武志剛,武舒佳,王迎春,鄭琳琳
(內(nèi)蒙古大學生命科學學院,內(nèi)蒙古 呼和浩特 010021)
植物中存在著復(fù)雜的信號轉(zhuǎn)導(dǎo)網(wǎng)絡(luò),用于調(diào)控植物的新陳代謝,以應(yīng)對不斷變化的生存環(huán)境。Ca2+作為重要的第二信使,經(jīng)Ca2+受體蛋白、鈣調(diào)素(CaM)和鈣依賴蛋白激酶(calcium-dependent protein kinase,CDPK)等協(xié)同作用[1],將鈣信號向下游傳遞并級聯(lián)放大,促進響應(yīng)蛋白的產(chǎn)生,從而調(diào)控植物的生長發(fā)育以及免疫應(yīng)答和脅迫響應(yīng)。
CDPK是目前植物中研究較多、了解較為清楚的一類絲氨酸/蘇氨酸蛋白激酶,在植物發(fā)育及其對生物和非生物脅迫信號轉(zhuǎn)導(dǎo)的應(yīng)答中執(zhí)行不同的生物學功能[2-4]。基因組數(shù)據(jù)分析顯示,在擬南芥(Arabidopsisthaliana)、水稻(Oryzasativa)、小麥(Triticumaestivum)、玉米(Zeamays)及楊樹(Populustomentosa)中分別含有34、31、20、40、20個CDPK基因[5-6]。后續(xù)研究發(fā)現(xiàn)CDPK同樣存在于綠藻類、卵菌和纖毛蟲、頂覆蟲等部分原生動物中。CDPK在不同組織中的表達、亞細胞定位、作用底物以及與不同蛋白體形成復(fù)合物等方面的差異,決定了該家族成員功能的差異,因此,本研究擬從這些方面對CDPKs進行全面的概述。
CDPK首次發(fā)現(xiàn)于豌豆(Pisumsativum)中,第1次從大豆(Glycinemax)中得到純化和鑒定。與其他鈣結(jié)合蛋白不同,CDPK是單肽鏈結(jié)構(gòu)。如圖1所示,CDPK具有4個典型的結(jié)構(gòu)域,從N端到C端依次為N-末端的可變域、催化域(激酶域)、連接域(自抑制域)和調(diào)控域(類鈣調(diào)素域/CaM-LD)。
圖1 CDPK的結(jié)構(gòu)特征Fig.1 Structural features of CDPK
N-末端可變域序列相似性低,保守性差[7]。多數(shù) CDPK 在N-端可變域含有與膜定位相關(guān)的豆蔻?;稽c(第2位的甘氨酸殘基)以及棕櫚?;稽c(第4或第5位的半胱氨酸殘基)[8],參與CDPK的膜結(jié)合過程。此外,N-末端可變域還在調(diào)節(jié)底物特異性過程中扮演關(guān)鍵的角色[9-10];催化域也稱激酶域,具有典型的Ser/Thr蛋白激酶的保守序列,同源性較高[11],該區(qū)域突變會導(dǎo)致催化活性喪失;連接域高度保守,Liese等[7]的研究表明,連接域功能上相當于一種假底物,與催化域結(jié)合保證CDPK處于非活躍狀態(tài),因此也叫自抑制域;C-末端調(diào)控域上具有類似鈣調(diào)素的結(jié)構(gòu),因此CDPK的激活依賴于鈣離子而不依賴于鈣調(diào)素。調(diào)控域包含4個可與鈣離子結(jié)合的EF-手性結(jié)構(gòu),是Ca2+和CDPK的結(jié)合位點[12]。根據(jù)對Ca2+的親和性不同將其分為兩個球形結(jié)構(gòu),分別為N-lobe和C-lobe[13],N-lobe對Ca2+親和性低,C-lobe對Ca2+親和性高,當Ca2+濃度低時與C-lobe結(jié)合,當Ca2+濃度高時與N-lobe結(jié)合,與連接域相互作用,導(dǎo)致調(diào)控域發(fā)生構(gòu)象變化,解除自抑制。
