• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Self-similar Solution of a Cylindrical Shock Wave under the Action of Monochromatic Radiation in a Rotational Axisymmetric Dusty Gas

    2018-01-22 09:13:13NathandSahu
    Communications in Theoretical Physics 2017年3期

    G.Nath and P.K.Sahu

    Department of Mathematics,Motilal Nehru National Institute of Technology Allahabad,Allahabad–211004,

    Uttar Pradesh,India

    1 Introduction

    The study of shock waves in the mixture of a gas and small solid particles is of great importance due to its applications to nozzle flows,lunar ash flows,bomb blasts,coal-mine blasts,underground,volcanic and cosmic explosions,metallized propellant rockets,supersonic flight in polluted air,collision of coma with a planet,description of star formation,particle acceleration in shocks,shocks in supernova explosions,the formation of dusty crystals and many other engineering problems(see Refs.[1]–[12]).An analytical solution of a planar dusty gas flow with constant velocities of the shock and the piston moving behind it was obtained by Miura and Glass.[9]Since the volume occupied by the solid particles mixed into the perfect gas is neglected by them,the dust virtually has a mass fraction but no volume fraction.Their results reflect the influence of the additional inertia of the dust upon the shock propagation.Paiet al.[1]generalized the well known solution of a strong explosion because of an instantaneous release of energy in gas(Sedov,[13]Korobeinikov[14])to the case of two-phase flow of a mixture of small solid particles and perfect gas,and brought out the key effects due to presence of dusty particles on such a strong shock wave.Paiet al.[1]have taken non-zero volume fraction of solid particles in the mixture,their results reflect the influence of both the decrease of mixture compressibility and the increase of mixture’s inertia on the shock propagation(see,Pai,[15]Steiner and Hirschler,[16]Vishwakarma and Nath[17]).

    In recent years considerable attention has been given to study the interaction between gas dynamics and radiation.When the effects of radiation are taken under consideration in gas dynamics the fundamental non-linear equations are very complicated type and thus it is essential to determine approximations which are physically accurate and afford considerable simplifications.The problems of the interaction of radiation with gas dynamics have been studied by many authors by using the self-similar method developed by Sedov,[13](see Marshak,[18]Elliott,[19]Wang,[20]Helliwell,[21]Nicastro,[22]Ray and Bhowmick[23]and many others). Many researchers have investigated the motion of a gas under the action of monochromatic radiation(see,Khudyakov,[24]Zheltukhin,[25]Nath and Takhar,[26]Nath,[27]Vishwakarma and Pandey,[28]Nath and Sahu[29]).

    The experimental studies and astrophysical observations show that the outer atmosphere of the planets rotates due to rotation of the planets.Macroscopic motion with supersonic speed occurs in an interplanetary atmosphere and shock waves are generated.Thus the rotation of planets or stars significantly affects the process taking place in their outer layers,therefore question connected with the explosions in rotating gas atmospheres are of definite astrophysical interest.In all of the works,mentioned above,the gas is either perfect or non-ideal under the action of monochromatic radiation.The effects of the presence of small solid particles in rotating medium are not taken into consideration by any of the authors under theaction of monochromatic radiation.In the present work,we generalize the solution of Nath[27]in perfect gas to the case of dusty gas(a mixture of perfect gas and small solid particles)by taking into account the axial component of fluid velocity and the component of the vorticity vector.Singh[30]has considered same problem with the assumption that medium to be non-rotating,whereas we have considered the medium to be rotating.

    The purpose of this study is to obtain similarity solutions for the cylindrical shock wave propagating in rotational axisymmetric dusty gas with monochromatic radiation(Nath,[31?33]Levin and Skopina[34]).The components of fluid velocity in the ambient medium are assumed to vary and obey the power laws.Also,the angular velocity of rotation of the ambient medium is assumed to be obeying a power law and to be decreasing as the distance from the axis increases.It is expected that such an angular velocity may occur in the atmospheres of rotating planets and stars.In order to get some essential features of the shock propagation,small solid particles are considered as a pseudo- fluid and the mixture at a velocity and temperature equilibrium with a constant ratio of specific heats(Pai[15]).Also,the heat conduction and viscous stress of the mixture are assumed to be negligible(Refs.[1–2,16–17]).

    Effects of change in the index for the time dependent energy law,the ratio of the density of solid particles to the initial density of the gas,the mass concentration of solid particles in the mixture and the radiation parameter are worked out in detail.It is observed that shock strength decreases in rotating medium.

    2 Equations of Motion and Boundary Conditions

    In Eulerian coordinates,the system of equations of gas dynamics describing the unsteady,adiabatic and cylindrically symmetric one-dimensional rotational axisymmetric flow of mixture of a perfect gas and small solid particles under the action of monochromatic radiation,may be expressed in the form(c.f.Paiet al.,[1]Vishwakarma and Nath,[17]Khudyakov,[24]Nath,[27]Nath,[31?33]Levin and Skopina,[34]Zedan[35])whererandtare independent space and time coordinates;u,v,andware the radial,azimuthal and axial components of the fluid velocity→qin the cylindrical coordinates(r,θ,z);p,emandρare the pressure,the internal energy per unit mass,and the density of the mixture respectively;jis the monochromatic radiation at a radial distancerand timet,Kis the absorption coefficient.

    The equation of state of the mixture of a perfect gas and small solid particles can be written as(Vishwakarma and Nath,[17]Nath,[36?37]Pai,[15]Singh[30])

    whereR?is the gas constant;Tis the temperature of the gas(and of the solid particles as the equilibrium flow condition is maintained);Kp=msp/mmixis the mass fraction(concentration)andZ=Vsp/Vmis the volume fraction of the solid particles in the mixture,wheremspandVspare the total mass and the volumetric extension of the solid particles and “Vm” and “mmix” are the total volume and total mass of the mixture.

    The specific volume of solid particles is assumed to remain unchanged by variations in temperature and pressure.Therefore,the equation of state of solid particles in the mixture is,simply,

    whereρspis the species density of the solid particles.

