• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Quantum Spin Transport in Rashba Spin-Orbit-Coupled Graphene Nanoflakes?

    2018-01-22 09:13:15NikoofardLaghaeiandHeidariSemiromi
    Communications in Theoretical Physics 2017年3期

    H.Nikoofard,M.Laghaei,and E.Heidari Semiromi

    Department of Physics,University of Kashan,Kashan,Iran

    1 Introduction

    Study and manufacturing of electronic nanodevices are the main interests of engineers and researchers in fundamental sciences.This is because these systems are fast and have low power dissipation for storage and transport of information.The appearance of the spintronics as a new branch of electronics has opened a wide horizon in this technology,which is the development of spin-based nanodevices to enhance storage capacity and enable encoding and fast processing of the information.[1]Quantum transport,which is the investigation of polarization of the spin of the electrons,has a substantial role in the spintronics and has been studied widely in mesoscopic systems.As an example,the quantum transport has effects in significant phenomena such as quantum Hall effect and it would allow for spin currents to be generated without dissipation.[2]

    The spin polarization in a mesoscopic system is generally achieved by an external magnetic field or by connecting the system to a ferromagnetic material.However,in recent years,the generation and manipulation of the spin currents by full electrical means such as spin-orbit coupling(SOC)have become subjects of interest.If the mirror symmetry is broken,either by a perpendicular electric field via a gate voltage or by interaction with a substrate,a Rashba SOC(RSOC)is revealed.[3]The RSOC as an external electric field causes switching and control on the orientation of the spin of electron.When the electric current flows in a sheet,the spin of the electrons become polarized as a result of the cooperation of the current and the Rashba field that is assured with the presence of the substrate.[4]The tuning of the RSOC strength via the external gates[3,5]is simpler than with a magnetic field,so the two-dimensional electron systems with RSOC have become the most promising devices for spintronic applications.

    Many studies have been performed on the SOC in nanostructures as a possible electrical way,which allow generation and manipulation of the spin current.For example,it is observed experimentally that a spin-polarized current is generated in a semiconductor wire due to a lateral SOC induced by an in-plane electric field.[6]Moreover,the SOC applied on a segment of the quantum wire in the presence of a constriction[7]generates a spin polarization and enhances the spin- filtering up to%95.Other studies show that the SOC can lead to the spin Hall effect in semiconductor systems.[8?11]

    Understanding of the novel features of the graphene such as weak intrinsic SOC and hyper fine couplings[12]has been of interest in recent years. In particular,graphene-based transistors[13]and field-effect transistors(FET)[14]can cause an evolution in the nanoelectronics.The carbon-based devices have a controllable band structure,so it is important to investigate the quantum transport properties of these systems.[15]For example,the spin transport has been measured in suspended highmobility graphene devices that are connected to ferromagnetic leads.[16]

    Several experimental reports have shown that RSOC in graphene can be larger than 200 meV[17]and the quantum spin Hall effect can occur in graphene.[18]Such observations have motivated the scientists to study the effect of the SOC in the graphene-based systems.The effect of SOC on the electronic structure of the graphene opens a small gap in the band energy.This allows the grapheneto convert from a two-dimensional semiconductor to an insulator with a quantized spin Hall conductance.[18?19]

    The spin conductivity as a striking feature of the graphene can be analyzed based on the Kubo and Landauer formulas.[5]The spin-dependent transport of the graphene nanoribbons have been studied in the presence of an electric- field-induced Rashba coupling in the finite region of the system by consideration of some symmetries.[20]Also,the effect of symmetry and defect on transport properties in zigzag graphene nanoribbons are investigated.[21]A perfect spin- filtering effect and a rectifying behavior are observed for edge hydrogenated graphene nanoribbon heterojunctions.[22]The spin polarization and conductance have been calculated in a Y-shape graphene nanoribbon with three terminals in the presence of the RSOC.[23]In the case of a T-shaped conductor,the effects of the RSOC on the spin-dependent transmission probabilities and the spin filtration have been obtained.[24?26]A large spin- filtering is observed in graphene nanoribbons with zigzag edges in the presence of RSOC.[26]A similar work has performed very recently that the spin polarization has been studied using a gate voltage through a Rashba barrier in the graphene.It found that the sign of the spin polarization can switch from positive to negative by adjusting the electric potential at any RSOC.[27]There also exist technological applications of the grephene in spintronic devices.The graphene nanostrips can be used as digital memory devices in which the spin-polarized states can be treated as switchable quantum bits through the applied voltage.[28]

    In this paper,we consider graphene nanodisks with various sizes as channels deposited on a substrate for inducing the RSOC.The channel is connected to semiin finite nanoribbons with armchair edges as the leads.The RSOC is provided by an underneath gate voltage applied to the central region of the device.In our approach,we start with a single-particle Green’s function in the tight binding model to calculate the transmission probability and the spin polarization of the electrons.Moreover,the spin polarization of the device in three directions is obtained by tuning the RSOC strength.We also study the effect of the size of the channel on the spin polarization.

