the amplitude of the drag coefficientCdare plotted in Fig.7. The mean value of the drag coefficientCd, and the maximum value of the lift coefficientClshow a clear peak within the lock-on range, and decrease rapidly outside the synchronization region. The amplitude ofCddisplays a monotonic increase asfd/f0increases.

    Fig.13 Lissajous patterns inside lock-on range atA/D=0.3 forfd/f0=1.2, 1.5, 1.8 and 2.1

    Fig.14 Vorticity contours atA/D=0.3forfd/f0=1.2, 1.5, 1.8 and 2.1

    2.2.2 AmplitudeA/D=0.2

    This section shows the results ofA/D=0.2andRe=200. The lock-on phenomenon appears atfd/f0=1.3, earlier than that whenA/D=0.1. Symmetric S mode does not appear untilfd/f0=2.3, which is not found for the case ofA/D=0.1. The Lissajous patterns within the lock-on range are plotted in Fig.8. A good phase-locked pattern is found in the range of 1.3≤fd/f0≤2.2. Figure 9 shows the vorticity contours forfd/f0=1.3, 1.6, 1.9, and 2.2 atT. It can be noticed that the A-IV mode of the vortex sheddingis observed atfd/f0=1.3, 1.6 and 1.9. However, the A-II mode is observed atfd/f0=2.2. The smaller vortex decays in the progression and coalesces with the larger vortex. Figure 10 displays the Lissajous patterns in the S mode at a larger oscillation frequency,fd/f0=2.3, 2.7 and 3.0. These figures reveal thatClis close to zero due to the symmetric S vortex shedding mode. The vorticity contours of the S mode atfd/f0=2.3, 2.7 and 3.0 are displayed in Fig.11. It can be seen that the vortex shedding is not alternative but simultaneous from each side of the cylinder with an opposite rotation. Take the flow velocity around the cylinder and the oscillating motion into account, ifRe≤50, the vortex will not shed from the cylinder but shed with the oscillation of the cylinder, just like the vortex shedding from a cylinder oscillating in the still fluid. It is also noted that the near-wake structures show an identical pattern per oscillation period,Tand the vortex street is very narrow again. Figure 12 shows the main force coefficients versusfd/f0. A significant reduction of the mean value ofCdand the maximum value ofClis observed in the S mode. However, the amplitude ofCdis not affected. It steadily increases asfd/f0increases.

    Fig.15 Lissajous patterns inside S modes atA/D=0.3forfd/f0=2.2, 2.6 and 3.0

    Fig.16 Vorticity contours atA/D=0.3forfd/f0=2.2, 2.6 and 3.0

    2.2.3 AmplitudeA/D=0.3

    The case of a larger oscillation amplitudeA/D= 0.3 is computed finally atRe=200. Numerical results show that the lock-on phenomenon appears atfd/f0=1.2, and the vortex shedding is transformed to the S mode atfd/f0=2.2. The Lissajous patterns are plotted in Fig.13 and the phase-locked status is clearly shown. Figure 14 displays the corresponding vorticity contours atTforfd/f0=1.2, 1.5, 1.8, and 2.1, respectively. It is observed that the second weaker vortex becomes larger and stronger with the increase of the frequencyfd/f0, and the lock-on anti-symmetric A-IV mode is observed. Figure 15 shows the Lissajous patterns in the S mode atfd/f0=2.2, 2.6 and 3.0, the corresponding vorticity contours are shown in Fig.16. The S mode begins to appear atfd/f0=2.2, as shown in Fig.16(a). One sees almost no difference at 0Tand 2T. However, the near-wake structures are already locked atT. Figs.16(b) and 16(c) show the stabilized symmetric S mode atfd/f0=2.6 and 3.0. It can be observed that a pair of vortices is shed from each side of the cylinder. Each of the strong vortices is established by a weak counterrotating secondary vortex on the centerline of the rear side, and the secondary vortex decays quickly downward after its formation. It is defined as the S-III mode by Srikanth et al.[10]. The formations of the primary vortex and the secondary weaker vortex have different mechanisms. The fluid near the cylinder is accelerated by the primary vortex, which leads to the formation of the boundary layer. With enough area available at the lee side of the cylinder, the vortices of opposite sign are generated. Figure 17 shows the results from the dynamic forces acting on the cylinder as a function of the oscillating frequencyfd/f0. The mean value ofCdand the maximum ofClappear to decrease atfd/f0≈2.0when the vortex shedding begins to be transformed from the A-IV mode to the A-II mode. The small vortex mergers with the primary vortex, and then decays rapidly as a result of the appearance of the symmetric S mode. The amplitude ofCdincreases monotonically asfd/f0increases.

