• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Solutions to Forced and Unforced Lin–Reissner–Tsien Equations for Transonic Gas Flows on Various Length Scales

    2018-01-22 09:13:09KyleTheakerandRobertVanGorder
    Communications in Theoretical Physics 2017年3期

    Kyle A.Theakerand Robert A.Van Gorder

    1Department of Mathematics,University of Central Florida,Orlando,FL 32816-1364,USA

    2Mathematical Institute,University of Oxford,Andrew Wiles Building,Radcliffe Observatory Quarter,Woodstock Road,Oxford,OX2 6GG,United Kingdom

    1 Introduction

    The Lin–Reissner–Tsien equation in dimensional units reads

    This equation is used to study transonic gas flows under the transonic approximation.[1?3]Here?uis the dimensional velocity potential,?x,?y>0 are dimensional spatial coordinates,and?t>0 is the temporal coordinate.In Glazatov,[4]existence and uniqueness results of a certain class of solutions to the Lin–Reissner–Tsien equation are proven,subject to specific periodic boundary conditions.Recently,Ref.[5]considered exact and analytical solutions for the Lin–Reissner–Tsien equation(1).In particular,both steady and non-steady similarity solutions were considered.For some parameter values,exact solutions were obtained,while for more general parameter regimes,analytical solutions were found via Taylor series.Under some simplifications,those solutions recovered other more specific exact solutions of Refs.[6–8].Numerical solutions were also employed in Ref.[5]in order to verify the accuracy of the analytical approximations.

    For some applications,the equation

    In the present paper,we shall consider the Lin–Reissner–Tsien equation on various length scales.We first non-dimensionalize the equation in Sec.2,and are able to show that all spatial length scales enter through a single composite parameter multiplying the nonlinear term.This is useful,as depending on the length scales of interest,the parameter may be large or small.In Sec.3,we seek the generalize some of the results from Ref.[5].We first obtain a slightly more general similarity solution.Then,we turn our attention to mixed wave-similarity solutions,which were not previously considered.Such solutions propagate as a wave in one spatial coordinate,while still exhibiting a global self-similarity.Next,in Sec.4,we consider generalized Lin–Reissner–Tsien equations with forcing terms.Equations similar to(2)have been shown to admit similarity solutions which are relevant in the study of transonic gas flows(i.e.Ref.[11],and references therein).Therefore,in the context of applications,it makes sense to consider forced Lin–Reissner–Tsien equations.We obtain traveling wave solutions,and are able to show that there are non-trivial(in contrast to the fairly simple traveling wave solutions which exist for(1)).We then showthat forced Lin–Reissner–Tsien equations can still admit similarity solutions.We determine the precise class of forcing terms which allow for similarity solutions,before obtaining solutions numerically.We also show that a more restricted class of forcing functions allows for the construction of exact self-similar solutions.Finally,we give concluding remarks in Sec.5.

    2 Non-Dimensionalization and Scaling Limits

    Let us non-dimensionalize the Lin–Reissner–Tsien equation(1)by the change of variables

    HereX,Y,T,Uare constants holding the relative scales of each variable.As we are concerned with spatial scales,while temporal scales are less essential,we can pick the temporal scale to simplify the resulting non-dimensional equation,by takingT=Y2X?1.We find then that

    where the composite parameter?depends on the remaining length scales like

    Therefore,the Lin–Reissner–Tsien equation is reduced to a single equation on non-dimensional scales which depends only on a single scaling group.The spatial length scales are then all encoded in the single parameter?,and it is sufficient to study(4)in order to study(1)under any length scales.

    If??1,then eitherX?1 orY?1,and we have the small-xor large-yscale limit.In such a limit,taking?→0 yields

    Introducing the new variablesx=ξ?ζ,t=ξ+ζ,we have

    which is a two-dimensional wave equation,plus a small perturbation.As such,we expect solutions in the small-?regime to behave like solutions to a 2D wave equation.

    If??1,then eitherX?1 orY?1,and we have the large-xor small-yscale limit.In this case,the equation reduces to

    This implies that

    in the large-?regime.

    3 Similarity and Wave-Similarity Solutions for the Lin–Reissner–Tsien Equation

    We now turn our attention to obtaining solutions to the scaled the Lin–Reissner–Tsien equation(4).

    3.1 Similarity Transformation

    Let us take the similarity transformation used in Ref.[5],

    We obtain from Eq.(4)the similarity ODE

    where prime denotes differentiation with respect to the similarity variable,η.The equation becomes singular for 1?4η2+??′(η)=0,or,in the?→0 limit,η=1/2.In this limit,(11)reduces to

    Then,at such a singular pointη=1/2,the natural boundary condition would read

    Hence,the boundary condition

    shall be taken atη=1/2.If we solve the linearized equation(12),we obtain

    whereAis a free parameter. Yet,for this solution,?(0)=A.Hence,it makes sense to consider the additional boundary condition We shall this be interested in solutions to the boundary value problem consisting of(11)subject to(14)and(16)for small positive?.