    2 Model and Method

    We consider a graphene nanoflake as a channel in which the number of the plaquettes on each side,denoted byM,introduces the size of the system.The RSOC is applied to the center of the channel,as shown with the red color in the inset of Fig.1.The system is attached to two semi-in finite graphene nanoribbon leads,denoted by leadLand leadR.The total Hamiltonian of the system is

    where,H0describes the kinetic energy of the itinerant electrons in the nanoflake andHRis the Rashba Hamiltonian.In Eq.(1),H0can be expressed in a tight-binding model in terms of the electronic hopping between the nearest neighbor atomic sites;

    where〈n,m〉denotes the summation over the nearest neighbor sites,t=2.66 eV is the nearest-neighbor hopping integral,andc?n,σ(cn,σ)is the creation(annihilation)field operator of an electron at then-th site with the spinσ(↑,↓).In Eq.(1),His given by[26]R

    wheredn,mis a displacement vector between the two nearest-neighbor atoms fromm-th ton-th site,αrepresents the Rashba SOC strength,andais the carboncarbon bond length. The advanced(retarded)singleparticle Green’s function can be written as follows[29]

    whereHCis the Hamiltonian of the channel.The self energy of the leadα(=L,R)is

    wheregαis the surface Green’s function at the interface of the channel and the leadα.HαCis the coupling between the leadαand the channel.We calculateGLσσR′by the Keldysh formalism as the spin-resolved conductance of the electrons with the injected Fermi energyEand the spinσfrom the left lead(L)and detected with the spinσ′from the right lead(R),[20]

    Here,Γ is the coupling matrix for the leadαthat is related to self-energies as follows

    The transmission probability of the electron,Tσσ′,will be generalized to a 2×2 matrix in the spin space with spin-conserving components(diagonal)and spin- flipping components(off-diagonal)[23]

    If the incident current is unpolarized,then the spin polarization of the current detected in the right lead inx,y,andzdirection is calculated by using the Eq.(8)

    and the total spin polarization is defined by

    3 Results and Discussion

    In this section,the transmission probability and the spin polarization are calculated versus the Fermi energy for various strengths of RSOC and several sizes of the system.The direction of the electric field which determines the strength of RSOC is chosen along thezaxis.This is also used as the direction of the spin quantization.According to the experimental data for the strengths of RSOC in the graphene-based nanomaterials,[17]we consider the range(0–0.2)eV forαin the following.

    Fig.1 (Color online)Spin-up and spin-down transmission probabilities as a function of the Fermi energy of the injected electrons for M=10 and two values of α=0 and 0.2 eV.Inset:Schematic representation of the channel for M=10.

    Figure 1 shows the variation of the spin-up and spindown transmission probabilities as functions of the Fermi energy of the injected electrons for two values of the Rashba strength(α=0 and 0.2 eV).The considered channel forM=10 is sketched in the inset.The electrons are injected from the left side of the channel and detected at the right side.The dotted curves are for the situation that the edges of graphene nanoribbon are terminated with hydrogen atoms.In Fig.1,the transmission probabilities are nearly zero aroundE/t=0,but the probabilities grow with the enhancement of the energy.The steps in the curves are irregular because of the backscattering of the electrons that occurs in the channel.This is due to the bending in the region of the channel that RSOC is applied from a straight nanoribbon.In the absence of the RSOC(α=0),the transmission probabilities are even functions with respect to the Fermi energy due to the time reversal symmetry in the system.However,this symmetry breaks down with turning on the Rashba field.By increasing the Rashba strength,the transmission probabilities remain unchanged at small values of the energy(E/t?0.1).Then,the probabilities decrease for the higher energies(E/t?0.1).This is because the RSOC rotates the spin of the electrons and then,the transmission probabilities of the electrons with the initial spin direction decrease.This achievement is in agreement with the result of Ref.[27]in which the transmission probability is larger for lower gate voltages.The mentioned change in the spin orientation by the RSOC is useful in the applications that use a gate voltage for the spin filtration.

    If we consider the graphene nanorribbon with hydrogen-terminated edges,the length of the C-C bond in the edge shortens.So,this kind of geometric deformation causes increasing of the hopping parameter between two neighboring carbon atoms on the graphene nanoribbon edge.[30]By attention to dotted curves in Fig.1 we see that the transmission probability decreases slightly for the most of the values of the Fermi-energy.This decrease is a result of backscattering of the electrons waves from hydrogen atoms that act as defects on the edges.Besides,the energy interval that the transmission probability is zero decreases.Also the fluctuations of the transmission probability become more in the presence of the hydrogenterminated edges.This is due to the quantum interference of the electrons waves.By comparison of Figs.1(a)and 1(b),one observes that the behavior of the spin-up and spin-down transmission probabilities are similar to each other.This indicates the presence of a kind of symmetry in the system with respect to the orientation of the spin of the electrons. Also for an arbitrary energy in the presence of RSOC(α=0.2 eV),one observes thatT↑↑(E)=T↓↓(?E).

    Fig.2 (Color online)Spin-up and spin-down transmission probabilities as a function of the Rashba strength for M=10 and two values of the Fermi energy.The solid and dotted lines show T↑↑ for E/t=0.29 and E/t=?0.29,respectively.The dashed line represents T↓↓ for E/t= ?0.29.The solid and dashed lines fall on each other.Inset:Schematic representation of the channel for M=10.