CDPK在植株中分布極其廣泛,器官水平上,在植株的根、莖、葉、花、果實及種子中均能檢測到基因的表達;細胞水平上,CDPK基因普遍存在于分生組織細胞、木質(zhì)部細胞、保衛(wèi)細胞、花粉母細胞及胚胎細胞中。CDPK的家族成員的表達特點不盡相同,有些可以在植物的大多數(shù)器官或組織中表達,如煙草(Nicotianatabacum)NtCPK1在葉片中不表達,在根、莖和花中均有表達[14];擬南芥的AtCPK12在根、莖、葉、花和成熟果莢等組織中均有表達,但在干種子中不表達[15];油菜(Brassicacampestris)BnCDPK1 在根、莖、葉、花和種子中都有表達,而有些卻只在特定的組織表達,如AtCPK16、AtCPK17、AtCPK25、AtCPK34只在花粉管中表達[16];此外,CDPK在不同器官中表達豐度也存在差異,油菜BnCDPK1在葉片中表達量最高,其次為莖、根和種子,在花中的表達量最低[17]。
通過亞細胞定位研究表明,CDPK可定位于細胞質(zhì)膜、內(nèi)質(zhì)網(wǎng)膜、胚乳貯藏囊泡、細胞骨架、線粒體、染色質(zhì)、細胞核、細胞質(zhì)、過氧化物酶體、油體及液泡膜等部位,N-末端可變域是CDPK亞細胞定位和功能的關(guān)鍵[18]。利用CDPK與綠色熒光蛋白(GFP)融合表達的方法,發(fā)現(xiàn)擬南芥CDPK幾乎全部定位于質(zhì)膜,少數(shù)定位于核。大多擬南芥CDPK具有專一的膜結(jié)合位點,即N-末端可變域的?;稽c,其中豆蔻?;稽c與靶細胞膜形成一個不可逆轉(zhuǎn)的松散的結(jié)合,而棕櫚?;稽c則具有可逆的穩(wěn)定的膜錨定結(jié)合[19]。豆蔻?;稽c上的甘氨酸突變?yōu)楸彼?如AtCPK2、AtCPK3、AtCPK5、AtCPK6、AtCPK9和AtCPK13)使CDPK的膜結(jié)合能力降低[20],棕櫚酰化位點突變則使亞細胞定位由膜向核轉(zhuǎn)變。另外,CDPK的亞細胞定位也受非生物脅迫的影響,如冰草(Agropyroncristatum)McCPK1響應(yīng)低溫脅迫而改變亞細胞定位,由定位于質(zhì)膜向定位于細胞核、內(nèi)質(zhì)網(wǎng)(ER)和肌動蛋白絲轉(zhuǎn)變[21]。
了解CDPK在植物體內(nèi)作用的靶蛋白,對研究其功能具有重要意義。到目前為止,已發(fā)現(xiàn)多種CDPK作用的底物(表1),它們參與多種細胞過程,如初級和次級代謝、脅迫響應(yīng)、離子和水分運輸、轉(zhuǎn)錄過程、信號轉(zhuǎn)導(dǎo)途徑等。
在上述CDPK的靶蛋白中,14-3-3蛋白因其與CDPK之間的交叉磷酸化作用受到學者的廣泛關(guān)注。14-3-3蛋白既與磷酸化的CDPK結(jié)合也可被CDPK磷酸化,在真核生物中通過磷酸化及與蛋白質(zhì)互作調(diào)節(jié)多種生物學過程。
14-3-3蛋白對CDPK的活性有直接調(diào)節(jié)作用。擬南芥AtCPK1是第1個被發(fā)現(xiàn)的受14-3-3蛋白調(diào)控的CDPK[45],但在體外實驗中,AtCPK1未能與14-3-3ω蛋白相結(jié)合,因此推測AtCPK1和14-3-3ω之間的相互作用可能發(fā)生在胞內(nèi)[46],作用位點仍有待鑒定。14-3-3蛋白除了參與CDPK活性的直接調(diào)節(jié)外,還可以控制CDPK的穩(wěn)定性。擬南芥AtCPK3已被證實為14-3-3的相互作用蛋白[47-48],盡管體外實驗顯示14-3-3蛋白并不影響AtCPK3的激酶活性,但近期研究發(fā)現(xiàn),饑餓誘導(dǎo)脅迫的AtCPK3在與14-3-3蛋白質(zhì)相互作用喪失后被選擇性切割[49],證明擬南芥細胞內(nèi)的14-3-3與AtCPK3的互作可以穩(wěn)定AtCPK3的活性。