    Fig.17 Mean values ofCd, maximum values ofCland amplitudes ofCdversusfd/f0atA/D=0.3

    Fig.18 Mean values ofCd, maximum values ofCland the amplitudes ofCdversusfd/f0inside lock-on range

    Fig.19 Comparison of primaries frequencies of lift coefficient outside lock-on range

    2.2.4 Comparison of results atA/D=0.1, 0.2 and 0.3

    Figure 18 displays the comparison of the mean value ofCd, the maximum value ofCland the amplitude ofCdat different oscillation amplitudes inside the lock-on range. It can be noticed that the force coefficients decrease with the increase of the oscillation amplitudes. Because of the existence of the S mode, the maximum value ofCldecreases to a value close to zero atA/D=0.2 and 0.3 at the back of the lock-on range. While the amplitude ofCdincreases monotonically independent of the lock-on range and the S mode. Figure 19 shows the comparison of the primary frequencies of the lift coefficient outside the lock-on range. Atfd/f0=0.5, the primary frequency is close to the natural frequency of the vortex shedding from a stationary cylinderf0and plays a dominant role, while for other oscillation frequencies, the primary frequencies differ from each other at various oscillation amplitudes and the difference increases with the increase of the oscillation frequency. The primary frequency is observed to decrease as the oscillation amplitude increases. The amplitude of the primary frequency is observed to show a significant increase atA/D=0.3, while atA/D=0.1 and 0.2, the variation of the amplitude of the primary frequency is not as distinct as that ofA/D=0.3.

    3. Conclusion

    A CIP-ZJU model is utilized in this paper, which is established in the Cartesian coordinate system, using the CIP method as the base flow solver to discretise the N-S equations. The fluid-structure interaction is treated as a multiphase flow with the fluid and solid phases solved simultaneously. An immersed boundary method is used to deal with the boundary of the solid body. The flow past a stationary square cylinder atRe=200is computed firstly to validate the method. Good agreements are obtained comparing with existing data in literature. Then a two-dimensional flow around an in-line oscillating square is numerically computed atRe=200, and different oscillation amplitudesA/D=0.1, 0.2, 0.3 and in a wide oscillation frequency range of0.5≤fd/f0≤3.0. Symmetric and anti-symmetric modes are obtained clearly. The P+S mode is observed atA/D=0.1forfd/f0=2.9, which cannot be obtained under any other conditions. The S-III mode is observed atA/D=0.3for highfd. The proposed CIP-based model can effectively and accurately resolve the nonlinear fluid-structure interactions. Progress in this direction will be reported later on.

    [1] Wanderley J. B. V., Soares L. F. N. Vortex-induced vibration on a two-dimensional circular cylinder with low Reynolds number and low mass-damping parameter [J].Ocean Engineering, 2015, 97: 156-164.

    [2] Zhao M., Cheng L. Vortex-induced vibration of a circular cylinder of finite length [J].Physics of Fluids, 2014, 26(1): 015111.

    [3] Ongoren A., Rockwell D. Flow structure from an oscillating cylinder Part 2. Mode competition in the near wake [J].Journal of Fluid Mechanics, 1988, 191: 225-245.

    [4] Al-Mdallal Q. M., Lawrence K. P., Kocabiyik S. Forced streamwise oscillations of a circular cylinder: Locked-on modes and resulting fluid forces [J].Journal of Fluids and Structures, 2007, 23(5): 681-701.

    [5] Bai W. Numerical simulation of turbulent flow around a forced moving circular cylinder on cut cells[J].Journal of Hydrodynamics, 2013, 25(6): 829-838.

    [6] Yokoi Y., Hirao K. The appearance of two lock-in states in the vortex flow around an in-line forced oscillating circular cylinder[C].EPJ Web of Conferences, 2014, 67(4): 02131.