    3.2 Exact Solutions to the Similarity Problem

    Here we obtain exact solutions to the similarity ODE(11).First,assume that

    Then,placing this assumption into(11),we obtain the algebraic equation

    from which we get the system

    LeavingAfixed yet arbitrary,we can findBandCas such:

    Thus,

    Returning to physical coordinates,we have

    The exact solution(23)is the solution given in Eq.(37)of Ref.[5],with two modifications.First,the solution(23)is more general,in that it involves an arbitrary parameter

    A∈.Second,the solution(23)also depends on the arbitrary scaling parameter?>0.Therefore,we conclude that this solution is more general than that of Ref.[5].

    3.3 Numerical Solutions to Eqs.(11),(14),(16)

    With one class of exact solutions obtained,we now turn our attention to numerical solutions of the boundary value problem given by the ODE(11)subject to boundary conditions of the form(14)and(16).Since we are primarily interested in the influence of the scaling parameter,?,on the solutions,we shall take?(0)=1 for these simulations.We plot solutions in Fig.1.

    Fig.1 Plot of the numerical solutions of the boundary value problem given by the ODE(11)subject to boundary conditions of the form(14)and(16),given that we fix the parameter A=1.We plot the solutions for various values of ?, finding that for sufficiently large ? the solutions take on a linear appearance.This makes sense,as the linear solution is the only solution in the limit ?→∞.

    3.4 Mixed Wave-Similarity Transforms

    Let us consider a wave variable along thexdirection;that is to say,z=x?ct.Such solutions were not considered in Ref.[5]or elsewhere.Then(4)becomes

    Consider a solution of the formu(y,z)=yaf(zyb),σ=zyb.Then,

    Placing these into Eq.(24)gives us

    For this equation,we must have 2+2b=0 anda+2+3b=0,which implies thata=1 andb=?1.With these similarity parameters,we obtain

    It is clear from the form of(27)that there will always be a constant solution,f(σ)=C.Then,this solution gives the physical solutionu(y,z)=Cy.One may easily verify that this is indeed a solution to(4).

    To find a second solution,let us consider the transformationg(σ)=f′(σ),which puts(27)into the form

    In the limit where?→0,we simply obtaing(σ)=C1(σ2?c)for arbitrary constantC1.Integrating,we recover

    Returning to physical variables,we have

    In the more interesting case where?is not negligible,and to make this case more tractable we make the change of variable

    which gives us the ODE

    This ODE permits an exact solution of the form

    whereWdenotes the LambertWfunction(which satisfies the implicit functional equationQ=W(Q)exp(W(Q)))andλ/=0 is a constant.This then gives

    We then integrate this equation overσto recoverf(σ),

    The arbitrary constantσ0must be picked so that a branch of the LambertWfunctionWactually exists,i.e.σ20>c?e?1.Finally,transitioning back into physical coordinates,we obtain the exact solution to(4),which takes the form

    Interestingly,the solution(36)does not always exist on(x,y)∈2.Indeed,we must have that Therefore,the solution exists only forc<e?1.Ifc≥e?1,then there will exist some region of the plane2for which the solution fails to exist.Physically,this means that solutions of the type(36)have a maximum possible wave speedc=c?=e?1≈0.367 879.At and beyond this critical value,the solutions will breakdown in finite time if the wave moves too fast(c>c?)in the positivexdirection.

    To conclude this section,we give numerical plots of the solutions to Eq.‘(27)in Fig.2.

    Fig.2 Plot of the numerical solutions to(27)for(a)various values of ? for fixed wave speed c=0.2 and(b)various values of the wave speed c for fixed ?=0.5.The boundary conditions are fixed as f(0)=0.1 and f′(0)=1 for all plots.

    4 Lin–Reissner–Tsien Equation with Forcing Terms

    Next we consider the forced Lin–Reissner–Tsien equation

    whereFis a forcing term.Such equations are useful in the study of gas dynamics.[11]

    4.1 F=F(u)

    LetF=F(u).Consider a wave solution

    Then,we obtain the ODE

    where prime denotes differentiation with respect toz.Unlike the pure traveling wave case discussed in Ref.[5],the inclusion of the forcing function can lead to more complicated dynamics,in contrast to the case of no forcing,for which the pure traveling wave solutions are trivial.

    If we multiply Eq.(40)byρ′and integrate,we obtain

    Fig.3 Plot of the numerical solutions to(40)given F(u)=αunfor various values of the power-law parameter n.The other parameters are fixed as b=c=1,?=1,and α =1,while boundary conditions are taken as ρ(0)=1, ρ′(0)=0.In order to obtain periodic solutions,we consider only odd n.The solutions do not vary strongly with ?,and the role of b2+c is to modify the period of the solutions.The structure of the solutions is most influenced by n.As n increases,the traveling wave solutions become more sharp and the period of oscillation decreases,although the amplitude remains the same.

    For various values of the parameters,we may plot the phase portraits in order to understand the behavior of solutions to this equation.On the other hand,we may directly solve the ODE(40)numerically.We do so in Fig.3.

    In the special case werec=?b2,so that the wave variable isz=x+by?b2t,we have

    which gives us

    Suppose that the force scales with a power ofu,sayF(u)=αunfor some positive integernand constant parameterα.Then,we obtain the implicit relation

    4.2 F=F(ux,uy,ut)

    Consider now the case where the forcing function depends on the derivatives ofu,sayF=F(ux,uy,ut).Under the assumption of a traveling wave solution(39),we find that

    where byH(ρ′)we denote Separating variables in Eq.(45)and integrating,we obtain an implicit relation for the functionρ′:

    Consider the case where the force scales as a power of the first derivatives ofu,so that we obtainH(ρ′)=β(ρ′)nfor some positive integernand constant parameterβ.We then have three cases:

    forn=1,

    forn=2,and

    forn≥3.If we are able to invert these relations,we may then obtainρ′as a function ofz.Integrating that result would then permit us to recoverρ(z).This may also be done numerically,and we provide plots of the numerical solutions for variousnand?in Fig.4.