此外,在擬南芥細胞程序性死亡過程中,壞死性真菌產(chǎn)生的毒素FB1(Fumonisin B1)誘導(dǎo)擬南芥中程序性死亡因子PHS(phytosphingosine)表達,PHS水平的增加導(dǎo)致胞內(nèi)Ca2+升高,從而激活A(yù)tCPK3活性并磷酸化14-3-3蛋白質(zhì),14-3-3的磷酸化使得14-3-3/AtCPK3復(fù)合體解離,AtCPK3被切割[50-52],這一過程進一步證實了14-3-3蛋白對CDPK具有保護作用。
14-3-3蛋白不僅結(jié)合并調(diào)節(jié)磷酸化后的CDPK,它們自身也被磷酸化。動植物14-3-3s的各個位點都有可能被磷酸化,磷酸化在調(diào)節(jié)14-3-3與靶蛋白的相互作用過程中發(fā)揮了極其重要的作用[53-54]。在動物細胞中,程序性死亡因子PHS誘導(dǎo)兩種不同的蛋白激酶PKA(protein kinase A)和PKCδ(protein kinase Cδ)識別并磷酸化14-3-3ζ二聚體界面處的絲氨酸殘基(Ser58),Ser58磷酸化破壞14-3-3s的二聚體結(jié)構(gòu),從而完成了細胞凋亡過程(圖2);在植物細胞中,與過氧化物酶體結(jié)合的AtCPK1和AtCPK3、AtCPK6、AtCPK8、AtCPK24、AtCPK28均可在多個位點磷酸化蛋白14-3-3χ和14-3-3ε[24],其中對14-3-3χ和14-3-3ε蛋白磷酸化最快速的是AtCPK3和AtCPK28,因為二者N-末端可變域序列具有高度的同源性。
表1 已有文獻報道的CDPK在植物體內(nèi)作用的靶蛋白及其調(diào)控作用Table 1 The target protein and its regulatory role of CDPK
擬南芥具有13個14-3-3蛋白編碼基因,在植物發(fā)育的不同階段和不同組織中差異表達。CDPK/14-3-3復(fù)合體在植物信號通路中協(xié)同作用,共同調(diào)控代謝、激素信號傳導(dǎo)和氣孔運動,以及對非生物和生物脅迫的響應(yīng)等重要的生理生化過程[55-56]。
當光合作用不活躍時,擬南芥硝酸還原酶NR(nitrate reductase)在絲氨酸殘基(Ser534)處被AtCPK17或AtCPK28磷酸化,14-3-3蛋白通過結(jié)合葉片中磷酸化的NR,阻止亞硝酸鹽的產(chǎn)生,使其不能進一步還原成銨,最終導(dǎo)致NR失活[24,42]。菠菜(Spinaciaoleracea)硝酸還原酶SoNR則在絲氨酸殘基(Ser543)處被相關(guān)蛋白激酶SnRK(SNF1-related protein kinase)磷酸化后與抑制性蛋白14-3-3結(jié)合,由于擬南芥AtCPK3與菠菜SnRK具有非常相似的氨基酸序列,因此擬南芥AtCPK3能夠使菠菜NR磷酸化[41]。14-3-3蛋白也可通過結(jié)合被AtCPK3磷酸化的擬南芥6-磷酸果糖-2-激酶F2KP(fructose-2,6-bisphosphatase)參與碳循環(huán)過程[25,46]。
圖2 PHS誘導(dǎo)的細胞程序性死亡過程[52]Fig.2 PHS-induced programmed cell death process[52] PKA: 蛋白激酶A Protein kinase A; PKC: 蛋白激酶C Protein kinase C; P: 磷酸化Phosphorylation.