    Figure 2 shows the variation of the transmission probabilities with the Rashba strength for two values of the Fermi energyE/t=0.29 and?0.29 in the channel withM=10.In the absence of the RSOC(α=0),we haveT↑↑(E)=T↑↑(?E)=T↓↓(?E).By switching on the Rashba field and increasingα,an overall decreasing occurs and the above relation changes toT↑↑(E)=T↓↓(?E)/=T↑↑(?E).These results are in agreement with Fig.1.

    The effects of the RSOC on the components of the spin polarization are shown in Fig.3.In this figure,Px,PyandPzare plotted with respect to the Fermi energy for several values ofα.In Figs.3(a)–3(c),an antisymmetry exists with respect toEfor all values ofα.Also,in these figures,there is a region around the zero Fermi energy where the spin polarizations become zero,which is due to the gap in the energy levels.[20]However,outside this interval,a sudden increase is seen in the spin polarizations for specific energies.The sudden increase in the spin polarizations allows one to choose energies corresponding to strong spin filtrations.In Figs.3(a)–3(c),the components of the spin polarization oscillate by the enhancement of the energy,and the heights of the peaks suppress and decay to the zero.The origin of these oscillations is multiple reflections of the spin waves and their resonance in the channel.By increasingα,more oscillations are observed inPx,PyandPz.All components of the spin polarization have zero value in the absence of the Rashba field,but they increase with enhancement the Rashba strength.Also,in Figs.3(a)and 3(c)a change in the sign is observed in the plots ofPxandPzwith increasing the energy at all Rashba strengths.These results indicate that the sign and the magnitude of the spin polarizationPxandPzcan be controlled by tuning the gate voltage.Also,the spin polarization in thez-direction(Pz),which is obtained through the difference between the transmission probabilities according to Eq.(9),becomes lower when the energy increases.It has the maximum value atE/t=0.215,which is in agreement with Fig.1.

    In Fig.3(d),three components of the spin polarization are compared with each other for the value ofα=0.2 eV.The value of the maximum ofPyis larger than those of the other components in 0.1<E/t<0.5.This shows that the channel has a good filtration behavior for theycomponent of the spin polarization in this range of the energy.Also in this figure,Pxis zero inE/t~0.287 andPzis zero inE/t~0.3,which indicate that one can have a control on the spin filtration by variation of the Fermi energy.In Fig.4,the total spin polarization is plotted with respect to the Fermi energy for several Rashba strengths.The total spin polarization is an even function of the Fermi energy.

    The spin-up transmission probability and the total spin polarization are shown in Fig.5 for several sizes of the system and forα=0.2 eV.In Fig.5(a),the transmission probability is an increasing function with enhancement of the size of the system at a fixed Fermi energy.Besides,the energy interval that the transmission probability is zero decreases with the size of the system.This is because for the larger sizes of the system,the number of accessible energy levels for the injected electrons is higher.The similar effects are observed for total spin polarization in the range 0.1<E/t<0.5 in Fig.5(b).Also,the fluctuations of the spin polarization increase with the size of the system.

    Fig.3 (Color online)Components of the spin polarization as a function of the Fermi energy for M=10 and various values of the Rashba strength in Figs.3(a)–3(c).These components are shown particularly for α =0.2 eV in panel(d).Schematics of the channel for M=10 is shown in the right bottom of the figure.

    Fig.4 (Color online)Total spin polarization versus the Fermi energy for M=10 and various values of the Rashba strength.Inset:Schematic representation of the channel for M=10.

    Fig.5 (Color online)Spin-up transmission probability and total spin polarization with respect to the Fermi energy for several sizes of the system at α=0.2 eV.

    Figure 6 shows the effect of the size of the channel on the components of the spin polarization with respect to the Fermi energy forα=0.2 eV.In all panels of this figure,the fluctuations of the spin polarization become more with size of the system.The heights of the largest peaks in the plots grow with increasing the size of the system.So,the ability to perform spin filtration enhances with the size of the channel.In Fig.6,as the size increases,the maximum amplitudes of the plots occur in lower energies.This is because the number of available energy levels for the electrons increases with the size of the system as mentioned before.In the range 0<E/t<0.5,one can have a control on the type of the spin filtration,by variation of the Fermi energy.For example,Pxhas a zero value forM=10 atE/t=0.284,butPyandPzare nonzero in these parameters of the system.Moreover,the spin filtration can be controlled by changing the size of the system,e.g.all of the components of the spin polarization are nonzero forM=13 atE/t=0.284,butPxhas a zero value forM=4 and 10 at this energy.

    Fig.6(Color online)Three components of the spin polarization with respect to the Fermi energy for several sizes of the system at α=0.2 eV.

    Fig.7 Transmission probability in the absence(solid curves)and presence of defect(dashed curves)as a function of the Fermi energy of the injected electrons for M=10 and α=0.2 eV.Inset:Schematic representation of the channel with defect for M=10.

    We have introduced a single defect as vacancy into this system and the result is plotted in Fig.7.In this figure,the transmission probability is shown for spin-up and spindown(in the presence and in the absence of defect)forM=10 andα=0.2 eV.The transmission probabilities are reduced although the overall behavior remains almost unchanged in comparison with the system without defect.This reduction is due to the effect of the backscattering of the electrons waves from the defect in this system Also,the difference between the spin-up and the spin-down transmission coefficients increases with introducing the defect to system.