    Fig.4 Plot of the numerical solutions to(45)given H(ρ′)= β(ρ′)nfor various values of the power-law parameter n.The other parameters are fixed as b=c=1 and β =1,while boundary conditions are taken as ρ(0)=0, ρ′(0)=1.In(a)we fix ?=1 and plot the solutions for various n.As n increases,the solutions uniformly increase in magnitude.In(b)we fix n=2 and plot the solutions for various ?.For 0 <?< 2,the solutions uniformly decrease in magnitude as ? increases.At ?=2,the problem becomes singular,and for ?> 2 we then obtain a new type of solution branch.The curve starts out steep,and gradually decreases in slope as ? increases toward infinity.

    4.3 Forms of F which Permit Similarity Solutions

    As discussed in Ref.[11],it is possible to have self similar solutions to equations arising in gas dynamics,even when there is a forcing term present within the governing equation.We seek to find a general form ofF=F(x,y,t)which still allows for a similarity solution.

    Due to the similarity transform(10),we should consider

    wherea,b,c,γare constant parameters that would be selected based on the physical problem to be studied.Then,under the assumption(10),we find that(38)reduces to

    The right hand side of(52)should take the form of a power ofη,the similarity variable.Noting thatηk=xktky?2k,we should havea=k,b?2=?2k,c+3=k.Then,

    In other words,the permitted form of the forceFis a power of the similarity variable,η,multiplied by a factory2/t3.Under such an assumption,we have that

    We numerically solve(54)for variousk,in order to determine the influence of?for each of these cases.In Fig.5,we plot numerical solutions to(54)in order to determine the influence of the strength of the forcing function on the solutions.

    Fig.5 Plot of the numerical solutions to(54)given F(x,y,t)= γηk(y2/t3)for various values of the power law parameter k. The other parameters are fixed as ?=1 and γ=1,while boundary conditions are taken as ρ(0)=1, ρ′(0)=0.As we increase k,the solutions uniformly decrease in value,more rapidly tending toward negative infinity as η becomes large.

    In addition to numerical solutions,note that it is also possible to obtain exact solutions for the similarity problem(54).Along the lines of the earlier exact solution(17),we assume a polynomial solution

    Here,theAj’s are constants to be determined.Ifγ=0,then the solution(55)will reduce to the exact solution(17),withm=2 and bothA0andA1determined as functions of the free parameterA2.

    On the other hand,ifγ/=0,then the existence of an exact polynomial solution will depend on the power law parameterk.If a polynomial solution(55)does indeed exist,then the order of the left hand side of(54)with the proposed exact solution plugged in must match the order of the right hand side(which is simplyk).Ifm=0,1,2,3,then the linear terms in(54)will dominate.However,ifm>3,then the nonlinear term?′?′′will have order 2m?3,which is greater thanmform>3.So,ifk=0,1,we pickm=2,while ifk=3,we pickm=3.It is less clear what to do whenk=2,sincem=2 results in no quadratic terms remaining on the left hand side of(54).While we omit a lengthy argument here,whenk=2,one may show that a polynomial solution would only exist for either complex-valued?or complex-valuedγ.However,ifk>3,then we must be more careful.Ifk=4,observe that there is no integermsuch that 2m?3=4(m=1/2 in this case).Indeed,fork>4,an exact polynomial solution(55)exists only when 2m?3=khas a positive integer rootm=m?(k)=(k+3)/2,i.e.kmust be odd.The first few permitted values ofkarek=5(for whichm=4),k=7(for whichm=5),and so on.For other integer values ofk>0,there are no exact polynomial solutions.Therefore,there are possible polynomial solutions provided the forcing function satisfiesk=0 orka positive odd integer.For other values,numerical simulations can be used,but exact solutions in terms of polynomials are not forthcoming.

    We explicitly calculate the first few exact solutions,fi nding that fork=0 we have

    fork=1 we have

    and fork=3 we have

    where

    Fork>3,although solutions are theoretically possible due to order balances discussed above,when calculating the actual solutions we find that the equations for the coefficients in(55)will be over determined.This will result in complex coefficients or parameters,and hence such solutions should be neglected as they are non-physical.Therefore,the exact solutions above are the only polynomial solutions,and exact polynomial solutions fail to exist fork>3.Meanwhile,note that we see something related in those exact solutions we can obtain.Whenk=0 ork=1,the system of equations for the coefficients is under determined,meaning we always have a free parameter(for us,this isA2).This is exactly why we had the free parameterAin the exact solution(17).Whenk=3,the coeffi-cients of the solution were uniquely determined,which is why the solution fork=3 does not have a free parameter,but rather will only depend on system parameters?andγ.Still,owing to the nonlinearity,the solution fork=3 is not unique,with two solutions existing(depending on the±root in the definition ofg±(γ,?)).