CDPK與赤霉素(GA)信號傳導(dǎo)存在緊密的聯(lián)系。1995年,在水稻中首次發(fā)現(xiàn)由GA誘導(dǎo)的未知的膜定位CDPK[43]。10年后,Abbasi等[56]研究顯示,OsCDPK13在轉(zhuǎn)錄水平響應(yīng)GA而被活化;擬南芥AtCPK28為GA和茉莉酸(JA)的調(diào)節(jié)劑,AtCPK28突變體改變了維持GA穩(wěn)態(tài)的關(guān)鍵酶的表達,表現(xiàn)出枝條和葉柄生長緩慢的特性[57-58];煙草中參與GA生物合成的反饋調(diào)節(jié)因子芽生長抑制因子RSG(repression of shoot growth)被鑒定為NtCDPK1的直接靶標,RSG通過控制GA生物合成基因的轉(zhuǎn)錄來維持GA穩(wěn)態(tài)。RSG在細胞質(zhì)基質(zhì)和細胞核之間來回移動,當GA濃度降低時,RSG轉(zhuǎn)入細胞核中激活GA合成基因的轉(zhuǎn)錄,合成的GA誘導(dǎo)細胞質(zhì)基質(zhì)中游離Ca2+增加,從而導(dǎo)致NtCDPK1構(gòu)象發(fā)生改變,促進RSG在S114片段磷酸化并與14-3-3蛋白結(jié)合。NtCDPK1與RSG和14-3-3蛋白質(zhì)形成異源三聚體并作為支架和媒介促進磷酸化后的RSG與14-3-3形成二聚體,RSG/14-3-3復(fù)合體從NtCDPK1脫落后,細胞質(zhì)基質(zhì)中的RSG失活,核內(nèi)靶基因的活化被抑制[43,58-59](圖3)。
圖3 CDPK和14-3-3蛋白對GA穩(wěn)態(tài)的調(diào)控[52]Fig.3 The regulation of CDPK and 14-3-3 protein on GA homeostasis[52] N: 細胞核Nucleus; C: 細胞質(zhì)基質(zhì)Cytoplasmic matrix; P: 磷酸化Phosphorylation.下同The same below.
在植物乙烯的生物合成途徑中,限速酶1-氨基環(huán)丙烷-1-羧酸合酶ACS(1-aminocyclopropane-1-carboxylic acid ACC synthase)家族起到了催化調(diào)控的作用。ACS因其C-末端存在不同的序列被分為3種類型,14-3-3s與所有類型的ACS均可以相互作用[39]。擬南芥AtACS7是一種3型ACS,可以被AtCPK16在3個位點(Ser216、Thr296和Ser299)處磷酸化,然后在細胞質(zhì)基質(zhì)中與14-3-3ω直接相互作用形成蛋白復(fù)合體[60-61],AtCPK16和14-3-3ω的協(xié)同作用增加了AtACS7的穩(wěn)定性。
凝膠內(nèi)激酶測定結(jié)果顯示,磷脂酰乙醇胺結(jié)合蛋白開花位點D(AtFD)T282片段可能是AtCPK6和AtCPK33的底物[62],磷酸化后的AtFD與14-3-3蛋白形成復(fù)合體,與開花位點T(AtFT)相互作用激活花分生組織基因如擬南芥花分生組織決定基因AP1(Apetala 1)的轉(zhuǎn)錄,從而促進開花過程[63]。而AtCPK33突變體則表現(xiàn)出輕度延遲開花的現(xiàn)象(圖4)。
圖4 CDPK調(diào)控開花過程[4]Fig.4 CDPK control flowering process[4]
圖5 CDPK對鈣信號傳導(dǎo)的調(diào)控[4]Fig.5 Regulation of calcium signaling of CDPK[4]
CDPK是植物所有主要發(fā)育過程包括傳粉、生長、開花和衰老的調(diào)控者。許多擬南芥CDPK(AtCPK2、AtCPK14、AtCPK16、AtCPK17、AtCPK20、AtCPK24、AtCPK26和AtCPK34)主要在花粉中表達,表明它們參與花粉發(fā)育或花粉管伸長。最近的研究表明,擬南芥中的兩種CDPK,依賴Ca2+的AtCPK11和不依賴于Ca2+的AtCPK24可以形成級聯(lián)信號,AtCPK11磷酸化AtCPK24 N-末端結(jié)構(gòu)域,在花粉管特異性鉀離子內(nèi)流通道SPIK(shaker pollen inward K+)定位的質(zhì)膜處相互作用并抑制其活性,從而對花粉管伸長進行負調(diào)節(jié)作用。此外,其他兩種花粉特異性CDPK,AtCPK17和AtCPK34也定位于細胞質(zhì)膜,推測可能與花粉伸長過程相關(guān),研究發(fā)現(xiàn)AtCPK17/AtCPK34雙突變體在花粉管的頂端極化生長表達上存在缺陷,而單個的突變則正常表達[64-65]。