    The internal energy per unit mass of the mixture can be written as(see Nath,[37]Pai,[15]Paiet al.[1])

    where Γ is the ratio of the specific heats of the mixture which is given by(Paiet al.,[1]Pai[15])

    whereγ=cp/cv,δ′=Kp/(1?Kp),β′=Csp/Cv;CpandCvare specific heat of gas at constant pressure and constant volume;Cspis the specific heat of solid particles;CvmandCpmare specific heat of the mixture at constant volume and constant pressure.

    Also,

    where“A”is the angular velocity of the medium at radial distancerfrom the axis of symmetry.In this case the vorticity vector

    has the components

    The absorption coefficientKis considered to vary as(Nath,[27]Nath and Takhar,[26]Khudyakov[24])where the coefficientK0is a dimensional constant and the exponentsα,δ,q,s,lare rational numbers.

    A diverging cylindrical shock wave is supposed to be propagating outwards from the axis of symmetry into the mixture of perfect gas and small solid particles with constant density,which has zero radial velocity,variable azimuthal,and axial velocities.The flow variables immediately ahead of the shock front are

    wherev?,w?,σ,andμare constants,Ris the shock radius,and the subscript“0” refers to the condition immediately ahead of the shock.

    The momentum equation(2)in undisturbed state of mixture of perfect gas and small solid particles,gives

    Ahead of the shock,the components of the vorticity vector,therefore vary as

    The initial angular velocity of the medium at radial distanceRis given by,from Eq.(11),

    From Eqs.(16)and(22),we find that the initial angular velocity vary as

    The expression for the initial volume fraction of the solid particlesZ0is given by whereG0=ρsp/ρgais the ratio of the density of the solid particles to the initial species density of the gasρgain the mixture.

    The Rankine–Hugonite conditions i.e.the jump conditions at the shock wave,which are transparent for the radiation flux,are given by the principle of conservation of mass,momentum and energy across the shock(c.f.Nath,[27]Vishwakarma and Pandey,[28]Nath,[31,33]Zel’dovich and Raizer,[38]Chaturani[39])namely,where the subscript “1” denotes the conditions immediately behind the shock front,U(=dR/dt)denotes the velocity of the shock front.From Eq.(25),the conditions across a shock front becomes

    whereM?=(ρ0U2/γp0)1/2is the shock-Mach number referred to the frozen speed of sound(γp0/ρ0)1/2.The density ratioβ(0<β<1)across the shock front is obtained by the relation

    The total energy“E”of the flow field behind the shock is not constant,but assumed to be time dependent and varying as(Rogers,[41]Director and Dabora[40])

    whereE0andmare constants.Here,attention is confined to positive value ofmonly,that is,to those case in which the total energy increases with time.This increase can be achieved by the pressure exerted on the fluid by the inner expanding surface(a contact surface or a piston).This surface may be,physically,the surface of the stellar corona or the condensed explosives or the diaphragm containing a very high pressure driver gas.

    Following Levin and Skopina[34]and Nath,[31?32]we obtained the jump conditions for the components of vorticity vector across the shock front as

    The dimension of the constant coefficientK0in Eq.(13)isgiven by (Singh,[30]Vishwakarma and Pandey[28])

    For the self-similar solution(Sedov[13])the relation betweenρ0,j0,p0is given as

    Also,for self-similarity the radiation absorption coeffi cientK0must be dependent on the dimensions ofj0,ρ0,which is equivalent tos+l=?1.

    3 Self-Similarity Transformations

    By the dimensional analysis of Sedov,[13]the nondimensional variableηis defined by

    whereλ=(2+m)/5 and the parametervis taken so thatηtakes the value 1 at the shock surface.This discloses thatη=r/R.The position of the inner expanding surface is given byη=ηp(=rp/R).

    From relation(32),it follows that the motion of the shock front is described by the equation

    From relation(33)it can be seen that the valuem=3 corresponds to uniform expansion of a cylindrical shock.Therefore,the solution of physical significance appears to be those for whichmlies in the range 0 to 3.

    To obtain the similarity solutions,the field variables describing the flow pattern can be written in terms of the dimensionless functions ofηsuch that(Nath,[27]Nath and Takhar,[26]Vishwakarma and Pandey,[28]Nath[31])

    whereV,?,W,P,J,andDare functions ofηonly.

    For the existence of similarity solutions“M?” should be constant,therefore

    Using the similarity transformations(34),the system of governing Eqs.(1)–(6)can be transformed and simplified to the following system of ordinary differential equations

    where

    Also,2δ+3q+s+1=0 was necessary to use to obtain the similarity solution.The quantityξis a constant taken as the parameter which characterizes the interaction between the gas and the incident radiation flux(Nath,[27]Nath and Takhar,[26]Khudyakov[24]).

    Solving the above set of differential equations(36)–(41)for dV/dη,dD/dη,dP/dξ,d?/dη,dW/dη,and dJ/dξ,we obtain

    where

    Applying the similarity transformations(34)on Eqs.(12),we obtain the non-dimensional components of the vorticity vectorlr=ζr/(U/R),lθ=ζθ/(U/R),lz=ζz/(U/R)in the flow- filed behind the shock as

    Using the self-similarity transformations(34),the shock conditions(26)are transformed into

    whereσ=μwas necessary to use to obtain similarity solution.

    At the inner boundary surface(piston)of the flow- filed behind the shock,the condition is that the velocity of the surface is equal to the normal velocity of the fluid on the surface.This kinematic condition from Eq.(34)can be written as

    Normalizing the variablesu,v,w,ρ,Z,pandjwith their respective values at the shock,we obtain