    4 Conclusion

    In this paper,the transmission probabilities and the spin polarization are investigated in the presence of RSOC via a gate voltage in the graphene nanoflake systems.The variation of the transmission probability is studied with respect to the Fermi energy of the electrons.This shows that out of the region of the zero energy,the transmission probability is growing by enhancement of the energy.Besides,the spin polarization increases with the enhancement of the Rashba strength and oscillates by variation of the energy.Also,the amplitudes of the peaks of the spin polarization decay to zero for all values of the Rashba strength.This indicates that the sign and the magnitude of the spin polarization can be controlled by tuning the gate voltage.Moreover,the effects of the size of the system on the transmission probability and the spin polarization is investigated.This shows that there is a control and manipulation of the spin filtration by means of the variation of the Rashba strength and the size of the system.The obtained results are applicable for electrical control on the spin transport in graphene-based nanodevices.

    [1]I.Zutic,J.Fabian,and S.D.Sarma,Rev.Mod.Phys.76(2004)323.

    [2]S.Murakami,N.Nagaosa,and S.C.Zhang,Phys.Rev.Lett.93(2004)156804.

    [3]Y.A.Bychkov and E.I.Rashba,J.Phys.C 17(1984)6039.

    [4]A.Dyrdal and J.Barnas,Phys.Rev.B 92(2015)165404.

    [5]M.I.Katsnelson,Eur.J.Phys.B 51(2006)157.

    [6]P.Debray,et al.,Nat.Nanotechnol.4(2009)759.

    [7]J.F.Liu,Z.C.Zhong,L.Chen,D.Li,C.Zhang,and Z.Ma,Phys.Rev.B 76(2007)195304.

    [8]S.Murakami,N.Nagaosa,and S.C.Zhang,Science 301(2003)1348.

    [9]J.Sinova,et al.,Phys.Rev.Lett.92(2004)126603.

    [10]Y.K.Kato,et al.,Science 306(2004)1910.

    [11]J.Wunderlich,B.Kaestner,J.Sinova,and T.Jungwirth,Phys.Rev.Lett.94(2005)047204.

    [12]D.Huertas-Hernando,F.Guinea,and A.Brataas,Phys.Rev.B 74(2006)155426.

    [13]J.B.Oostinga,H.B.Heersche,X.Liu,A.F.Morpurgo,and L.M.K.Vandersypen,Nat.Mater.7(2007)151.

    [14]F.Schwierz,Nat.Nanotechnol.5(2010)487.

    [15]Z.Wang,N.Hao,and P.Zhang,Phys.Rev.B 80(2009)115420.

    [16]M.H.D.Guimaraes,et al.,Nano Lett.12(2012)3512.

    [17]Y.S.Dedkov,M.Fonin,U.Rudiger,and C.Laubschat,Phys.Rev.Lett.100(2008)107602.

    [18]C.L.Kane and E.J.Mele,Phys.Rev.Lett.95(2005)226801.

    [19]N.A.Sinitsyn,J.E.Hill,H.Min,J.Sinova,and A.H.Mac-Donald,Phys.Rev.Lett.97(2006)106804.

    [20]L.Chico,A.Latge,and L.Brey,Phys.Chem.Chem.Phys.17(2015)16469.

    [21]Y.Ren and K.Q.Chen,J.Appl.Phys.107(2010)044514.[22]J.Zeng,K.Q Chen,J.He,X.J.Zhang,and C.Q.Sun,J.Phys.Chem.C 115(2011)25072.

    [23]J.F.Liu and K.S.Chan,J.Phys.Soc.Jpn.82(2013)074711.

    [24]M.Yamamoto,T.Ohtsuki,and B.Krame,Phys.Rev.B 72(2005)115321.

    [25]A.A.Kiselev and K.W.Kim,Appl.Phys.Lett.78(2001)775.

    [26]J.F.Liu,K.S.Chan,and J.Wang,Nanotechnology 23(2012)095201.

    [27]X.Wu,J.Phys.D:Appl.Phys.49(2016)105305.

    [28]D.Gunlycke,D.A.Areshkin,J.Li,J.W.Mintmire,and C.T.White,Nano Lett.7(2007)3608.

    [29]S.Datta,Electronic Transport in Mesoscopic Systems,Cambridge University Press,Cambridge(2002).

    [30]Z.F.Wang,Q.Li,H.Zheng,H.Ren,H.Su,Q.W.Shi,and J.Chen,Phys.Rev.B 75(2007)113406.