在產(chǎn)生鈣信號過程中,擬南芥內(nèi)質(zhì)網(wǎng)膜和細胞質(zhì)膜上分別具有自我抑制型Ca2+泵ACA2(autoinhibted calcium ATPase 2)和ACA8(autoinhibted calcium ATPase 8),這兩種Ca2+泵調(diào)控Ca2+泵入內(nèi)質(zhì)網(wǎng)腔或泵出細胞,維持細胞質(zhì)基質(zhì)中較低的Ca2+濃度,二者均可以直接被CDPK磷酸化。Giacometti等[66]研究表明,AtCPK16定位于質(zhì)膜,因此在質(zhì)膜內(nèi)磷酸化AtACA8。AtCPK1可以與過氧化物酶體和微粒體結(jié)合,推測與過氧化物酶體相結(jié)合的AtCPK1/P復(fù)合體可作用于AtACA2和AtACA8;而ER上可衍生出微粒體,因此推測與微粒體相結(jié)合的AtCPK1/LB復(fù)合體可能與AtACA2連接并調(diào)控其作用(圖5)。
研究表明,CDPK參與植物非生物脅迫反應(yīng),低溫[67]、光[68]、干旱[69]、鹽害[70]、低滲透[71]、營養(yǎng)饑餓等多種環(huán)境因子以及赤霉素GA、生長素、細胞分裂素等激素的誘導(dǎo)都能引起CDPK基因的特異性表達,如表2所列。
表2 不同植物中響應(yīng)非生物脅迫的CDPKTable 2 CDPK responsed to abiotic stresses in different plants
ABA依賴性的氣孔閉合是防止干旱脅迫期間水分流失的關(guān)鍵機制[80],許多CDPK參與到氣孔運動的調(diào)控過程中[81]。在擬南芥中,離子通道AtKAT1和AtKAT2以及其他K+轉(zhuǎn)運蛋白具有調(diào)節(jié)氣孔開放的功能[54,80]。AtCPK1則激活液泡膜上的Cl-通道,導(dǎo)致Cl-內(nèi)流;AtCPK1介導(dǎo)的Cl-內(nèi)流、AtKAT1/AtKAT2介導(dǎo)的K+內(nèi)流、陰離子通道SLAC1(slowtype anion-associated 1)與SLAH3(SLAC1 homologue 3)介導(dǎo)的陰離子(Cl-、NO3-)外流三者協(xié)同作用,提高了保衛(wèi)細胞的滲透勢,導(dǎo)致保衛(wèi)細胞膨脹,氣孔打開(圖6左);AtCPK3、AtCPK13是保衛(wèi)細胞中主要表達的Ca2+敏感性CDPK,磷酸化AtKAT1和AtKAT2[82],從而抑制K+內(nèi)流過程。Sato等[83]的研究表明,AtSnRK2和擬南芥AtCPK4、AtCPK13可以在細胞內(nèi)磷酸化AtKAT1的C-末端片段T306和T308,表明擬南芥CDPK和SnRK2之間可能存在一致的靶位點;T306的突變導(dǎo)致AtKAT1和AtKAT2通道活性受損。ABA信號傳導(dǎo)產(chǎn)生激活的AtCPK3、AtCPK6、AtCPK21和AtCPK23以及AtOST1的活性氧(ROS)和Ca2+信號,這些激酶在保衛(wèi)細胞離子通道的調(diào)節(jié)中起主要作用,它們激活A(yù)tSLAC1和AtSLAH3陰離子通道,促進陰離子的流出[84-86]。此外,AtCPK3、AtCPK4、AtCPK5、AtCPK11和AtCPK29在液泡外磷酸化雙孔鉀離子通道TPK1(tandem-pore K+channel 1),磷酸化的AtTPK1與14-3-3蛋白質(zhì)形成蛋白復(fù)合體介導(dǎo)液泡中的K+流出[87]。質(zhì)膜質(zhì)子泵的抑制依賴于Ca2+的陰離子通道的活化導(dǎo)致質(zhì)膜去極化,激活保衛(wèi)細胞外向整流型K+通道GORK(guard cell outward-rectifying K+channel),K+外流。最終,保衛(wèi)細胞內(nèi)溶質(zhì)的流出導(dǎo)致其膨脹程度降低,氣孔閉合(圖6右)。
圖6 CDPK對氣孔運動過程的調(diào)控[4]Fig.6 Regulation of stomatal movement of CDPK[4]