    4 Results and Discussion

    The set of ordinary differential equations(43)–(48)have been integrated numerically with the boundary conditions(53)–(54)to obtain the distribution of flow variables between piston(η=ηp)and the shock front(η=1)by using the Runge–Kutta method of fourth order.Parameter of the inert mixture(glass or alumina Al2O3)are within the following range:dust particle size is of the order of 1μm–10μm(Higashino and Suzuki,[2]Fedrov and Kratova,[42]Nath,[12])the mass fraction(concentration)of solid particles in the mixture is varied fromKp=0 toKp=0.3 and the material density of solid particlesρsp=2.5 g/cm3.This case may be realized in an air flow with a suspension of alumina or glass particles.For the purpose of numerical integration,the values of the constant parameters are taken to be(Paiet al.,[1]Steiner and Hirschler,[16]Khudyakov,[24]Nath,[27]Vishwakarma and Pandey,[28]Miura and Glass[43])γ=1.4;β′=1;α=?1/2;q=0;s=1;δ=?1;M?2=25;Kp=0,0.1,0.3;G0=1,10,100;ξ=0.01,0.1,0.5,1;m=1.5,2.0,2.5.The valuesγ=1.4,β′=1 may correspond to the mixture of air and glass particles(Miura and Glass[9]),andKp=0 correspond to the dust free case(the solution obtained by Nath[27]).The valueM?=5 of the shock Mach-number is appropriate,because we have treated the flow of a pseudo- fluid(small solid particles)and a perfect gas at a velocity and temperature equilibrium.Our solution corresponds to the solution given by Nath[27]in dust free case.We have also considered the axial as well as azimuthal components of fluid velocity and components of vorticity vector(see Figs.1(c),1(g),1(h),and 2(c),2(g),2(h)).Also,our work corresponds to the solution given by Singh[30]in non-rotating dust case.Figures 1 and 2 show that the obtained solution is in good agreement with the existing solutions of Nath[27]and Singh.[30]

    Table 1 shows the variation of density ratioβ(=ρ0/ρ1)across the shock front and the position of the inner expanding surfaceηpfor different values ofm,G0andKpwithα=?1/2;q=0;s=1;δ=?1;M?2=25;γ=1.4;β′=1;ξ=0.1 in both the rotating and nonrotating cases.Table 2 shows the variation of density ratioβ(=ρ0/ρ1)across the shock front and the position of the inner expanding surfaceηpfor different values ofξandKpwithγ=1.4;β′=1;α=?1/2;q=0;s=1;δ=?1;M?2=25;m=2.0 in both the rotating and non-rotating cases.Tables 1 and 2 show that the distance of the inner boundary surface from the shock front is less in the case of non-rotating medium in comparison with that in the case of rotating medium.Physically,it means that the gas behind the shock is less compressed in rotating medium i.e.the shock strength is decreased in rotating medium.

    Table 1 The density ratio β across the shock and the position of the inner boundary surface ηpfor different values of Kp,G0and m with α =?1/2;q=0;s=1;δ= ?1;ξ=0.1;M?=5;γ=1.4;β′=1.

    Fig.1 Variation of the reduced flow variables in the region behind the shock front(a)radial component of fluid velocity u/u1,(b)Azimuthal component of fluid velocity v/v1,(c)Axial component of fluid velocity w/w1,(d)Density ρ/ρ1,(e)Pressure p/p1,(f)Radiation flux j/j1,(g)Non-dimensional azimuthal component of vorticity vector lθ,(h)Non-dimensional axial component of vorticity vector lz:1.Kp=0,m=1.5;2.Kp=0,m=2.5;3.Kp=0.3,G0=1,m=1.5 4.Kp=0.3,G0=1,m=2.5;5.Kp=0.3,G0=10,m=1.5;6.Kp=0.3,G0=10,m=2.5.

    Figures 1(a)–1(h)and 2(a)–2(h)show the variation of the reduced radial component of fluid velocityu/u1,the reduced azimuthal component of fluid velocityv/v1,the reduced axial component of fluid velocityw/w1,the reduced densityρ/ρ1,the reduced pressurep/p1,the reduced radiation fluxj/j1,the non-dimensional azimuthal component of vorticity vectorlθand the non-dimensional axial component of vorticity vectorlzagainst the simi-larity variableηfor different values of parametersm,G0,Kp;and with the parametersξ,Kprespectively.These two figures demonstrate that the flow variablesv/v1,ρ/ρ1,andj/j1decrease but the flow variablesw/w1,lz,andlθincrease as we move from the shock front to the inner expanding surface.

    Fig.2 Variation of the reduced flow variables in the region behind the shock front(a)Radial component of fluid velocity u/u1,(b)Azimuthal component of fluid velocity v/v1,(c)Axial component of fluid velocity w/w1,(d)Density ρ/ρ1,(e)pressure p/p1,(f)Radiation flux j/j1,(g)Non-dimensional azimuthal component of vorticity vector lθ,(h)Non-dimensional axial component of vorticity vector lz:1.Kp=0,ξ=0.1;2.Kp=0,ξ=1.0;3.Kp=0.1,G0=10,ξ=0.1;4.Kp=0.1,G0=10,ξ=1.0.

    From Tables 1,2 and Figs.1(a)–1(h),2(a)–2(h)it is found that the effects of an increase in the value of the mass concentration of solid particlesKpin the mixture are as follows:

    (i)To decrease the value ofβi.e.to increase the shock strength;whereas the value ofβincreases i.e.the shock strength decreases forG0=1(see Tables 1,2);

    (ii)To decreaseηpwhenG0=1,i.e.to increase the distance of the inner expanding surface from the shock front.Physically,it means that the gas behind the shock is less compressed,i.e.the shock strength is decreased;whereas reverse behaviour is observed whenG0=10,100;which is same as in(i)above(see Tables 1,2);

    (iii)To increase the flow variableu/u1at any point in the flow- field behind the shock front(see Figs.1(a),2(a));

    (iv) To increase the flow variablesv/v1,ρ/ρ1,andp/p1whenG0=1 but to decrease them in general forG0=10;whereas the reverse behaviour is obtained for flow variablesw/w1,lθ,lzandj/j1in the flow- field behind the shock front(see Figures 1(b)–1(h)and 1(b)–1(h)).

    From Table 1 and Figs.1(a)–1(h)it is shown that the effects of an increase in the ratio of the density of the solid particles to the initial density of the gasG0are as follows:

    (i)To decrease the value ofβi.e.to increase the shock strength(see Table 1);

    (ii)To decrease distance of the inner boundary surface from the shock front,i.e.the flow- field behind the shock becomes denser.This illustrates same result as given in(i)above,i.e.to increase the shock strength(see Table 1);

    (iii)To decrease the flow variablesu/u1,v/v1,p/p1,andρ/ρ1;but to increase the flow variablesw/w1,lθ,lz,andj/j1at any point in the flow- field behind the shock front(see Figs.1(a)–1(h)).