    5 Conclusions

    We have extended the results of Ref.[5]in several ways.First,we have found additional solutions to the Lin–Reissner–Tsien equation,including a somewhat more general similarity solution and new mixed wave-similarity solutions.We have also extended the Lin–Reissner–Tsien equation by considering a forcing term.Such forced equations are useful in the study of gas dynamics.[11]For the forced equation,we are able to study a variety of forcing functions,which permit either new wave or similarity solutions.Unlike for the standard Lin–Reissner–Tsien equation,the forced equation permits non-trivial wave solutions.It is interesting that,despite the added complexity due to the forcing term,the forced equation still permits similarity solutions,and for some cases can even still be solved exactly.We are able to determine precisely for which forcing functions exact polynomial solutions will exist.These results suggest that,while complicated,forced Lin–Reissner–Tsien equations can still be solved exactly under some circumstances.For all of the various solutions obtained,numerical simulations verify the behaviors observed in exact or perturbation solutions.

    Many of the solutions only exist for certain parameters or parameter regimes.Therefore,some of the parameter values correspond to physically relevant solutions,while parameters for which there are no solution would correspond to a loss of validity of the transonic approximation,or more fundamentally,a breakdown of the transonic gas flow.In such a case,more complicated dynamics,such as turbulence,may arise,which is beyond the scope of the LRT equation.So,when there is a solution,this means that the physical parameters permit a “nice” solution to the transonic gas flow problem.The solutions in Subsec.3.4 further depend on a wave speed,c.We find that left-moving waves(c<0)are permitted at any velocity,while right-moving waves can propagate only with a velocity bounded like 0<c<e?1.For right-moving waves with higher velocity,the wave would likely become unstable and break apart,resulting in turbulence.Note that the break-up is local in nature,in the case ofc>e?1.This suggests that,give a specific wave speed,we can determine where in space the break-up of the wave solution under the transonic approximation may occur in time,given specific spatial coordinates.

    The LRT equation with forcing term was also considered.While the precise form of forcing can be determined by the particular experiment at hand,we provide some examples to illustrate that solutions to forced LRT equations can exist.The form of the forcing term will strongly influence the dynamics of the LRT solutions.If the forcing function scales as a power of the unknown function,then we can expect periodic waves,with the frequency of the waves decreasing as the power of the function increases.Therefore,we have bounded,periodic transonic wave solutions for the gas in this regime.On the other hand,when the forcing function depends on one or more first derivatives of the unknown function,the transonic gas solutions are monotone increasing if we have traveling wave solutions.Therefore,the structure of the forcing term will strongly influence the behavior of traveling wave solutions.

    Forced LRT equations also have solutions under a similarity transformation,assuming appropriate forcing term.In such a case,the solutions are highly sensitive to the strength of the nonlinearity in the forcing term.In this case,we also show that certain forcing functions,while theoretically possible,do not give closed-form similarity solutions.This again has to do with the fact that such poorly behaved forcing functions would likely cause breakdown of a solution over time,resulting in a transition to the turbulent regime.

    The closed form solutions presented here cast light on when solutions to the LRT equations are possible.In other situations,solutions are not possible(or,not found),and this can indicate other behaviors,such as turbulence,which cannot be captured by the LRT model.Since the solutions have been non-dimensionalized,this means what solutions may be possible at some scales,while at other scales the solutions under the LRT transonic gas model will break down,giving way to turbulent gas dynamics.In particular,solutions always exist when?=0,and are found for small?,as well.In terms of the space and time scales,?=UX3/Y2=UX2/T.Then,??1 whenT?UX2,hence solutions tend to always exist for large timescales(relative to the spatial scales).In contrast,the mixed wave-similarity solutions of Subsec.3.4 are valid either for?=0 or?>0,with very different solutions obtained for each case.The former solution can be viewed as the “l(fā)arge-time scale”solution,while the latter can be viewed as the “short-time scale” solution.Therefore,even when solutions are possible at all scales,there are often qualitative differences in the behaviors of the obtained solutions at disparate scales.All of these results will therefore inform us of how solutions should behave at different space or time scales.When coupled with the results for the forced LRT equation,these solutions may then serve as motivation for certain experiments on transonic gas dynamics under specific forcing terms.

    [1]C.C.Lin,E.Reissner,and H.S.Tsien,J.Math Phys.27(1948)220.

    [2]W.F.Ames and W.N.Nucci,J.Eng.Mech.20(1985)18.

    [3]A.G.Kuz’min and A.V.Ivanova,Theor.Comput.Fluid Dyn.18(2004)335.

    [4]S.N.Glazatov,Mathematical Notes 87(2010)130.

    [5]J.Hausserman,K.Vajravelu,and R.A.Van Gorder,Appl.Math.Mech.-Engl.Ed.32(2011)1447.

    [6]S.S.Titov,A Method Finite-Dimensional Rings for Solving Nonlinear Equations of Mathematical Physics,[in Russian],In:Aerodynamics,Editor T.P.Ivanova,Saratov University,Saratov(1988)104.

    [7]S.R.Svirshchevskii,Phys.Lett.A 199(1995)344.

    [8]A.D.Polyanin and V.F.Zaitsev,Handbook of Nonlinear Partial Differential Equations,Chapman&Hall/CRC,Boca Raton(2004).

    [9]A.N.Bogdanov and V.N.Duesperov,J.Appl.Math.Mech.72(2008)33.