到目前為止,CDPK的結(jié)構(gòu)、亞細胞定位以及調(diào)控機制等研究已經(jīng)比較成熟,越來越多CDPK家族成員的新功能已經(jīng)被發(fā)現(xiàn),但其作用底物和抑制劑還有待于進一步的研究,如弓形蟲寄生病的治療。弓形蟲是一種常見的原生動物,幾乎可以感染所有溫血動物和人類,目前尚缺乏有效的治療藥物,但由于弓形蟲中有CDPK,而人體并無CDPK,因此CDPK專一性抑制劑可能成為弓形蟲治療的新型藥物。此外,CDPK和14-3-3蛋白質(zhì)之間存在復(fù)雜的調(diào)控網(wǎng)絡(luò)。如本研究所述,CDPK不僅磷酸化14-3-3蛋白,其本身也被14-3-3磷酸化,盡管近年的多項研究都顯示出CDPK/14-3-3復(fù)合體在植物活性調(diào)控過程中的重要作用,但CPDKs與14-3-3s通過磷酸化的交叉調(diào)節(jié)過程仍不清晰,有待于國內(nèi)外學者的進一步探索。
References:
[1] Wang J J, Han S F, Li X J,etal. Calcium-dependent protein kinase (CPDKs) mediates the molecular basis of plant signal transduction. Acta Prataculturae Sinica, 2009, 18(3): 241-250.
王嬌嬌, 韓勝芳, 李小娟, 等. 鈣依賴蛋白激酶(CPDKs)介導(dǎo)植物信號轉(zhuǎn)導(dǎo)的分子基礎(chǔ). 草業(yè)學報, 2009, 18(3): 241-250.
[2] Hamel L P, Sheen J, Séguin A. Ancient signals: comparative genomics of green plant CDPKs. Trends in Plant Science, 2014, 19(2): 79-89.
[3] Romeis T, Herde M. From local to global: CDPKs in systemic defense signaling upon microbial and herbivore attack. Current Opinion in Plant Biology, 2014, 20: 1-10.
[4] Simeunovic A, Mair A, Wurzinger B,etal. Know where your clients are: subcellular localization and targets of calcium-dependent protein kinases. Journal of Experimental Botany, 2016, 67(13): 3855.
[5] Boudsocq M, Sheen J. CDPKs in immune and stress signaling. Trends in Plant Science, 2013, 18(1): 30-40.
[6] Cai H, Cheng J, Yan Y,etal. Genome-wide identification and expression analysis of calcium-dependent protein kinase and its closely related kinase genes inCapsicumannuum. Frontiers in Plant Science, 2015, 6: 737.
[7] Liese A, Romeis T. Biochemical regulation ofinvivofunction of plant calcium-dependent protein kinases (CDPK). Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 2013, 1833(7): 1582-1589.
[8] Rutschmann F, Stalder U, Piotrowski M,etal. LeCPK1, a calcium-dependent protein kinase from tomato. Plasma membrane targeting and biochemical characterization. Plant Physiology, 2002, 129(1): 156-168.