    Table 2 The density ratio β across the shock and the position of the inner boundary surface ηpfor different values of Kpand ξ with α = ?1/2;q=0;s=1;δ= ?1;M?=5;γ =1.4;β′=1,m=2.0.

    The effects of an increase in the value of index for the time dependent energy law parametermare as follows:

    (i) To increaseηp,i.e.distance between the inner boundary surface from and shock front decreases.This means that shock strength increases(see Table 1);

    (ii)To increase the flow variablesp/p1,u/u1,lθ,lzandj/j1;but to decrease the flow variablev/v1,at any point in the flow- field behind the shock front(see Figs.1(a)–2(b),2(e)–2(h));

    (iii) To increase the flow variableρ/ρ1near the shock but to decrease it near the inner boundary surface;whereas reverse behaviour is obtained for the flow variablew/w1in the flow- field behind the shock front(see Figs.1(c)and 1(d)).

    From Table 2 and Figs.2(a)–2(h)it is found that the effects of an increase in the radiation parameterξare as follows:

    (i)To decrease the value ofηpi.e.to decrease shock strength(see Table 2);

    (ii)to decrease the flow variablesu/u1,w/w1,p/p1,j/j1,lθ,lz;but to increase the flow variablesv/v1,ρ/ρ1at any point in the flow- field behind the shock front(see Figs.2(a)–2(h)).

    5 Conclusion

    The present work investigates the self-similar flow behind a cylindrical shock wave propagating in a rotational axisymmetric dusty gas(a mixture of perfect gas and small solid particles)under the action of monochromatic radiation.On the basis of this work,one may draw the following conclusions:

    (i)The shock strength decreases as well as distance between shock front and inner boundary surface increases when radiation parameterξincreases;however reverse behaviour is observed whenmandG0increase.

    (ii)Mass concentration of solid particles in the mixtureKphas same effect on shock strength asξwhenG0=1.Also,Kphas same effect on shock strength asmwhenG0=10 or 100.

    (iii)The distance of the inner boundary surface from the shock front is less in the case of non-rotating medium in comparison with that in the case of rotating medium.Physically,it means that the gas behind the shock is less compressed in rotating medium i.e.the shock strength is decrease in rotating medium.

    (iv)An increase in the radiation parameterξdecreases the flow variablesu/u1,w/w1,p/p1,j/j1,lθ,lz;whereas reverse behaviour is observed in the case of the flow variablesv/v1,ρ/ρ1.

    (v)An increase in the parametersξandmhas opposite behaviour on the flow variablesu/u1,v/v1,p/p1,j/j1,lθandlz.

    (vi) An increase in the parametersξandKphas same behaviour on the flow variablesp/p1whenG0=10;whereas these parameters have opposite behaviour on the flow variablesu/u1,v/v1,w/w1,ρ/ρ1,j/j1,lθ,andlz.

    (vii)An increase in parametersξandG0has opposite behaviour on the flow variablesv/v1,w/w1,ρ/ρ1,j/j1,lθ,andlz;however same behaviour is obtained for the flow variablesu/u1andp/p1.

    The article concerns with the explosion problem in rotating medium,however the methodology and analysis presented here may be used to describe many other physical systems involving non-linear hyperbolic partial differential equations.The examples we have given make clear the nature of shock waves in rotating dusty gas under the action of monochromatic radiation.However,they serve mainly as illustrations of how the shock waves in dusty medium can be described.In reality,many other processes can be important and a more comprehensive analysis of the shock can be important for applications in astrophysics.The shock waves in a rotational axisymmetric dusty gas with monochromatic radiation and increasing energy can be important for description of shocks in supernova explosions and in the study of star burst galaxies,nuclear explosion,rupture of a pressurized vessel and explosion in the ionosphere etc.Other potential applications of this study include analysis of data from exploding wire experiments in dusty medium,and cylindrically symmetric hypersonic flow problems associated with meteors or reentry vehicles(c.f.Hutchens,[44]Nath[37]).Also,the present study can be important for the description of the following:

    5.1 Shocks in Supernova Explosions

    The layer of dust behind the supernova shock is observed usually.The problem is to verify whether the layer of dust is related to the process of dust condensation behind the shock wave front.

    5.2 Shocks in Intense Prolonged Flare Activity

    The present self-similar model may be used to describe some of the overall features of a “driven”shock wave produced by a flare energy releaseE(c.f.Eq.(28))that is time dependent.The energy“E”increases with time and the solutions then correspond to a blast wave produced by intense,prolonged flare activity in a rotating star when the wave is driven by fresh erupting plasma for some time and its energy tends to increase as it propagates from the star.

    [1]S.I.Pai,S.Menon,and Z.Q.Fan,Int.J.Eng.Sci.18(1980)1365.

    [2]F.Higashino and T.Suzuki,Z.Naturforsch.35a(1980)1330.

    [3]W.Gretler and R.Regenfelder,Eur.J.Mech.B/Fluids 24(2005)205.

    [4]S.I.Popel and A.A.Gisko,Nonlinear Process.Geophys.13(2006)223.

    [5]O.Igra,G.Hu,J.Falcovitz,and B.Y.Wang,Int.J.Mult.Flow 30(2004)1139.

    [6]M.Sommerfeld,Exper.Fluids 3(1985)197.

    [7]T.Elperin,G.Ben-Dor,and O.Igra,Int.J.Heat Fluid Flow 8(1987)303.

    [8]H.Miura,Fluid Dyn.Res.6(1990)251.

    [9]H.Miura and I.I.Glass,Proc.Roy.Soc.Lond.397A(1985)295.

    [10]G.Nath,Indian J.Phys.90(2016)1055.

    [11]G.Nath and J.P.Vishwakarma,Acta Astronaut.128(2016)377.

    [12]G.Nath,Astrophys.Space Sci.361(2016)1.

    [13]L.I.Sedov,Similarity and Dimensional Methods in Mechanics,Academic Press,New York(1959).