    [7] AL-MDALLAL Q. M. Numerical simulation of viscous flow past a circular cylinder subject to a circular motion [J].European Journal of Mechanics B/Fluids, 2014, 49: 121-136.

    [8] Steggel N., Rockliff N. Simulation of the effects of body shape on lock-in characteristics in pulsating flow by the discrete vortex method [J].Journal of Wind Engineering, 1997, 69-71(5): 317-329.

    [9] Chung Y. J., Kang S. H. A study on the vortex shedding and lock-on behind a square cylinder in an oscillatory incoming flow [J].JSME International Journal, 2003, 46(2): 250-261.

    [10] Srikanth T., Dixit H. N., Rao T. et al. Vortex shedding patterns, their competition, and chaos in flow past inline oscillating rectangular cylinders [J].Physics of Fluids, 2011, 23(5): 1-9.

    [11] Tudballsmith D., Leontini J. S., Sheridan J. et al. Streamwise forced oscillations of circular and square cylinders [J].Physics of Fluids, 2012, 24(20): 111703.

    [12] Peskin C. S. Flow patterns around heart valves [J].Journal of Computational Physics, 1972, 10(2): 252-271.

    [13] Yabe T., Xiao F., Utsumi T. The constrained interpolation profile method for multiphase analysis [J].Journal of Computational Physics, 2001, 169(2): 556-593.

    [14] Ye Z., Zhao X., Deng Z. Numerical investigation of the gate motion effect on a dam break flow [J].Journal of Marine Science and Technology, 2016, 21(4): 579-591.

    [15] Zhao X., Ye Z., Fu Y. Green water loading on a floating structure with degree of freedom effects [J].Journal of Marine Science and Technology, 2014, 19(3): 302-313

    [16] Zhao X., Hu C. Numerical and experimental study on a 2-D floating body under extreme wave conditions [J].Applied Ocean Research, 2012, 35(1): 1-13.

    [17] Zhao X., Ye Z., Fu Y. et al. A CIP-based numerical simulation of freak wave impact on a floating body [J].Ocean Engineering, 2014, 87: 50-63.

    [18] Breuer M., Bernsdorf J., Zeiser T. et al. Accurate computation of the laminar flow past a square cylinder based on two different methods: Lattice-Boltzmann and finite-volume [J].International Journal of Heat and Fluid Flow, 2000, 21(2): 186-196.

    [19] Liu T. C., Ge Y. J., Cao F. C. et al. Reynolds number effects on flow around square cylinder based on lattice Boltzmann method [C].Proceedings of the Fluid International Conference on Fluid Mechanics. Shanghai, China, 2007.

    [20] Gera B., Pavan K. S., Singh R. K. CFD analysis of 2D unsteady flow around a square cylinder [J].International Journal of Applied Engineering Research, 2010, 1(3): 602-610.

    * Project supported by the National Natural Science Foundation of China (Grant Nos. 51209184, 51479175 and 51679212), the Natural Science Foundation of Zhejiang Province (Grant No. LR16E090002).