[9] Asai S, Ichikawa T, Nomura H,etal. The variable domain of a plant calcium-dependent protein kinase (CDPK) confers subcellular localization and substrate recognition for NADPH oxidase. Journal of Biological Chemistry, 2013, 288(20): 14332-14340.
[10] Ito T, Nakata M, Fukazawa J,etal. Alteration of substrate specificity: the variable N-terminal domain of tobacco Ca2+-dependent protein kinase is important for substrate recognition. The Plant Cell, 2010, 22(5): 1592-1604.
[11] Hrabak E M, Chan C W M, Gribskov M,etal. TheArabidopsisCDPK-SnRK superfamily of protein kinases. Plant Physiology, 2003, 132(2): 666-680.
[12] Dubrovina A S, Kiselev K V, Veselova M V,etal. Enhanced resveratrol accumulation in rolB transgenic cultures ofVitisamurensiscorrelates with unusual changes in CDPK gene expression. Journal of Plant Physiology, 2009, 166(11): 1194-1206.
[13] Christodoulou J, Malmendal A, Harper J F,etal. Evidence for differing roles for each lobe of the calmodulin-like domain in a calcium-dependent protein kinase. Journal of Biological Chemistry, 2004, 279(28): 29092-29100.
[14] Yoon G M, Cho H S, Ha H J,etal. Characterization of NtCDPK1, a calcium-dependent protein kinase gene inNicotianatabacum, and the activity of its encoded protein. Plant Molecular Biology, 1999, 39(5): 991-1001.
[15] Zhao R, Sun H L, Mei C,etal. TheArabidopsisCa2+-dependent protein kinase CPK12 negatively regulates abscisic acid signaling in seed germination and post-germination growth. New Phytologist, 2011, 192(1): 61-73.
[16] Myers C, Romanowsky S M, Barron Y D,etal. Calcium-dependent protein kinases regulate polarized tip growth in pollen tubes. The Plant Journal, 2009, 59(4): 528-539.
[17] Zhang Q P, Wen L, Wang F,etal. Cloning and expression analysis of calcium-dependent protein kinase BnCDPK1 inBrassica. Journal of Plant Genetic Resources, 2014, 15(6): 1320-1326.
張秋平, 文李, 王峰, 等. 油菜鈣依賴蛋白激酶 BnCDPK1 的克隆和表達分析. 植物遺傳資源學報, 2014, 15(6): 1320-1326.
[18] Dammann C, Ichida A, Hong B,etal. Subcellular targeting of nine calcium-dependent protein kinase isoforms fromArabidopsis. Plant Physiology, 2003, 132(4): 1840-1848.
[19] Resh M D. Trafficking and signaling by fatty-acylated and prenylated proteins. Nature Chemical Biology, 2006, 2(11): 584-590.
[20] Mehlmer N, Wurzinger B, Stael S,etal. The Ca2+-dependent protein kinase CPK3 is required for MAPK-independent salt-stress acclimation inArabidopsis. The Plant Journal, 2010, 63(3): 484-498.
[21] Chehab E W, Patharkar O R, Hegeman A D,etal. Autophosphorylation and subcellular localization dynamics of a salt-and water deficit-induced calcium-dependent protein kinase from ice plant. Plant Physiology, 2004, 135(3): 1430-1446.
[22] Klimecka M, Muszyńska G. Structure and functions of plant calcium-dependent protein kinases. Acta Biochimica Polonica, 2007, 54(2): 219-233.
[23] Curran A, Chang I F, Chang C L,etal. Calcium-dependent protein kinases fromArabidopsisshow substrate specificity differences in an analysis of 103 substrates. Frontiers in Plant Science, 2011, 2(12): 1085-1091.
[24] Swatek K N, Wilson R S, Ahsan N,etal. Multisite phosphorylation of 14-3-3 proteins by calcium-dependent protein kinases. Biochemical Journal, 2014, 459(1): 15-25.
[25] Kulma A, Villadsen D, Campbell D G,etal. Phosphorylation and 14-3-3 binding ofArabidopsis6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase. The Plant Journal, 2004, 37(5): 654-667.
[26] Veerabagu M, Kirchler T, Elgass K,etal. The interaction of theArabidopsisresponse regulator ARR18 with bZIP63 mediates the regulation of proline dehydrogenase expression. Molecular Plant, 2014, 7(10): 1560-1577.