    [14]V.P.Korobeinikov,Proceedings of the Steklov Institute of Mathematics,119,American Mathematical Society,Providence(1976).

    [15]S.I.Pai,Two Phase Flows,Vieweg Tracts in Pure and Applied Physics,Vol.3,Braunschweig:Vieweg-Verlag,(1977)[Chapter V].

    [16]H.Steiner and T.Hirschler,Eur.J.Mech.B/Fluids 21(2002)371.

    [17]J.P.Vishwakarma and G.Nath,Phys.Scri.74(2006)493.

    [18]R.E.Marshak,Phys.Fluids 1(1958)24.

    [19]L.A.Elliott,Proc.Royal Soc.London Series A:Mathematical and Physical Sciences 258(1960)287.

    [20]K.C.Wang,J.Fluid Mech.20(1964)447.

    [21]J.B.Helliwell,J.Fluid Mech.37(1969)497.

    [22]J.R.NiCastro,Phys.Fluids 13(1970)2000.

    [23]G.Deb Ray and J.B.Bhowmick,Ind.J.Pure Appl.Math 7(1976)96.

    [24]V.M.Khudyakov,Sovit.Phys.Dokl.Trans.American Institute of Physics 28(1983)853.

    [25]A.N.Zheltukhin,Geophys.Astrophys.J.Appl.Math.Mech.52(1988)262.

    [26]O.Nath and H.S.Takhar,Astrophys.Space Sci.166(1990)35.

    [27]O.Nath,IL Nuovo.Cimento.D 20(1998)1845.

    [28]J.P.Vishwakarma and V.K.Pandey,Appl.Math.2(2012)28.

    [29]G.Nath and P.K.Sahu,Ain Shams Eng.J.(2016)DOI 10.1016/j.asej.2016.06.009.

    [30]K.K.Singh,Int.J.Appl.Math.Mech.9(2013)37.

    [31]G.Nath,Advan.Space Res.47(2011)1463.

    [32]G.Nath,Ain Shams Eng.J.3(2012)393.

    [33]G.Nath,Meccanica 50(2015)1701.

    [34]V.A.Levin and G.A.Skopina,J.Appl.Mech.Tech.Phys.45(2004)457.

    [35]H.A.Zedan,Appl.Math.Comput.132(2002)63.

    [36]G.Nath,Res.Astr.Astrophys.10(2010)445.

    [37]G.Nath,Shock Waves 24(2014)415.

    [38]Y.B.Zel’dovich and Y.P.Raizer,Physics of Shock Waves and High Temperature Hydrodynamic Phenomena,Vol.II.Academic Press,New York(1967).

    [39]P.Chaturani,Appl.Sci.Res.23(1970)197.

    [40]M.N.Director and E.K.Dabora,AIAA J.15(1977)1315.

    [41]M.H.Rogers,Quarterly J.Mech.Appl.Math.11(1958)411.

    [42]A.V.Fedorov and Y.V.Kratova,Heat Transf.Res.43(2012)123.

    [43]H.Miura and I.I.Glass,Proc.R.Soc.Lond.A 385(1983)85.

    [44]G.J.Hutchens,J.Appl.Phys.77(1995)2912.