    Biography:Ying-nan Fu (1990-), Male, Master Candidate

    Xi-zeng Zhao, E-mail: xizengzhao@zju.edu.cn

    猜你喜歡
    李莉張大
    Shape coexistence in 76Se within the neutron-proton interacting boson model
    李莉作品(一)
    大眾文藝(2021年17期)2021-09-29 03:03:20
    李莉作品(二)
    大眾文藝(2021年17期)2021-09-29 03:03:20
    Dynamic and inner-dressing control of four-wave mixing in periodically-driven atomic system?
    張大林美術(shù)作品欣賞
    故鄉(xiāng)一把土
    張大春讓健康從業(yè)者偉大起來
    Non-Markovianity Measure Based on Brukner–Zeilinger Invariant Information for Unital Quantum Dynamical Maps?
    張大勤
    意林(2016年22期)2016-11-30 19:06:08
    AN APPLICABLE APPROXIMATION METHOD AND ITS APPLICATION?
    色吧在线观看| 亚洲五月婷婷丁香| 一卡2卡三卡四卡精品乱码亚洲| 99精品在免费线老司机午夜| 在线观看66精品国产| 亚洲精品在线观看二区| 90打野战视频偷拍视频| 老司机午夜十八禁免费视频| 搡老熟女国产l中国老女人| 一进一出抽搐gif免费好疼| 午夜a级毛片| 在线观看美女被高潮喷水网站 | 国产一区二区激情短视频| a在线观看视频网站| 一卡2卡三卡四卡精品乱码亚洲| 内射极品少妇av片p| 国产精品影院久久| 欧美性猛交╳xxx乱大交人| 男人和女人高潮做爰伦理| 国产av一区在线观看免费| 久久久久国产精品人妻aⅴ院| 久久精品人妻少妇| 乱人视频在线观看| 久久久国产成人精品二区| 人人妻人人看人人澡| 悠悠久久av| 亚洲精品色激情综合| 久久精品91无色码中文字幕| 最近最新中文字幕大全电影3| 波野结衣二区三区在线 | 别揉我奶头~嗯~啊~动态视频| 最近最新中文字幕大全电影3| 国产精品亚洲一级av第二区| 亚洲精品色激情综合| 亚洲精品久久国产高清桃花| 欧美极品一区二区三区四区| 在线观看66精品国产| 久久婷婷人人爽人人干人人爱| 岛国在线免费视频观看| 久久精品国产99精品国产亚洲性色| 丁香六月欧美| 久久久久亚洲av毛片大全| 国产一区二区激情短视频| 在线观看免费午夜福利视频| 9191精品国产免费久久| 91av网一区二区| 欧美日韩乱码在线| 欧美中文日本在线观看视频| 免费无遮挡裸体视频| 3wmmmm亚洲av在线观看| 色精品久久人妻99蜜桃| 黑人欧美特级aaaaaa片| 国产爱豆传媒在线观看| 国产精品精品国产色婷婷| 午夜激情福利司机影院| 又黄又粗又硬又大视频| 久久精品夜夜夜夜夜久久蜜豆| 欧美成人性av电影在线观看| 成人18禁在线播放| 熟女电影av网| 深夜精品福利| 国产麻豆成人av免费视频| 午夜免费男女啪啪视频观看 | 国产精品美女特级片免费视频播放器| 欧美大码av| 亚洲人成网站在线播放欧美日韩| 99热只有精品国产| 好男人在线观看高清免费视频| 观看免费一级毛片| 久久精品人妻少妇| 岛国在线免费视频观看| xxx96com| 波多野结衣高清无吗| 成人特级av手机在线观看| 国产成人aa在线观看| 精品久久久久久久人妻蜜臀av| 国产极品精品免费视频能看的| 