    [10]Yu.V.Bibik,V.N.Duesperov,and S.P.Popov,Fluid Dynamics 40(2005)315.

    [11]H.Bellout,K.Vajravelu,and R.A.Van Gorder,Quart.Appl.Math.73(2015)379.

    99热这里只有是精品在线观看| xxx大片免费视频| 十八禁网站网址无遮挡 | 九九久久精品国产亚洲av麻豆| 精品久久久久久久久av| 插阴视频在线观看视频| 97精品久久久久久久久久精品| 日韩欧美国产在线观看| 国产探花极品一区二区| 久久热精品热| 亚洲国产av新网站| 在线观看免费高清a一片| 99热这里只有是精品在线观看| 国产欧美日韩精品一区二区| 国产一级毛片七仙女欲春2| 日本色播在线视频| 偷拍熟女少妇极品色| 亚洲精品国产av成人精品| 国产单亲对白刺激| a级一级毛片免费在线观看| 全区人妻精品视频| 精品人妻视频免费看| 亚洲国产欧美人成| 好男人在线观看高清免费视频| 熟妇人妻不卡中文字幕| 欧美不卡视频在线免费观看| 亚洲欧美日韩无卡精品| 亚洲欧洲日产国产| 人妻少妇偷人精品九色| 精品一区二区三卡| 成人毛片a级毛片在线播放| 成人国产麻豆网| 嫩草影院新地址| a级毛色黄片| 亚洲欧美成人精品一区二区| 久久久亚洲精品成人影院| 国产男人的电影天堂91| 久久久久精品性色| 午夜视频国产福利| 国产av在哪里看| 国产男人的电影天堂91| 三级毛片av免费| 一级毛片aaaaaa免费看小| 欧美xxⅹ黑人| 色哟哟·www| 国产亚洲av嫩草精品影院| 国产在视频线在精品| 免费大片黄手机在线观看| 欧美日韩亚洲高清精品| 亚洲aⅴ乱码一区二区在线播放| 国产国拍精品亚洲av在线观看| 激情五月婷婷亚洲| 亚洲精品影视一区二区三区av| 免费看日本二区| 国产伦在线观看视频一区| 汤姆久久久久久久影院中文字幕 | 久久久久久久大尺度免费视频| 欧美高清成人免费视频www| 男女边摸边吃奶| 夫妻午夜视频| 亚洲一区高清亚洲精品| 久久鲁丝午夜福利片| 2021天堂中文幕一二区在线观| 久久久久久国产a免费观看| 亚洲国产精品成人久久小说| 18+在线观看网站| 纵有疾风起免费观看全集完整版 | 精品人妻一区二区三区麻豆| 永久网站在线| 在线免费观看的www视频| 少妇猛男粗大的猛烈进出视频 | 精品酒店卫生间| 欧美bdsm另类| 91精品伊人久久大香线蕉| 欧美高清性xxxxhd video| 国产毛片a区久久久久| 欧美bdsm另类| 2021少妇久久久久久久久久久| 亚洲人成网站高清观看| 国产男女超爽视频在线观看| 亚洲av成人精品一二三区| 97热精品久久久久久| 亚洲国产精品国产精品| 永久网站在线| 青春草亚洲视频在线观看| 国产人妻一区二区三区在| 可以在线观看毛片的网站| 天堂中文最新版在线下载 | 日韩在线高清观看一区二区三区| 国产永久视频网站| 丰满乱子伦码专区| 嘟嘟电影网在线观看| 久久鲁丝午夜福利片| 日韩精品有码人妻一区| 国产亚洲精品久久久com| 精品国内亚洲2022精品成人| 亚洲精品乱码久久久久久按摩| 久久精品综合一区二区三区| 欧美3d第一页| 国产黄片美女视频| 国产亚洲午夜精品一区二区久久 | 97超碰精品成人国产| 亚洲av中文av极速乱| 国产亚洲最大av| 少妇人妻精品综合一区二区| 亚洲精华国产精华液的使用体验| 看非洲黑人一级黄片| 啦啦啦中文免费视频观看日本| 国产乱来视频区| 中文字幕av在线有码专区| 麻豆成人av视频| 熟女电影av网| 亚洲欧洲日产国产| 非洲黑人性xxxx精品又粗又长| 久久这里有精品视频免费| 久久精品人妻少妇| 淫秽高清视频在线观看| 精品久久久久久成人av| 大话2 男鬼变身卡| 免费观看性生交大片5| 成人二区视频| 尤物成人国产欧美一区二区三区| 99久久九九国产精品国产免费| 草草在线视频免费看| 欧美xxxx黑人xx丫x性爽| 亚洲精品456在线播放app| 熟妇人妻久久中文字幕3abv| 欧美日韩精品成人综合77777| 超碰av人人做人人爽久久| 99热这里只有是精品在线观看| 免费大片黄手机在线观看| 七月丁香在线播放| 国产精品一二三区在线看| 亚洲国产日韩欧美精品在线观看| 亚洲av二区三区四区| 国产成人精品一,二区| 国产精品99久久久久久久久| 国产女主播在线喷水免费视频网站 | 国产精品久久久久久av不卡| 午夜久久久久精精品| 日本免费在线观看一区| 噜噜噜噜噜久久久久久91| 一级av片app| 国产精品.