    404 Not Found

    404 Not Found


    nginx
    亚洲精品乱码久久久久久按摩| 亚洲av成人精品一二三区| 人人妻人人澡人人爽人人夜夜| 女人被躁到高潮嗷嗷叫费观| 久久99精品国语久久久| 黑丝袜美女国产一区| 成年人免费黄色播放视频| 一区二区日韩欧美中文字幕 | 欧美国产精品va在线观看不卡| 夜夜骑夜夜射夜夜干| 欧美精品av麻豆av| 国产极品粉嫩免费观看在线| 亚洲美女黄色视频免费看| 亚洲欧美一区二区三区黑人 | 亚洲,欧美,日韩| 亚洲精品久久成人aⅴ小说| 国产在线一区二区三区精| 国产精品久久久久久久久免| 久久午夜福利片| 国产精品秋霞免费鲁丝片| 日本黄大片高清| 女性生殖器流出的白浆| 国产精品蜜桃在线观看| 18禁观看日本| 日韩成人伦理影院| 精品人妻偷拍中文字幕| 国产黄色视频一区二区在线观看| 一二三四中文在线观看免费高清| 国产国语露脸激情在线看| 日本与韩国留学比较| 久久久国产欧美日韩av| 欧美3d第一页| 亚洲五月色婷婷综合| 免费黄网站久久成人精品| 日本91视频免费播放| 九草在线视频观看| 蜜臀久久99精品久久宅男| 日本wwww免费看| 一边亲一边摸免费视频| 成年人午夜在线观看视频| 999精品在线视频| 久久久a久久爽久久v久久| 国产欧美亚洲国产| 丝袜人妻中文字幕| xxx大片免费视频| 18禁在线无遮挡免费观看视频| 曰老女人黄片| 老熟女久久久| 日本黄色日本黄色录像| 国产成人精品福利久久| 久久久久视频综合| 午夜福利影视在线免费观看| 亚洲国产欧美日韩在线播放| 黄色配什么色好看| 视频在线观看一区二区三区| 色婷婷av一区二区三区视频| 天美传媒精品一区二区| 亚洲国产成人一精品久久久| 国产毛片在线视频| 国产女主播在线喷水免费视频网站| 最近最新中文字幕免费大全7| 欧美性感艳星| 亚洲欧美中文字幕日韩二区| 在线观看免费视频网站a站| 亚洲中文av在线| 91午夜精品亚洲一区二区三区| 亚洲美女视频黄频| 中文字幕av电影在线播放| 一本久久精品| 韩国av在线不卡| 在线观看免费视频网站a站| 人人妻人人澡人人爽人人夜夜| 亚洲精品日韩在线中文字幕| 一本—道久久a久久精品蜜桃钙片| 国产免费视频播放在线视频| 黄色 视频免费看| 中文字幕制服av| 久久久久久久久久成人| 亚洲精品自拍成人| 国产国拍精品亚洲av在线观看| 日韩免费高清中文字幕av| 丝袜在线中文字幕| 在线天堂中文资源库| 两性夫妻黄色片 | 国产成人精品婷婷| av不卡在线播放| 狠狠精品人妻久久久久久综合| h视频一区二区三区| 热99久久久久精品小说推荐| 老司机影院毛片| 少妇高潮的动态图| 亚洲经典国产精华液单| 欧美激情 高清一区二区三区| 久久狼人影院| 在线观看免费视频网站a站| 在线观看人妻少妇| 中国美白少妇内射xxxbb| 考比视频在线观看| 宅男免费午夜| 成人亚洲欧美一区二区av| 成人免费观看视频高清| 香蕉丝袜av| 亚洲精品aⅴ在线观看| 成年美女黄网站色视频大全免费| 成人毛片a级毛片在线播放| 高清黄色对白视频在线免费看| 国产高清不卡午夜福利| 国产av精品麻豆| 日本黄色日本黄色录像| 永久免费av网站大全| 狠狠婷婷综合久久久久久88av| 女人久久www免费人成看片| 免费看光身美女| 成人亚洲精品一区在线观看| 在线看a的网站| 少妇被粗大猛烈的视频| 啦啦啦中文免费视频观看日本| 美女国产高潮福利片在线看| 巨乳人妻的诱惑在线观看| 看十八女毛片水多多多| 69精品国产乱码久久久| 日韩不卡一区二区三区视频在线| 亚洲激情五月婷婷啪啪| 少妇人妻精品综合一区二区| 久久久久网色| 一区二区三区乱码不卡18| 人妻系列 视频| 女人被躁到高潮嗷嗷叫费观| 亚洲伊人色综图| 免费黄频网站在线观看国产| 日本91视频免费播放| 日日啪夜夜爽| 久久久久久久亚洲中文字幕| 男人舔女人的私密视频| 免费黄网站久久成人精品| 女的被弄到高潮叫床怎么办| 99热6这里只有精品| 国产69精品久久久久777片| 韩国av在线不卡| 久热久热在线精品观看| 三级国产精品片| 丰满饥渴人妻一区二区三| 亚洲精品日本国产第一区| 亚洲精品成人av观看孕妇| 成年av动漫网址| 免费高清在线观看日韩| 色婷婷av一区二区三区视频| 天堂8中文在线网| 黄色视频在线播放观看不卡| 亚洲精品第二区| 亚洲国产欧美日韩在线播放| 国产深夜福利视频在线观看| 18禁观看日本| 一区二区日韩欧美中文字幕 | 欧美精品高潮呻吟av久久| 亚洲第一av免费看| 99视频精品全部免费 在线| 最黄视频免费看| 国产日韩一区二区三区精品不卡| 午夜福利影视在线免费观看| 久久精品国产a三级三级三级| 免费看光身美女| 成人黄色视频免费在线看| 国产av国产精品国产| 亚洲av综合色区一区| 午夜视频国产福利| 26uuu在线亚洲综合色| 国产精品久久久久久av不卡| 久久人人97超碰香蕉20202| 人妻 亚洲 视频| 国产成人精品在线电影| 日本色播在线视频| 一级a做视频免费观看| 91在线精品国自产拍蜜月| 在线 av 中文字幕| 日本91视频免费播放| 国产毛片在线视频| 亚洲国产精品一区二区三区在线| 国产熟女午夜一区二区三区| 又粗又硬又长又爽又黄的视频| 免费观看性生交大片5| 97人妻天天添夜夜摸| 国产在线一区二区三区精| 97超碰精品成人国产| 色网站视频免费| av在线观看视频网站免费| 一级毛片 在线播放| 国产综合精华液| 老司机影院成人| av线在线观看网站| 这个男人来自地球电影免费观看 | 亚洲av.av天堂| 色婷婷久久久亚洲欧美| 国产成人精品福利久久| 黑人猛操日本美女一级片| 蜜桃国产av成人99| 交换朋友夫妻互换小说| 国产成人免费无遮挡视频| 在线观看一区二区三区激情| av福利片在线| 熟女人妻精品中文字幕| 亚洲性久久影院| 日本vs欧美在线观看视频| 