    不卡av一区二区三区| 可以免费在线观看a视频的电影网站| 亚洲欧洲精品一区二区精品久久久| 免费在线观看视频国产中文字幕亚洲| 午夜福利一区二区在线看| 在线播放国产精品三级| 亚洲片人在线观看| 亚洲精品国产一区二区精华液| 久久精品国产a三级三级三级| 91av网站免费观看| 成人精品一区二区免费| 日本精品一区二区三区蜜桃| 91老司机精品| 两个人免费观看高清视频| 成人国语在线视频| 精品人妻1区二区| 国产精品亚洲av一区麻豆| 国产在线一区二区三区精| 亚洲色图 男人天堂 中文字幕| 天天躁日日躁夜夜躁夜夜| 成人亚洲精品一区在线观看| 啦啦啦视频在线资源免费观看| 亚洲少妇的诱惑av| 日韩大码丰满熟妇| 丰满饥渴人妻一区二区三| 老司机在亚洲福利影院| 人人妻人人澡人人看| 国产精品秋霞免费鲁丝片| 成人av一区二区三区在线看| 亚洲人成伊人成综合网2020| 精品乱码久久久久久99久播| 9191精品国产免费久久| 亚洲国产精品一区二区三区在线| 在线观看免费视频日本深夜| 久久九九热精品免费| 亚洲伊人色综图| 欧美精品av麻豆av| 午夜福利免费观看在线| 新久久久久国产一级毛片| 又黄又爽又免费观看的视频| 亚洲免费av在线视频| 天堂中文最新版在线下载| 国产不卡一卡二| 动漫黄色视频在线观看| 人人妻人人澡人人看| 成人免费观看视频高清| 色在线成人网| 亚洲一区中文字幕在线| 夜夜躁狠狠躁天天躁| 日韩人妻精品一区2区三区| 国产91精品成人一区二区三区| 欧美激情久久久久久爽电影 | 91av网站免费观看| 欧美av亚洲av综合av国产av| 少妇猛男粗大的猛烈进出视频| 久久这里只有精品19| 69av精品久久久久久| 中文字幕人妻丝袜一区二区| 亚洲全国av大片| 国产成+人综合+亚洲专区| 国产精品亚洲av一区麻豆| 国产精品久久久久久人妻精品电影| 国产欧美亚洲国产| 99国产极品粉嫩在线观看| 久久久久国产精品人妻aⅴ院 | 成人特级黄色片久久久久久久| 午夜免费鲁丝| 中文字幕色久视频| 男人的好看免费观看在线视频 | 1024视频免费在线观看| 欧美黑人精品巨大| 一区二区三区激情视频| 日日爽夜夜爽网站| 可以免费在线观看a视频的电影网站| 18禁裸乳无遮挡免费网站照片 | 女人爽到高潮嗷嗷叫在线视频| 国产97色在线日韩免费| 大型av网站在线播放| 国产欧美日韩一区二区三| 少妇 在线观看| 国产激情欧美一区二区| e午夜精品久久久久久久| 老鸭窝网址在线观看| 欧美在线黄色| 国产一区二区三区视频了| 老司机亚洲免费影院| 国产日韩一区二区三区精品不卡| 老司机午夜十八禁免费视频| 亚洲aⅴ乱码一区二区在线播放 | 久久国产精品大桥未久av| 99国产极品粉嫩在线观看| 亚洲一区中文字幕在线| 国精品久久久久久国模美| 少妇的丰满在线观看| 啪啪无遮挡十八禁网站| 亚洲精品粉嫩美女一区| 日本欧美视频一区| 久久久久久免费高清国产稀缺| 正在播放国产对白刺激| 99久久99久久久精品蜜桃| 大香蕉久久成人网| 91精品三级在线观看| 少妇粗大呻吟视频| 一级毛片高清免费大全| 国产男女内射视频| 免费观看a级毛片全部| 一夜夜www| 热99久久久久精品小说推荐| 99久久人妻综合| 亚洲国产欧美日韩在线播放| 男男h啪啪无遮挡| 国产亚洲欧美98| 久久亚洲真实| a级片在线免费高清观看视频| 亚洲精品在线观看二区| 水蜜桃什么品种好| 脱女人内裤的视频| 成人国语在线视频| 桃红色精品国产亚洲av| 成人免费观看视频高清| 亚洲精品一二三| 久久人人97超碰香蕉20202| 免费一级毛片在线播放高清视频 | ponron亚洲| 伦理电影免费视频| av福利片在线| 亚洲av电影在线进入| 国产xxxxx性猛交| 国产成人欧美| 黑人巨大精品欧美一区二区mp4| 国产1区2区3区精品| 99久久综合精品五月天人人| 男人操女人黄网站| 久久天躁狠狠躁夜夜2o2o| 国产亚洲精品久久久久5区| av视频免费观看在线观看| 亚洲成人免费av在线播放| 亚洲精品中文字幕在线视频| 亚洲国产精品合色在线| 亚洲精品久久午夜乱码| 伦理电影免费视频| 国产成人欧美在线观看 | 美国免费a级毛片| 国产aⅴ精品一区二区三区波| 99久久国产精品久久久| 欧美在线一区亚洲| 国产亚洲欧美在线一区二区| 亚洲av美国av| 成年动漫av网址| 一区二区日韩欧美中文字幕| 欧美av亚洲av综合av国产av| 午夜影院日韩av| 涩涩av久久男人的天堂| 