97人妻精品一区二区三区麻豆| 3wmmmm亚洲av在线观看| 日韩欧美三级三区| 亚洲aⅴ乱码一区二区在线播放| 久99久视频精品免费| 国产美女午夜福利| 欧美日韩一级在线毛片| 好男人在线观看高清免费视频| 老司机午夜十八禁免费视频| 成人18禁在线播放| 国产伦一二天堂av在线观看| 精品国产亚洲在线| 国产不卡一卡二| 最近视频中文字幕2019在线8| 成人无遮挡网站| 国产视频内射| 最近最新中文字幕大全电影3| 天天一区二区日本电影三级| 身体一侧抽搐| 日韩欧美在线二视频| 淫妇啪啪啪对白视频| 免费一级毛片在线播放高清视频| 国产99白浆流出| 欧美bdsm另类| 国产亚洲av嫩草精品影院| xxx96com| 日韩欧美 国产精品| 久久香蕉国产精品| 桃色一区二区三区在线观看| 国产黄片美女视频| 免费电影在线观看免费观看| 高清毛片免费观看视频网站| 成人精品一区二区免费| 国产一区二区在线观看日韩 | 成人欧美大片| 国产精品久久久久久亚洲av鲁大| 精品免费久久久久久久清纯| 精品久久久久久久久久久久久| 国产99白浆流出| 国产精品日韩av在线免费观看| 日韩有码中文字幕| 好看av亚洲va欧美ⅴa在| 国产一区二区在线观看日韩 | 欧美激情久久久久久爽电影| 久久这里只有精品中国| 99精品久久久久人妻精品| 小蜜桃在线观看免费完整版高清| 欧美bdsm另类| 在线观看日韩欧美| 亚洲欧美日韩东京热| 草草在线视频免费看| 一本久久中文字幕| 国产午夜精品论理片| 最新中文字幕久久久久| 亚洲最大成人手机在线| 亚洲无线观看免费| 久久精品国产亚洲av香蕉五月| 俺也久久电影网| 亚洲人成网站高清观看| 日韩欧美 国产精品| 俄罗斯特黄特色一大片| 国产高清videossex| 亚洲电影在线观看av| 国产一区二区激情短视频| 日本撒尿小便嘘嘘汇集6| 无限看片的www在线观看| 3wmmmm亚洲av在线观看| 久久久久九九精品影院| 亚洲成av人片在线播放无| 男女午夜视频在线观看| 日本a在线网址| 成年免费大片在线观看| 在线a可以看的网站| 九色成人免费人妻av| 亚洲成a人片在线一区二区| 欧美精品啪啪一区二区三区| 十八禁网站免费在线| 少妇人妻精品综合一区二区 | 亚洲精品在线美女| 我要搜黄色片| xxx96com| 久久精品国产自在天天线| www.www免费av| 免费一级毛片在线播放高清视频| 久久精品国产亚洲av香蕉五月| 麻豆国产av国片精品| 亚洲午夜理论影院| 男人舔女人下体高潮全视频| 欧美日韩福利视频一区二区| 亚洲色图av天堂| 男女床上黄色一级片免费看| 一级黄片播放器| 成人高潮视频无遮挡免费网站| 一进一出好大好爽视频| 国产亚洲欧美98| 一个人看的www免费观看视频| 男女床上黄色一级片免费看| 校园春色视频在线观看| 精品一区二区三区人妻视频| 成人午夜高清在线视频| 99久久精品一区二区三区| 日韩欧美精品v在线| 欧美xxxx黑人xx丫x性爽| 国产探花在线观看一区二区| av欧美777| 国产精品嫩草影院av在线观看 | 国产精品久久久久久久久免 | 日本五十路高清| 色精品久久人妻99蜜桃| 又黄又粗又硬又大视频| 国产一区二区亚洲精品在线观看| svipshipincom国产片| 免费在线观看影片大全网站| 国产精品久久久久久人妻精品电影| 淫妇啪啪啪对白视频| 色在线成人网| 1024手机看黄色片| 精品福利观看| 欧美性猛交黑人性爽| 欧美日韩亚洲国产一区二区在线观看| 国产高清视频在线播放一区| 日本 欧美在线| 天堂av国产一区二区熟女人妻| 亚洲成人中文字幕在线播放| 麻豆国产av国片精品| 国产精品乱码一区二三区的特点| 亚洲无线在线观看| 99热这里只有精品一区| 久久欧美精品欧美久久欧美| 欧美成人a在线观看| 天堂av国产一区二区熟女人妻| 久久亚洲精品不卡| 日韩有码中文字幕| 