老司机影院成人| 国产毛片在线视频| 七月丁香在线播放| 激情视频va一区二区三区| 久久久国产精品麻豆| 国产精品人妻久久久影院| 黄网站色视频无遮挡免费观看| 黄色配什么色好看| 亚洲av福利一区| 麻豆精品久久久久久蜜桃| 久久女婷五月综合色啪小说| 亚洲欧洲精品一区二区精品久久久 | 国产精品偷伦视频观看了| 免费av中文字幕在线| 青春草国产在线视频| 国产白丝娇喘喷水9色精品| 国产一区亚洲一区在线观看| 国产精品一二三区在线看| 亚洲人成网站在线观看播放| 我的女老师完整版在线观看| 国产亚洲精品久久久com| 免费在线观看完整版高清| 一区在线观看完整版| 高清欧美精品videossex| 亚洲精华国产精华液的使用体验| 看非洲黑人一级黄片| a级毛片黄视频| h视频一区二区三区| 久久精品国产自在天天线| 少妇猛男粗大的猛烈进出视频| 韩国精品一区二区三区 | 在线观看美女被高潮喷水网站| 日韩制服丝袜自拍偷拍| 国产av精品麻豆| 亚洲国产欧美在线一区| 如何舔出高潮| 国产成人精品久久久久久| 欧美性感艳星| 精品亚洲成国产av| 久久99蜜桃精品久久| 日日爽夜夜爽网站| 一个人免费看片子| 免费观看a级毛片全部| 国产av国产精品国产| 日日啪夜夜爽| 五月伊人婷婷丁香| 国产精品嫩草影院av在线观看| 日日撸夜夜添| 性色av一级| 午夜福利在线观看免费完整高清在| 色哟哟·www| 中文字幕亚洲精品专区| 亚洲欧美一区二区三区黑人 | 国产片内射在线| 韩国精品一区二区三区 | 国产成人aa在线观看| 伊人久久国产一区二区| 色5月婷婷丁香| 水蜜桃什么品种好| 性色av一级| 夜夜爽夜夜爽视频| 亚洲欧美一区二区三区黑人 | 建设人人有责人人尽责人人享有的| 亚洲人成网站在线观看播放| 久久鲁丝午夜福利片| 国产福利在线免费观看视频| 美女主播在线视频| www日本在线高清视频| 伦精品一区二区三区| 日韩不卡一区二区三区视频在线| 日本欧美国产在线视频| 十八禁网站网址无遮挡| 爱豆传媒免费全集在线观看| 99久久人妻综合| 欧美xxⅹ黑人| 精品一区在线观看国产| av黄色大香蕉| 久久99精品国语久久久| 国产精品一区www在线观看| 伦精品一区二区三区| 1024视频免费在线观看| 激情五月婷婷亚洲| 国产成人欧美| 国产精品成人在线| 久久人人爽人人片av| 美女脱内裤让男人舔精品视频| 18在线观看网站| 美女xxoo啪啪120秒动态图| 黄色视频在线播放观看不卡| 国产一区二区三区综合在线观看 | 久久人人97超碰香蕉20202| 国产永久视频网站| 高清不卡的av网站| 国产成人午夜福利电影在线观看| 少妇被粗大猛烈的视频| 少妇人妻精品综合一区二区| 成人亚洲欧美一区二区av| 色视频在线一区二区三区| 丁香六月天网| 看非洲黑人一级黄片| 国产精品熟女久久久久浪| 伦理电影大哥的女人| 成人国语在线视频| 99久久人妻综合| 国产男女超爽视频在线观看| 日韩中文字幕视频在线看片| 国产乱来视频区| 亚洲欧美精品自产自拍| 综合色丁香网| 色5月婷婷丁香| 国产国语露脸激情在线看| 建设人人有责人人尽责人人享有的| 在线精品无人区一区二区三| 久久久国产一区二区| av线在线观看网站| 日本av免费视频播放| 五月天丁香电影| 欧美老熟妇乱子伦牲交| av一本久久久久| av在线app专区| 波野结衣二区三区在线| 日韩成人av中文字幕在线观看| 久久久国产欧美日韩av| 国产欧美日韩综合在线一区二区| 51国产日韩欧美| 全区人妻精品视频| 最后的刺客免费高清国语| 少妇高潮的动态图| 啦啦啦视频在线资源免费观看| 午夜福利,免费看| av免费观看日本| 午夜91福利影院| 欧美日韩亚洲高清精品| 涩涩av久久男人的天堂| 久久亚洲国产成人精品v| 一区在线观看完整版| 在线观看美女被高潮喷水网站| 日日啪夜夜爽| 国产黄频视频在线观看| 观看美女的网站| 午夜精品国产一区二区电影| 寂寞人妻少妇视频99o| 日韩中文字幕视频在线看片| 欧美日韩av久久| 久久久欧美国产精品| 女性生殖器流出的白浆| 男女高潮啪啪啪动态图| 九色亚洲精品在线播放| 成人午夜精彩视频在线观看| 亚洲人成77777在线视频| 国产熟女午夜一区二区三区| 啦啦啦中文免费视频观看日本| 青春草国产在线视频| 亚洲精品国产av蜜桃| 亚洲图色成人| 国产精品一区二区在线观看99| 国产欧美日韩综合在线一区二区| 久久 成人 亚洲| a级毛片黄视频| 人人妻人人爽人人添夜夜欢视频| 免费高清在线观看视频在线观看| 视频中文字幕在线观看| 亚洲国产欧美日韩在线播放| 大陆偷拍与自拍| 国产亚洲欧美精品永久| 在线观看www视频免费| 九九爱精品视频在线观看| 久久久久久久久久久免费av| 日韩制服骚丝袜av| 丰满少妇做爰视频| 精品国产一区二区三区四区第35| 伊人亚洲综合成人网| 国产视频首页在线观看| 国产欧美日韩一区二区三区在线| 日韩人妻精品一区2区三区| 国产激情久久老熟女| 亚洲国产精品成人久久小说| 欧美3d第一页| 在线精品无人区一区二区三| 国产成人精品婷婷| 久久国内精品自在自线图片| 精品人妻一区二区三区麻豆| 久久久久精品人妻al黑| 我的女老师完整版在线观看| 夜夜骑夜夜射夜夜干| 丁香六月天网| 老司机影院毛片| 亚洲色图综合在线观看| 午夜免费观看性视频| 午夜av观看不卡| 国产免费一区二区三区四区乱码| 国产成人精品一,二区| 国产精品 国内视频| 亚洲国产精品一区三区| 内地一区二区视频在线| 免费av不卡在线播放| av片东京热男人的天堂| 午夜老司机福利剧场| 国产伦理片在线播放av一区| 如日韩欧美国产精品一区二区三区| 亚洲情色 制服丝袜| 亚洲婷婷狠狠爱综合网| 深夜精品福利| 免费在线观看黄色视频的| 丰满少妇做爰视频| 极品少妇高潮喷水抽搐| 午夜免费男女啪啪视频观看| 一区在线观看完整版| 精品少妇内射三级| 