十八禁高潮呻吟视频| 黄色 视频免费看| 精品国产亚洲在线| 亚洲美女黄片视频| 日韩成人在线观看一区二区三区| 一进一出抽搐gif免费好疼 | 国产精品久久久久成人av| 色综合婷婷激情| 国产成人免费无遮挡视频| 亚洲欧美日韩高清在线视频| 国产精品电影一区二区三区 | 日韩精品免费视频一区二区三区| 精品亚洲成国产av| 日韩成人在线观看一区二区三区| 久久人人97超碰香蕉20202| ponron亚洲| 天天躁夜夜躁狠狠躁躁| 老汉色∧v一级毛片| 国产精品99久久99久久久不卡| 在线十欧美十亚洲十日本专区| 亚洲专区字幕在线| 老熟妇乱子伦视频在线观看| 国产1区2区3区精品| 国产99久久九九免费精品| 脱女人内裤的视频| 啦啦啦视频在线资源免费观看| 亚洲色图综合在线观看| 国产精品欧美亚洲77777| 精品国产一区二区久久| 大陆偷拍与自拍| 男女之事视频高清在线观看| 天天躁夜夜躁狠狠躁躁| x7x7x7水蜜桃| 99re6热这里在线精品视频| 少妇被粗大的猛进出69影院| 黄色女人牲交| 美女高潮喷水抽搐中文字幕| 亚洲国产看品久久| 国产在线一区二区三区精| 老司机靠b影院| 国产精品99久久99久久久不卡| 亚洲一区二区三区不卡视频| 久久久久国产一级毛片高清牌| 中出人妻视频一区二区| 国产精品欧美亚洲77777| 久久ye,这里只有精品| 脱女人内裤的视频| 韩国av一区二区三区四区| 午夜福利影视在线免费观看| a级毛片黄视频| 老司机在亚洲福利影院| 亚洲五月色婷婷综合| 热re99久久精品国产66热6| 久久人人97超碰香蕉20202| 村上凉子中文字幕在线| 国产一区在线观看成人免费| 久久精品国产清高在天天线| 19禁男女啪啪无遮挡网站| 丝袜美腿诱惑在线| 亚洲五月天丁香| 一级作爱视频免费观看| 久久久久久久久免费视频了| av不卡在线播放| 国产精品98久久久久久宅男小说| 天堂俺去俺来也www色官网| 成人国产一区最新在线观看| 国产男靠女视频免费网站| 国产xxxxx性猛交| 欧美黑人欧美精品刺激| 岛国毛片在线播放| 亚洲国产精品一区二区三区在线| 亚洲一区二区三区欧美精品| 国产色视频综合| 最新在线观看一区二区三区| 男女高潮啪啪啪动态图| 亚洲情色 制服丝袜| 好看av亚洲va欧美ⅴa在| a级毛片黄视频| 不卡一级毛片| 天天躁狠狠躁夜夜躁狠狠躁| 他把我摸到了高潮在线观看| 99re6热这里在线精品视频| 99精国产麻豆久久婷婷| 一级,二级,三级黄色视频| 日韩有码中文字幕| 国产单亲对白刺激| 国产高清国产精品国产三级| 看免费av毛片| 欧美精品啪啪一区二区三区| 身体一侧抽搐| tube8黄色片| 两个人免费观看高清视频| 久久久久精品人妻al黑| 中文字幕另类日韩欧美亚洲嫩草| 麻豆av在线久日| e午夜精品久久久久久久| 最近最新中文字幕大全电影3 | 国产男女超爽视频在线观看| 99国产精品一区二区蜜桃av | 久久精品国产综合久久久| 亚洲欧美精品综合一区二区三区| 亚洲伊人色综图| 十八禁网站免费在线| 18禁美女被吸乳视频| 99riav亚洲国产免费| 免费在线观看黄色视频的| 黑人猛操日本美女一级片| 久久 成人 亚洲| 99国产精品一区二区三区| 精品国产亚洲在线| 欧美精品高潮呻吟av久久| 捣出白浆h1v1| 亚洲黑人精品在线| 中文字幕人妻熟女乱码| 女人精品久久久久毛片| 午夜成年电影在线免费观看| 久久久久久久久免费视频了| 热99国产精品久久久久久7| 老司机在亚洲福利影院| 久久国产乱子伦精品免费另类| a级片在线免费高清观看视频| 日韩欧美免费精品| 免费看十八禁软件| 一进一出抽搐动态| 成人18禁在线播放| 一区二区三区国产精品乱码| 激情在线观看视频在线高清 | 夜夜爽天天搞| av片东京热男人的天堂| 国产高清videossex| 9191精品国产免费久久| 中文亚洲av片在线观看爽 | 国产精品 国内视频| 女人久久www免费人成看片| 天堂中文最新版在线下载| 久久九九热精品免费| 18禁裸乳无遮挡动漫免费视频| 亚洲av片天天在线观看| 亚洲欧美日韩另类电影网站| 亚洲国产毛片av蜜桃av| 男女床上黄色一级片免费看| 狠狠婷婷综合久久久久久88av| 久久性视频一级片| 久久草成人影院| 国产成人免费无遮挡视频| 国产乱人伦免费视频| 国产野战对白在线观看| 天堂动漫精品| 久久精品成人免费网站| 国产区一区二久久| 看免费av毛片| 国产精品一区二区精品视频观看| 