久久精品91蜜桃| 18禁在线播放成人免费| 精品久久久久久久久久久久久| 国产精品久久久久久亚洲av鲁大| 午夜福利在线观看吧| 麻豆一二三区av精品| 久久精品国产亚洲av香蕉五月| 热99re8久久精品国产| 亚洲色图av天堂| 丰满乱子伦码专区| 国产又黄又爽又无遮挡在线| 久久国产乱子伦精品免费另类| 国产高清有码在线观看视频| 一区二区三区国产精品乱码| 亚洲精品美女久久久久99蜜臀| 久久久久性生活片| 1000部很黄的大片| 亚洲黑人精品在线| 人人妻人人看人人澡| 香蕉av资源在线| 亚洲成a人片在线一区二区| 亚洲 欧美 日韩 在线 免费| 超碰av人人做人人爽久久 | 五月伊人婷婷丁香| 久久久色成人| 可以在线观看毛片的网站| 国产黄片美女视频| 亚洲精品一区av在线观看| avwww免费| 桃红色精品国产亚洲av| 老司机福利观看| 激情在线观看视频在线高清| 97人妻精品一区二区三区麻豆| 亚洲av第一区精品v没综合| 日本黄色片子视频| 久久精品国产亚洲av涩爱 | 国产毛片a区久久久久| 热99在线观看视频| 精品久久久久久久末码| 中文字幕人妻熟人妻熟丝袜美 | 99在线视频只有这里精品首页| 亚洲欧美日韩东京热| 久久久久久国产a免费观看| 一卡2卡三卡四卡精品乱码亚洲| 国产乱人视频| 男人和女人高潮做爰伦理| 免费无遮挡裸体视频| 嫩草影院精品99| 最近最新中文字幕大全电影3| av国产免费在线观看| 在线观看午夜福利视频| 国产毛片a区久久久久| 舔av片在线| 国产成人a区在线观看| 搡老岳熟女国产| 国产成人av教育| 亚洲人成网站在线播放欧美日韩| 亚洲精华国产精华精| 亚洲无线观看免费| 最近视频中文字幕2019在线8| 天堂网av新在线| 午夜a级毛片| 两人在一起打扑克的视频| 精品国产超薄肉色丝袜足j| 91久久精品国产一区二区成人 | 亚洲精品粉嫩美女一区| 亚洲欧美日韩高清在线视频| 少妇丰满av| 日本黄色片子视频| 免费看a级黄色片| 亚洲人成电影免费在线| 熟女电影av网| 俺也久久电影网| 婷婷亚洲欧美| 国产黄色小视频在线观看| 国产欧美日韩精品一区二区| 他把我摸到了高潮在线观看| 国内久久婷婷六月综合欲色啪| 成人三级黄色视频| 亚洲人与动物交配视频| 精品一区二区三区视频在线观看免费| 欧美成人一区二区免费高清观看| 99久久九九国产精品国产免费| 欧美一区二区亚洲| netflix在线观看网站| 日本精品一区二区三区蜜桃| 国产又黄又爽又无遮挡在线| 18禁国产床啪视频网站| www.熟女人妻精品国产| 热99在线观看视频| 国产久久久一区二区三区| 午夜福利18| 在线观看免费午夜福利视频| 老熟妇仑乱视频hdxx| 久久久久国内视频| www日本在线高清视频| 90打野战视频偷拍视频| 日韩欧美在线乱码| 天天添夜夜摸| 日韩欧美在线乱码| 天天添夜夜摸| 搡老熟女国产l中国老女人| 国产三级黄色录像| 亚洲欧美日韩高清在线视频| 老汉色av国产亚洲站长工具| 淫妇啪啪啪对白视频| 国产精品久久久久久精品电影| 少妇的丰满在线观看| 男人舔奶头视频| 精品熟女少妇八av免费久了| 午夜福利高清视频| 日韩有码中文字幕| 97碰自拍视频| 狂野欧美白嫩少妇大欣赏| 精品国产超薄肉色丝袜足j| 欧美成人一区二区免费高清观看| 精品不卡国产一区二区三区| 十八禁人妻一区二区| 老司机深夜福利视频在线观看| 舔av片在线| 中文字幕av在线有码专区| 十八禁网站免费在线| 久久国产精品人妻蜜桃| 草草在线视频免费看| 亚洲av不卡在线观看| 成人三级黄色视频| 人妻久久中文字幕网| 亚洲乱码一区二区免费版| 女警被强在线播放| 国产精品影院久久| e午夜精品久久久久久久| 久久精品人妻少妇| 99久久精品国产亚洲精品| 亚洲专区中文字幕在线| 亚洲人成伊人成综合网2020| 日韩欧美国产一区二区入口| 