天天影视国产精品| a级毛片在线看网站| 校园人妻丝袜中文字幕| 一个人免费看片子| 国产成人精品福利久久| 精品国产一区二区久久| 亚洲av免费高清在线观看| 久久久久久久亚洲中文字幕| 如日韩欧美国产精品一区二区三区| xxxhd国产人妻xxx| 亚洲国产精品国产精品| 亚洲经典国产精华液单| 国产精品三级大全| 国产日韩欧美视频二区| 午夜免费男女啪啪视频观看| 免费观看在线日韩| 国产一区亚洲一区在线观看| 国产精品蜜桃在线观看| 亚洲欧美精品自产自拍| 伦理电影免费视频| 内地一区二区视频在线| 最新的欧美精品一区二区| 国产精品国产三级国产av玫瑰| 在线免费观看不下载黄p国产| 欧美+日韩+精品| 国产精品秋霞免费鲁丝片| 久久人人爽人人片av| 男的添女的下面高潮视频| 日本av手机在线免费观看| 乱码一卡2卡4卡精品| 日本av免费视频播放| 夜夜骑夜夜射夜夜干| 亚洲成av片中文字幕在线观看 | 校园人妻丝袜中文字幕| 九九爱精品视频在线观看| 女性生殖器流出的白浆| 又粗又硬又长又爽又黄的视频| 久久久久久久国产电影| 精品熟女少妇av免费看| 人人澡人人妻人| 国产av一区二区精品久久| 亚洲精品日韩在线中文字幕| 国产av国产精品国产| 欧美成人午夜精品| 美女脱内裤让男人舔精品视频| 免费久久久久久久精品成人欧美视频 | 观看美女的网站| 亚洲精品中文字幕在线视频| 夫妻性生交免费视频一级片| 十八禁高潮呻吟视频| 国产爽快片一区二区三区| 肉色欧美久久久久久久蜜桃| 99久久中文字幕三级久久日本| 欧美精品亚洲一区二区| 欧美日本中文国产一区发布| 亚洲精品乱久久久久久| 18禁观看日本| 伊人亚洲综合成人网| 日日摸夜夜添夜夜爱| 日日啪夜夜爽| 一级,二级,三级黄色视频| 国产1区2区3区精品| 午夜免费观看性视频| 国产欧美另类精品又又久久亚洲欧美| 黑人巨大精品欧美一区二区蜜桃 | 国产精品久久久久成人av| 色94色欧美一区二区| 久久97久久精品| 一级爰片在线观看| 国产精品秋霞免费鲁丝片| av不卡在线播放| 欧美97在线视频| 两性夫妻黄色片 | 久久人人爽av亚洲精品天堂| 亚洲图色成人| 日韩一本色道免费dvd| 久久国内精品自在自线图片| 亚洲国产看品久久| 亚洲精品久久久久久婷婷小说| xxxhd国产人妻xxx| 久久久久久人人人人人| 色94色欧美一区二区| 黑人猛操日本美女一级片| 久久久久久久国产电影| 免费人妻精品一区二区三区视频| 亚洲欧美日韩卡通动漫| 亚洲丝袜综合中文字幕| 久久久久精品久久久久真实原创| 亚洲欧美一区二区三区国产| 亚洲欧美精品自产自拍| xxxhd国产人妻xxx| 久久精品aⅴ一区二区三区四区 | 久久精品国产鲁丝片午夜精品| 人成视频在线观看免费观看| 嫩草影院入口| 国产一区二区激情短视频 | 在线看a的网站| 91精品国产国语对白视频| 日韩,欧美,国产一区二区三区| 久久久国产一区二区| 久久精品国产亚洲av天美| 欧美人与性动交α欧美精品济南到 | 国产亚洲精品第一综合不卡 | 日日摸夜夜添夜夜爱| 国产午夜精品一二区理论片| 亚洲欧洲日产国产| 在线观看免费视频网站a站| 国产欧美日韩综合在线一区二区| 热re99久久精品国产66热6| 在线看a的网站| 久久国产亚洲av麻豆专区| 精品人妻熟女毛片av久久网站| 97在线视频观看| 亚洲精品一区蜜桃| 99香蕉大伊视频| 亚洲欧美清纯卡通| 日本黄色日本黄色录像| 男女高潮啪啪啪动态图| 久久狼人影院| 日韩精品有码人妻一区| 欧美 亚洲 国产 日韩一| 深夜精品福利| 日本爱情动作片www.在线观看| 少妇被粗大的猛进出69影院 | 九色成人免费人妻av| 久热久热在线精品观看| 两性夫妻黄色片 | 亚洲精品成人av观看孕妇| 国产永久视频网站| 美女国产高潮福利片在线看| 国产成人精品无人区| 99九九在线精品视频| 熟女av电影| 国产亚洲欧美精品永久| 飞空精品影院首页| 亚洲一区二区三区欧美精品| av女优亚洲男人天堂| 90打野战视频偷拍视频| 国产片内射在线| 国产高清三级在线| 在线观看免费日韩欧美大片| 在现免费观看毛片| 日韩av不卡免费在线播放| 日韩欧美精品免费久久| 免费在线观看完整版高清| 国产精品一区二区在线不卡| 久久国产精品男人的天堂亚洲 | 国产亚洲精品久久久com| 伦理电影大哥的女人| 国产成人av激情在线播放| 久久av网站| 国产精品三级大全| 亚洲国产毛片av蜜桃av| 精品一区二区三区四区五区乱码 | 91aial.com中文字幕在线观看| 午夜福利视频精品| 熟女av电影| 中国三级夫妇交换| 纯流量卡能插随身wifi吗| 亚洲经典国产精华液单| 国产精品秋霞免费鲁丝片| 国语对白做爰xxxⅹ性视频网站| 青春草视频在线免费观看| av免费观看日本| 丰满饥渴人妻一区二区三| www.av在线官网国产| 桃花免费在线播放| 高清欧美精品videossex| 一级爰片在线观看| 国产精品偷伦视频观看了| 国产国拍精品亚洲av在线观看| 中文字幕免费在线视频6| 大话2 男鬼变身卡| 亚洲欧美日韩卡通动漫| 亚洲伊人色综图| 国产av码专区亚洲av| 777米奇影视久久| 欧美 日韩 精品 国产| 欧美最新免费一区二区三区| 大片电影免费在线观看免费| 亚洲国产成人一精品久久久| 插逼视频在线观看| 91久久精品国产一区二区三区| 成人综合一区亚洲| av福利片在线| 欧美精品亚洲一区二区| 亚洲人成77777在线视频| 亚洲国产欧美在线一区| 国产精品久久久久久久久免| 岛国毛片在线播放| 中文字幕免费在线视频6| 精品人妻在线不人妻| 亚洲熟女精品中文字幕| 国语对白做爰xxxⅹ性视频网站| 中文字幕另类日韩欧美亚洲嫩草| 91精品国产国语对白视频| 伦理电影大哥的女人| 夜夜骑夜夜射夜夜干| 亚洲人成77777在线视频| 久久综合国产亚洲精品| 国产毛片在线视频| 女人精品久久久久毛片| 精品人妻一区二区三区麻豆|