在线观看一区二区三区激情| 99re6热这里在线精品视频| 免费观看人在逋| 久久精品成人免费网站| 国产麻豆69| 99久久综合精品五月天人人| 99精品在免费线老司机午夜| 99久久99久久久精品蜜桃| 国产精品乱码一区二三区的特点 | 久久精品国产清高在天天线| 18禁国产床啪视频网站| 男女之事视频高清在线观看| 亚洲人成电影免费在线| 国产精品秋霞免费鲁丝片| 国产男女内射视频| 欧美国产精品va在线观看不卡| 欧美日韩精品网址| 18禁观看日本| 一区二区日韩欧美中文字幕| 亚洲av电影在线进入| 波多野结衣一区麻豆| 中文字幕最新亚洲高清| 成人永久免费在线观看视频| 亚洲欧美激情在线| tube8黄色片| 亚洲av日韩精品久久久久久密| 免费人成视频x8x8入口观看| 一区在线观看完整版| 50天的宝宝边吃奶边哭怎么回事| 成人特级黄色片久久久久久久| 国产真人三级小视频在线观看| 大陆偷拍与自拍| 国产97色在线日韩免费| 亚洲一区二区三区不卡视频| 乱人伦中国视频| 日韩视频一区二区在线观看| 一区在线观看完整版| 久久人人爽av亚洲精品天堂| 国产精品1区2区在线观看. | www.999成人在线观看| 1024视频免费在线观看| 欧美中文综合在线视频| 国产精品国产高清国产av | 麻豆国产av国片精品| 欧美国产精品一级二级三级| 欧美日韩瑟瑟在线播放| 纯流量卡能插随身wifi吗| 亚洲熟妇熟女久久| 黄片大片在线免费观看| 国产人伦9x9x在线观看| 热99国产精品久久久久久7| 国产精品综合久久久久久久免费 | av网站免费在线观看视频| 亚洲欧美激情综合另类| 看黄色毛片网站| 女人被躁到高潮嗷嗷叫费观| 高清视频免费观看一区二区| 国产精华一区二区三区| 国产人伦9x9x在线观看| 国产一区二区三区视频了| 亚洲精品美女久久av网站| 国产黄色免费在线视频| 久久久久精品国产欧美久久久| 国产精品免费视频内射| 国产免费av片在线观看野外av| 日韩人妻精品一区2区三区| 熟女少妇亚洲综合色aaa.| 一边摸一边抽搐一进一出视频| 国产不卡一卡二| 久久亚洲真实| 伦理电影免费视频| 久久香蕉精品热| 十八禁网站免费在线| 男人操女人黄网站| 久久 成人 亚洲| 新久久久久国产一级毛片| 俄罗斯特黄特色一大片| 日韩一卡2卡3卡4卡2021年| 黑人操中国人逼视频| 久久国产乱子伦精品免费另类| 香蕉丝袜av| 久久草成人影院| 亚洲午夜精品一区,二区,三区| 在线永久观看黄色视频| 欧美亚洲 丝袜 人妻 在线| 黄色丝袜av网址大全| 成年版毛片免费区| 成年动漫av网址| 桃红色精品国产亚洲av| 久久热在线av| 999久久久国产精品视频| 精品国产一区二区三区久久久樱花| 大码成人一级视频| 在线观看66精品国产| 国产精品免费一区二区三区在线 | 国产单亲对白刺激| 超碰成人久久| 欧美午夜高清在线| 操出白浆在线播放| 啦啦啦视频在线资源免费观看| 亚洲美女黄片视频| 天天操日日干夜夜撸| 亚洲综合色网址| 无限看片的www在线观看| 一本综合久久免费| 精品国内亚洲2022精品成人 | 老汉色∧v一级毛片| 亚洲精品美女久久av网站| x7x7x7水蜜桃| 女性被躁到高潮视频| 日韩欧美一区视频在线观看| 丝袜人妻中文字幕| 国产成人av激情在线播放| 久久久精品区二区三区| 天堂动漫精品| 国产国语露脸激情在线看| 亚洲中文日韩欧美视频| 国产又色又爽无遮挡免费看| 母亲3免费完整高清在线观看| 精品第一国产精品| 黄色 视频免费看| 国产欧美日韩精品亚洲av| 国产精品二区激情视频| 免费少妇av软件| 热re99久久国产66热| 成人手机av| 久99久视频精品免费| 一级毛片女人18水好多| 一二三四在线观看免费中文在| 午夜两性在线视频| 国产一区在线观看成人免费| 狠狠狠狠99中文字幕| 黄色丝袜av网址大全| 久久久久久免费高清国产稀缺| 女人久久www免费人成看片| 大片电影免费在线观看免费| 欧美亚洲日本最大视频资源| 黄频高清免费视频| 黄色丝袜av网址大全| 黑人巨大精品欧美一区二区蜜桃| 亚洲黑人精品在线| 在线观看免费高清a一片| 满18在线观看网站| 亚洲精华国产精华精| 伦理电影免费视频| 午夜精品国产一区二区电影| 性色av乱码一区二区三区2| 久久人妻av系列| 涩涩av久久男人的天堂| 18禁裸乳无遮挡免费网站照片 | aaaaa片日本免费| 亚洲一区中文字幕在线| 久久久水蜜桃国产精品网| 一级片'在线观看视频| 国产一区二区三区视频了| 国产伦人伦偷精品视频| 人人澡人人妻人| 久久久国产欧美日韩av| 久久久久国内视频| 久久精品国产综合久久久| 久久精品国产亚洲av香蕉五月 | 久久久精品区二区三区| 成在线人永久免费视频| 国产男女内射视频| 欧美+亚洲+日韩+国产| 亚洲精品自拍成人| 亚洲一区二区三区不卡视频| 久久中文看片网| 在线av久久热| 在线观看66精品国产| 极品教师在线免费播放| 91老司机精品| 精品国产一区二区三区四区第35| 亚洲色图 男人天堂 中文字幕| www日本在线高清视频| 岛国毛片在线播放| 熟女少妇亚洲综合色aaa.