中文字幕精品亚洲无线码一区| 亚洲专区中文字幕在线| 免费在线观看亚洲国产| 男人舔奶头视频| 一进一出抽搐动态| 好男人电影高清在线观看| 麻豆成人午夜福利视频| 不卡一级毛片| 99在线视频只有这里精品首页| 国产一区二区三区视频了| 亚洲成av人片免费观看| 国内精品美女久久久久久| 一本久久中文字幕| 我的老师免费观看完整版| 亚洲五月婷婷丁香| 我的老师免费观看完整版| 真人一进一出gif抽搐免费| 在线a可以看的网站| 午夜福利在线观看吧| 在线观看66精品国产| 18美女黄网站色大片免费观看| av天堂中文字幕网| 99riav亚洲国产免费| 在线天堂最新版资源| 午夜老司机福利剧场| 黄色成人免费大全| 毛片女人毛片| 日韩免费av在线播放| 麻豆成人午夜福利视频| 日韩精品青青久久久久久| 国产精品美女特级片免费视频播放器| 久久久久亚洲av毛片大全| 欧美色欧美亚洲另类二区| 人人妻人人澡欧美一区二区| 国产单亲对白刺激| 中文字幕人成人乱码亚洲影| 国产成人啪精品午夜网站| 搡女人真爽免费视频火全软件 | 美女大奶头视频| 久久草成人影院| 成人三级黄色视频| 亚洲国产精品久久男人天堂| 亚洲,欧美精品.| 两个人看的免费小视频| 岛国视频午夜一区免费看| 国产色婷婷99| 露出奶头的视频| 亚洲国产欧美网| 偷拍熟女少妇极品色| 熟妇人妻久久中文字幕3abv| 亚洲欧美日韩卡通动漫| 黄色日韩在线| 国产三级黄色录像| 精品一区二区三区av网在线观看| 国产三级黄色录像| 成人欧美大片| 五月玫瑰六月丁香| 日本一本二区三区精品| 久久久久久国产a免费观看| 中文字幕av在线有码专区| 国产精品精品国产色婷婷| 国产免费男女视频| 亚洲精华国产精华精| 亚洲成人免费电影在线观看| 一进一出好大好爽视频| 国产97色在线日韩免费| 我的老师免费观看完整版| 国产精品精品国产色婷婷| 级片在线观看| 国产三级中文精品| 一边摸一边抽搐一进一小说| 一本综合久久免费| 国产精品日韩av在线免费观看| 两个人看的免费小视频| 99国产极品粉嫩在线观看| 国产精华一区二区三区| 免费看光身美女| 丰满乱子伦码专区| 国产成人a区在线观看| 男女做爰动态图高潮gif福利片| 很黄的视频免费| 身体一侧抽搐| 久久天躁狠狠躁夜夜2o2o| 香蕉久久夜色| 19禁男女啪啪无遮挡网站| 最新美女视频免费是黄的| 最新中文字幕久久久久| 美女高潮的动态| 好男人电影高清在线观看| tocl精华| 三级男女做爰猛烈吃奶摸视频| 日日干狠狠操夜夜爽| 在线播放无遮挡| 国产三级黄色录像| 亚洲欧美日韩高清在线视频| 国产欧美日韩一区二区三| 又爽又黄无遮挡网站| 五月伊人婷婷丁香| xxx96com| 噜噜噜噜噜久久久久久91| 天天一区二区日本电影三级| 免费看十八禁软件| 午夜福利在线观看免费完整高清在 | 啪啪无遮挡十八禁网站| 亚洲电影在线观看av| 女警被强在线播放| 啦啦啦免费观看视频1| 级片在线观看| 国产亚洲欧美在线一区二区| 在线十欧美十亚洲十日本专区| 日韩av在线大香蕉| 亚洲av二区三区四区| 久久午夜亚洲精品久久| 日本与韩国留学比较| 法律面前人人平等表现在哪些方面| 久久精品国产综合久久久| 乱人视频在线观看| 波野结衣二区三区在线 | 又紧又爽又黄一区二区| 99在线视频只有这里精品首页| 午夜免费成人在线视频| 欧洲精品卡2卡3卡4卡5卡区| www.999成人在线观看| 中文字幕高清在线视频| 两个人视频免费观看高清| 午夜两性在线视频| 无人区码免费观看不卡| 一a级毛片在线观看| 国产在线精品亚洲第一网站| or卡值多少钱| 黄色成人免费大全| 一进一出抽搐动态| 最新中文字幕久久久久| 中文字幕久久专区| 搡老妇女老女人老熟妇| 精品一区二区三区视频在线观看免费| 99久久精品国产亚洲精品| 国产高清激情床上av| 啦啦啦观看免费观看视频高清| 