久久久| 高清日韩中文字幕在线| 中文乱码字字幕精品一区二区三区 | 亚洲欧美日韩无卡精品| 亚洲四区av| 天堂av国产一区二区熟女人妻| 亚洲国产高清在线一区二区三| 亚洲内射少妇av| 麻豆成人午夜福利视频| 国产伦在线观看视频一区| 国产伦精品一区二区三区视频9| 亚洲综合精品二区| 久久久久免费精品人妻一区二区| 免费看a级黄色片| 69av精品久久久久久| 亚洲av在线观看美女高潮| 永久网站在线| 在线观看免费高清a一片| 黄色欧美视频在线观看| 亚洲精品日韩在线中文字幕| 偷拍熟女少妇极品色| 久久精品国产鲁丝片午夜精品| 亚洲欧美精品自产自拍| 日本爱情动作片www.在线观看| 精品久久久久久成人av| 午夜福利在线在线| 亚洲精品国产av成人精品| 久久久欧美国产精品| 日韩中字成人| 欧美日韩国产mv在线观看视频 | 极品少妇高潮喷水抽搐| 亚洲av国产av综合av卡| 国产免费又黄又爽又色| 91久久精品电影网| av国产久精品久网站免费入址| 高清毛片免费看| 一区二区三区高清视频在线| 一个人免费在线观看电影| 国产在线一区二区三区精| 午夜福利网站1000一区二区三区| 嫩草影院新地址| 亚洲av成人精品一区久久| av在线观看视频网站免费| 一区二区三区免费毛片| 尾随美女入室| 国产精品一区二区三区四区久久| 秋霞在线观看毛片| av.在线天堂| 淫秽高清视频在线观看| 国产高清三级在线| av国产免费在线观看| 最后的刺客免费高清国语| 国产成人午夜福利电影在线观看| 26uuu在线亚洲综合色| 麻豆成人午夜福利视频| 欧美日韩综合久久久久久| 亚洲内射少妇av| 亚洲av不卡在线观看| 身体一侧抽搐| 国产精品久久久久久av不卡| 天堂av国产一区二区熟女人妻| 最新中文字幕久久久久| 午夜精品在线福利| 高清视频免费观看一区二区 | 午夜免费观看性视频| 国产三级在线视频| 91久久精品国产一区二区成人| 晚上一个人看的免费电影| 精品国产一区二区三区久久久樱花 | 国产午夜精品一二区理论片| 中文欧美无线码| 18禁在线无遮挡免费观看视频| av专区在线播放| 亚洲欧美日韩无卡精品| 亚洲va在线va天堂va国产| 又爽又黄a免费视频| av在线观看视频网站免费| 97热精品久久久久久| 国产亚洲精品av在线| 国产 亚洲一区二区三区 | 亚洲成人久久爱视频| 精品酒店卫生间| 色综合站精品国产| 国产在视频线在精品| 国产三级在线视频| 亚洲欧美一区二区三区国产| 白带黄色成豆腐渣| 国产视频首页在线观看| 国产成人a区在线观看| 汤姆久久久久久久影院中文字幕 | 特级一级黄色大片| 亚洲国产av新网站| 久久精品久久久久久久性| 欧美日韩综合久久久久久| 一级毛片久久久久久久久女| 国产大屁股一区二区在线视频| 中文欧美无线码| 成年人午夜在线观看视频 | 激情 狠狠 欧美| 亚洲精品乱码久久久v下载方式| 婷婷色麻豆天堂久久| 久久午夜福利片| 色5月婷婷丁香| 亚洲av免费在线观看| 亚洲av不卡在线观看| ponron亚洲| 免费观看性生交大片5| 久久这里有精品视频免费| 久久99热这里只有精品18| 狂野欧美白嫩少妇大欣赏| 黄色日韩在线| 国产免费视频播放在线视频 | 视频中文字幕在线观看| av专区在线播放| 色综合亚洲欧美另类图片| 麻豆精品久久久久久蜜桃| 熟女电影av网| 一区二区三区四区激情视频| 亚洲在线观看片| 亚洲真实伦在线观看| 午夜福利视频1000在线观看| 日韩,欧美,国产一区二区三区| 亚洲av福利一区| 成人亚洲精品av一区二区| 国产永久视频网站| 麻豆成人午夜福利视频| 亚洲欧美精品自产自拍| 美女cb高潮喷水在线观看| 国产成人freesex在线| 精品久久久久久久久av| 老师上课跳d突然被开到最大视频| 自拍偷自拍亚洲精品老妇| 禁无遮挡网站| 亚洲人成网站在线观看播放| 3wmmmm亚洲av在线观看| 成人鲁丝片一二三区免费| 1000部很黄的大片| 午夜老司机福利剧场| 欧美人与善性xxx| 亚洲av福利一区| 亚洲国产精品国产精品| 日本wwww免费看| 亚洲精品中文字幕在线视频 | 97热精品久久久久久| 天天一区二区日本电影三级| 一边亲一边摸免费视频| 国产精品麻豆人妻色哟哟久久 | 亚洲av电影不卡..在线观看| 日韩欧美 国产精品| 亚洲综合精品二区| 久久久久久久久久人人人人人人| 日本爱情动作片www.