| 999久久久国产精品视频| 1024视频免费在线观看| 黑人操中国人逼视频| 美女高潮喷水抽搐中文字幕| 人妻久久中文字幕网| 自线自在国产av| 男人的好看免费观看在线视频 | 1024视频免费在线观看| 午夜福利影视在线免费观看| 国产91精品成人一区二区三区| 一级片'在线观看视频| 欧美+亚洲+日韩+国产| 一边摸一边抽搐一进一小说 | 深夜精品福利| 国产亚洲欧美精品永久| 一进一出抽搐gif免费好疼 | а√天堂www在线а√下载 | 欧美黑人欧美精品刺激| 欧美另类亚洲清纯唯美| 国产深夜福利视频在线观看| 超色免费av| 成年人午夜在线观看视频| 露出奶头的视频| 人人澡人人妻人| 国产xxxxx性猛交| 精品无人区乱码1区二区| 国产精品亚洲一级av第二区| 黄频高清免费视频| 一级毛片高清免费大全| 亚洲av美国av| 黄片大片在线免费观看| 无限看片的www在线观看| 大香蕉久久网| 两个人看的免费小视频| 国产又色又爽无遮挡免费看| 免费在线观看亚洲国产| 老汉色∧v一级毛片| 亚洲精品自拍成人| 99国产精品一区二区三区| 成人亚洲精品一区在线观看| 久久热在线av| 丁香欧美五月| 一进一出抽搐动态| 亚洲av片天天在线观看| 久热这里只有精品99| 国产成人欧美在线观看 | 深夜精品福利| www.熟女人妻精品国产| 国产xxxxx性猛交| 精品久久久久久电影网| 飞空精品影院首页| 亚洲五月婷婷丁香| 亚洲精品一卡2卡三卡4卡5卡| 中文字幕另类日韩欧美亚洲嫩草| 中文字幕av电影在线播放| 高清视频免费观看一区二区| 国内久久婷婷六月综合欲色啪| 亚洲国产精品sss在线观看 | 99在线人妻在线中文字幕 | 久热这里只有精品99| 中出人妻视频一区二区| 国产日韩欧美亚洲二区| 一进一出抽搐动态| 三上悠亚av全集在线观看| 欧美日韩视频精品一区| 少妇 在线观看| 日韩人妻精品一区2区三区| 老司机亚洲免费影院| 叶爱在线成人免费视频播放| 一区二区三区国产精品乱码| 亚洲精品美女久久av网站| 欧美久久黑人一区二区| 国产不卡av网站在线观看| 国产精品欧美亚洲77777| av欧美777| 精品欧美一区二区三区在线| 精品人妻1区二区| 久久精品国产99精品国产亚洲性色 | 91大片在线观看| 日韩精品免费视频一区二区三区| 久久精品国产99精品国产亚洲性色 | 久久婷婷成人综合色麻豆| 这个男人来自地球电影免费观看| 国产精品免费视频内射| 亚洲国产欧美一区二区综合| 老司机在亚洲福利影院| 69av精品久久久久久| 美女国产高潮福利片在线看| 午夜亚洲福利在线播放| 搡老熟女国产l中国老女人| 成人免费观看视频高清| 啦啦啦在线免费观看视频4| 国产精品二区激情视频| 丰满迷人的少妇在线观看| 热99久久久久精品小说推荐| 色尼玛亚洲综合影院| 人妻 亚洲 视频| 黄色丝袜av网址大全| 国产一卡二卡三卡精品| 国产精品 欧美亚洲| 久热这里只有精品99| 午夜久久久在线观看| 欧美黑人精品巨大| 欧美中文综合在线视频| 日韩精品免费视频一区二区三区| 国产精品久久电影中文字幕 | 俄罗斯特黄特色一大片| netflix在线观看网站| 老司机影院毛片| 黑人操中国人逼视频| 亚洲九九香蕉| 高清欧美精品videossex| 国产伦人伦偷精品视频| 不卡av一区二区三区| 最近最新中文字幕大全免费视频| 欧美不卡视频在线免费观看 | 亚洲精品一卡2卡三卡4卡5卡| 在线看a的网站| 97人妻天天添夜夜摸| 麻豆av在线久日| 丰满饥渴人妻一区二区三| 国产色视频综合| 12—13女人毛片做爰片一| 一进一出抽搐动态| 国产精品影院久久| 欧美黄色淫秽网站| 国产淫语在线视频| 伦理电影免费视频| 天堂动漫精品| 亚洲中文日韩欧美视频| 久久人妻福利社区极品人妻图片| www日本在线高清视频| av超薄肉色丝袜交足视频|