18禁在线播放成人免费| 精品不卡国产一区二区三区| 美女 人体艺术 gogo| 国产成人系列免费观看| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 午夜福利免费观看在线| 熟妇人妻久久中文字幕3abv| 美女cb高潮喷水在线观看| 亚洲 国产 在线| 成人亚洲精品av一区二区| 丰满人妻一区二区三区视频av | 久久中文看片网| 色综合婷婷激情| 老鸭窝网址在线观看| 午夜福利在线观看免费完整高清在 | 蜜桃久久精品国产亚洲av| 波多野结衣高清作品| 国产伦在线观看视频一区| 日韩欧美精品免费久久 | 一个人免费在线观看的高清视频| 国语自产精品视频在线第100页| 亚洲av免费高清在线观看| 婷婷精品国产亚洲av在线| 精品99又大又爽又粗少妇毛片 | 日韩欧美一区二区三区在线观看| 小蜜桃在线观看免费完整版高清| 天天躁日日操中文字幕| 国产高潮美女av| 精品午夜福利视频在线观看一区| 中文字幕人妻丝袜一区二区| 亚洲无线观看免费| 午夜福利视频1000在线观看| 亚洲真实伦在线观看| 日本在线视频免费播放| 综合色av麻豆| 网址你懂的国产日韩在线| 可以在线观看的亚洲视频| 少妇丰满av| 精品国内亚洲2022精品成人| 69av精品久久久久久| 国产视频一区二区在线看| 国内精品久久久久久久电影| 香蕉av资源在线| 91九色精品人成在线观看| 十八禁人妻一区二区| 人人妻人人澡欧美一区二区| 国产色爽女视频免费观看| 国产精品精品国产色婷婷| 中文亚洲av片在线观看爽| 久久久久性生活片| 亚洲,欧美精品.| 又黄又粗又硬又大视频| 真人一进一出gif抽搐免费| 一级a爱片免费观看的视频| 啦啦啦观看免费观看视频高清| а√天堂www在线а√下载| 两个人的视频大全免费| 国产单亲对白刺激| 国产不卡一卡二| 日韩欧美国产在线观看| 亚洲av免费在线观看| 国产精品 欧美亚洲| 3wmmmm亚洲av在线观看| 亚洲av不卡在线观看| 少妇人妻一区二区三区视频| 欧美日韩亚洲国产一区二区在线观看| 国产免费av片在线观看野外av| 亚洲在线观看片| 久久久精品欧美日韩精品| 婷婷亚洲欧美| 最后的刺客免费高清国语| 大型黄色视频在线免费观看| 夜夜夜夜夜久久久久| 无遮挡黄片免费观看| 久久草成人影院| 久久这里只有精品中国| 国产又黄又爽又无遮挡在线| 亚洲av免费在线观看| 久久国产精品人妻蜜桃| 床上黄色一级片| 国产激情偷乱视频一区二区| 90打野战视频偷拍视频| 久久精品国产亚洲av涩爱 | 黄色女人牲交| 国产av一区在线观看免费| 久久精品国产清高在天天线| 国产激情欧美一区二区| 性色av乱码一区二区三区2| 黄色成人免费大全| 精品欧美国产一区二区三| 伊人久久大香线蕉亚洲五| aaaaa片日本免费| 国产乱人视频| av片东京热男人的天堂| 精品久久久久久,| 亚洲avbb在线观看| 九九久久精品国产亚洲av麻豆| 婷婷丁香在线五月| 午夜免费成人在线视频| 久99久视频精品免费| 免费看a级黄色片| 国产69精品久久久久777片| 91久久精品电影网| 亚洲欧美日韩高清专用| 97碰自拍视频| 精品日产1卡2卡| 深夜精品福利| 午夜免费男女啪啪视频观看 | 欧美激情久久久久久爽电影| 国产成人影院久久av| 国产爱豆传媒在线观看| 少妇的丰满在线观看| 免费电影在线观看免费观看| 少妇熟女aⅴ在线视频| 午夜激情欧美在线| 美女高潮喷水抽搐中文字幕| 成人高潮视频无遮挡免费网站| 国产成人av教育| 国产成年人精品一区二区| 亚洲色图av天堂| 美女高潮的动态| 亚洲精品国产精品久久久不卡| 国产毛片a区久久久久| 日本撒尿小便嘘嘘汇集6| 老汉色av国产亚洲站长工具| 一级黄色大片毛片| 婷婷丁香在线五月| 亚洲av电影在线进入| 国产免费一级a男人的天堂| 亚洲国产精品久久男人天堂|