在线观看| 久久久欧美国产精品| 国产成人精品婷婷| 黄色欧美视频在线观看| 亚洲国产精品专区欧美| 狠狠精品人妻久久久久久综合| 国产三级在线视频| 色视频www国产| 边亲边吃奶的免费视频| or卡值多少钱| 日韩一区二区视频免费看| 爱豆传媒免费全集在线观看| 直男gayav资源| 日韩中字成人| 久久久久久久国产电影| 最新中文字幕久久久久| 嘟嘟电影网在线观看| 汤姆久久久久久久影院中文字幕 | 日本免费在线观看一区| 日本一二三区视频观看| 国产精品1区2区在线观看.| 乱人视频在线观看| 一级爰片在线观看| 丰满人妻一区二区三区视频av| 日本三级黄在线观看| 美女主播在线视频| 久久草成人影院| 久久久亚洲精品成人影院| 亚洲欧美清纯卡通| 九九在线视频观看精品| videossex国产| 国产白丝娇喘喷水9色精品| 免费看美女性在线毛片视频| 精品一区二区三卡| 有码 亚洲区| 欧美成人精品欧美一级黄| 亚洲国产高清在线一区二区三| 永久网站在线| 久久久久九九精品影院| 精品不卡国产一区二区三区| 一个人免费在线观看电影| 久久亚洲国产成人精品v| 久久久久久久久久黄片| 天堂网av新在线| 婷婷色综合大香蕉| 国产一级毛片在线| 亚洲欧美日韩无卡精品| 欧美成人精品欧美一级黄| 深夜a级毛片| 国产视频内射| 日本与韩国留学比较| 人妻系列 视频| 亚洲精品日韩在线中文字幕| 国产麻豆成人av免费视频| 中文天堂在线官网| 亚洲精品日本国产第一区| 国产免费福利视频在线观看| 99久国产av精品国产电影| 国产精品一区二区在线观看99 | 在线播放无遮挡| 综合色av麻豆| 精品久久久噜噜| 亚洲国产欧美在线一区| 亚洲丝袜综合中文字幕| 国产亚洲午夜精品一区二区久久 | 久久久亚洲精品成人影院| 午夜爱爱视频在线播放| 亚洲av中文av极速乱| 国产中年淑女户外野战色| ponron亚洲| 午夜爱爱视频在线播放| 亚洲av国产av综合av卡| 美女高潮的动态| 日产精品乱码卡一卡2卡三| 免费在线观看成人毛片| 人妻夜夜爽99麻豆av| 久久久久网色| 欧美精品一区二区大全| 2021少妇久久久久久久久久久| 精品熟女少妇av免费看| 18禁裸乳无遮挡免费网站照片| 美女脱内裤让男人舔精品视频| 18禁在线无遮挡免费观看视频| av福利片在线观看| 亚洲最大成人手机在线| 亚洲欧美一区二区三区黑人 | 黄片无遮挡物在线观看| 亚洲成人一二三区av| 日产精品乱码卡一卡2卡三| 青春草国产在线视频| 午夜福利高清视频| 非洲黑人性xxxx精品又粗又长| 婷婷色麻豆天堂久久| 国产视频内射| 黄片wwwwww| 亚洲国产成人一精品久久久| 男人舔女人下体高潮全视频| 亚洲av电影不卡..在线观看| 热99在线观看视频| 男女那种视频在线观看| 久久人人爽人人爽人人片va| 99热这里只有是精品50| 天堂√8在线中文| 99热这里只有是精品50| 97在线视频观看| 在线播放无遮挡| 视频中文字幕在线观看| 国产黄片美女视频| 精品久久久精品久久久| 两个人的视频大全免费| 日韩 亚洲 欧美在线| ponron亚洲| 一级黄片播放器| 国产成人精品久久久久久| 亚洲婷婷狠狠爱综合网| 国内精品美女久久久久久| 午夜爱爱视频在线播放| 2022亚洲国产成人精品| 国产乱来视频区| 少妇人妻一区二区三区视频| 国产v大片淫在线免费观看| 免费播放大片免费观看视频在线观看| 天堂影院成人在线观看| 亚洲av男天堂| 欧美一级a爱片免费观看看| 色吧在线观看| 日韩电影二区| 亚洲国产欧美人成| 久久精品国产亚洲av涩爱| 免费观看无遮挡的男女| 肉色欧美久久久久久久蜜桃 | 又爽又黄无遮挡网站| 男人舔女人下体高潮全视频| 极品少妇高潮喷水抽搐| 七月丁香在线播放| 精品国内亚洲2022精品成人| 亚洲最大成人av| 亚洲性久久影院| or卡值多少钱| 美女被艹到高潮喷水动态| av免费在线看不卡| 午夜精品国产一区二区电影 | 亚洲av男天堂| 久久这里有精品视频免费| 青春草亚洲视频在线观看| 欧美+日韩+精品| 69人妻影院| h日本视频在线播放| 国产精品久久久久久av不卡| 免费观看在线日韩| 简卡轻食公司| 日本色播在线视频| 最近最新中文字幕大全电影3| 国产国拍精品亚洲av在线观看| 免费av观看视频| 成人漫画全彩无遮挡| 欧美激情国产日韩精品一区| 性插视频无遮挡在线免费观看| 久久久久久久久久人人人人人人| 国产精品嫩草影院av在线观看| 91午夜精品亚洲一区二区三区| 青春草国产在线视频| 久久久久精品久久久久真实原创| 真实男女啪啪啪动态图| 97在线视频观看| 不卡视频在线观看欧美| 成人无遮挡网站| 亚洲av日韩在线播放| 日韩一区二区三区影片| 91av网一区二区| 天堂影院成人在线观看| 久久久精品94久久精品| 91狼人影院| 黄色日韩在线| 免费观看性生交大片5| 欧美区成人在线视频| 男人和女人高潮做爰伦理| 久久久午夜欧美精品| 亚洲av不卡在线观看| 亚洲精品乱久久久久久| 国产日韩欧美在线精品| 噜噜噜噜噜久久久久久91| 黄色一级大片看看| 亚洲va在线va天堂va国产| 男女啪啪激烈高潮av片| 亚洲人成网站在线播| 亚洲一级一片aⅴ在线观看| 秋霞伦理黄片| 国产黄片视频在线免费观看| 插逼视频在线观看| 国产黄色视频一区二区在线观看| 国产一区二区在线观看日韩| 国产成人精品一,二区| 91久久精品国产一区二区三区| 搞女人的毛片| 国产亚洲av嫩草精品影院| 2022亚洲国产成人精品| 亚洲av在线观看美女高潮| 日本猛色少妇xxxxx猛交久久| 看黄色毛片网站| 卡戴珊不雅视频在线播放| 大陆偷拍与自拍| 三级毛片av免费| 最新中文字幕久久久久| 亚洲丝袜综合中文字幕| 久久6这里有精品| 99视频精品全部免费 在线| 国产在视频线精品| 免费av不卡在线播放| 天天躁日日操中文字幕| 亚洲色图av天堂| 国精品久久久久久国模美| 亚洲经典国产精华液单| 欧美成人a在线观看| 成人美女网站在线观看视频| 在线播放无遮挡| 特级一级黄色大片| 欧美性猛交╳xxx乱大交人| 成人一区二区视频在线观看| av又黄又爽大尺度在线免费看| 一级毛片我不卡| 亚洲图色成人| eeuss影院久久| 中文字幕制服av| 国产一区二区在线观看日韩| 97精品久久久久久久久久精品| 午夜福利网站1000一区二区三区| 午夜精品在线福利| 夜夜看夜夜爽夜夜摸| 免费观看的影片在线观看| 精品熟女少妇av免费看| 高清欧美精品videossex| 寂寞人妻少妇视频99o| 精品一区二区三区视频在线| 国产精品综合久久久久久久免费| 能在线免费观看的黄片| 亚洲精品乱码久久久久久按摩| 午夜激情欧美在线| 国产爱豆传媒在线观看| 乱系列少妇在线播放| 国产成人精品久久久久久| 精品一区二区三区视频在线| 中文字幕av成人在线电影| 国产老妇伦熟女老妇高清| 国产永久视频网站| 99热全是精品| 国产av在哪里看| 极品教师在线视频| 免费观看a级毛片全部| 国产在线一区二区三区精| 日韩欧美三级三区| 特级一级黄色大片| 国产老妇伦熟女老妇高清| 精品久久久久久久久亚洲| 免费少妇av软件| 两个人视频免费观看高清| 国产精品综合久久久久久久免费| 九九爱精品视频在线观看| 91久久精品国产一区二区三区| 国产高清不卡午夜福利| 色视频www国产| 精品午夜福利在线看| 国内精品一区二区在线观看| 一本一本综合久久| 少妇丰满av| 美女被艹到高潮喷水动态| 欧美成人a在线观看| freevideosex欧美| 丝袜喷水一区| 亚洲av一区综合| 日本免费在线观看一区| 国产精品久久久久久久久免| 亚洲熟妇中文字幕五十中出| 欧美日本视频| 男人和女人高潮做爰伦理| 欧美bdsm另类| 免费看不卡的av| 午夜福利视频1000在线观看| 亚洲成人中文字幕在线播放| 99久久精品一区二区三区| 国产免费视频播放在线视频 | 2021少妇久久久久久久久久久| av免费观看日本| 午夜免费观看性视频| 丰满少妇做爰视频| 午夜福利在线在线| 亚洲av成人精品一区久久| 亚洲欧美日韩卡通动漫| 久久久久久九九精品二区国产| 亚洲av在线观看美女高潮| 偷拍熟女少妇极品色| 人妻夜夜爽99麻豆av| 日本三级黄在线观看| 欧美性感艳星| 天堂中文最新版在线下载 | 日韩视频在线欧美| 国产成人a∨麻豆精品| 亚洲真实伦在线观看| 国产免费又黄又爽又色| 国产成人a∨麻豆精品| 免费看a级黄色片| 精品一区二区三卡| 好男人视频免费观看在线| 亚洲自拍偷在线| 国产伦精品一区二区三区四那| 日韩欧美精品免费久久| 日本色播在线视频| 亚洲人成网站在线观看播放| 99久久精品国产国产毛片| 欧美日韩精品成人综合77777| 午夜免费男女啪啪视频观看| 亚洲va在线va天堂va国产| 日韩中字成人| 亚洲欧美成人精品一区二区| 亚洲精品日本国产第一区| 亚洲自拍偷在线| 中文在线观看免费www的网站| 日韩强制内射视频| 网址你懂的国产日韩在线| 免费在线观看成人毛片| 国产成人精品婷婷|