[27] Mair A, Pedrotti L, Wurzinger B,etal. SnRK1-triggered switch of bZIP63 dimerization mediates the low-energy response in plants. Elife Sciences, 2015, 4: e05828.
[28] Kanchiswamy C N, Takahashi H, Quadro S,etal. Regulation ofArabidopsisdefense responses againstSpodopteralittoralisby CPK-mediated calcium signaling. BMC Plant Biology, 2010, 10(1): 97-106.
[29] Liu Y, Zhang S. Phosphorylation of 1-aminocyclopropane-1-carboxylic acid synthase by MPK6, a stress-responsive mitogen-activated protein kinase, induces ethylene biosynthesis inArabidopsis. The Plant Cell, 2004, 16(12): 3386-3399.
[30] Joo S, Liu Y, Lueth A,etal. MAPK phosphorylation-induced stabilization of ACS6 protein is mediated by the non-catalytic C-terminal domain, which also contains the cis-determinant for rapid degradation by the 26S proteasome pathway. The Plant Journal, 2008, 54(1): 129-140.
[31] Han L, Li G J, Yang K Y,etal. Mitogen-activated protein kinase 3 and 6 regulateBotrytiscinerea-induced ethylene production inArabidopsis. The Plant Journal, 2010, 64(1): 114-127.
[32] Luo X, Chen Z, Gao J,etal. Abscisic acid inhibits root growth inArabidopsisthrough ethylene biosynthesis. The Plant Journal, 2014, 79(1): 44-55.
[33] Choi H, Park H J, Park J H,etal.Arabidopsiscalcium-dependent protein kinase AtCPK32 interacts with ABF4, a transcriptional regulator of abscisic acid-responsive gene expression, and modulates its activity. Plant Physiology, 2005, 139(4): 1750-1761.
[34] Milla R, Miguel A, Uno Y,etal. A novel yeast two-hybrid approach to identify CDPK substrates: Characterization of the interaction between AtCPK11 and AtDi19, a nuclear zinc finger protein 1. FEBS Letters, 2006, 580(3): 904-911.
[35] Uno Y, Milla M A R, Maher E,etal. Identification of proteins that interact with catalytically active calcium-dependent protein kinases fromArabidopsis. Molecular Genetics and Genomics, 2009, 281(4): 375-390.
[36] Winter H, Huber S C. Regulation of sucrose metabolism in higher plants: localization and regulation of activity of key enzymes. Critical Reviews in Plant Sciences, 2000, 19(1): 31-67.
[37] Hardin S C, Winter H, Huber S C. Phosphorylation of the amino terminus of maize sucrose synthase in relation to membrane association and enzyme activity. Plant Physiology, 2004, 134(4): 1427-1438.
[38] Fedosejevs E T, Ying S, Park J,etal. Biochemical and molecular characterization of RcSUS1, a cytosolic sucrose synthase phosphorylatedinvivoat serine 11 in developing castor oil seeds. Journal of Biological Chemistry, 2014, 289(48): 33412-33424.
[39] Yoon G M. New insights into the protein turnover regulation in ethylene biosynthesis. Molecular Cells, 2015, 38(7): 597-603.
[40] Kobayashi M, Yoshioka M, Asai S,etal. StCDPK5 confers resistance to late blight pathogen but increases susceptibility to early blight pathogen in potato via reactive oxygen species burst. New Phytologist, 2012, 196(1): 223-237.
[41] Sugden C, Donaghy P G, Halford N G,etal. Two SNF1-related protein kinases from spinach leaf phosphorylate and inactivate 3-hydroxy-3-methylglutaryl-coenzyme A reductase, nitrate reductase, and sucrose phosphate synthaseinvitro. Plant Physiology, 1999, 120(1): 257-274.
[42] Lambeck I, Chi J C, Krizowski S,etal. Kinetic analysis of 14-3-3-inhibitedArabidopsisthaliananitrate reductase. Biochemistry, 2010, 49(37): 8177-8186.
[43] Ishida S, Yuasa T, Nakata M,etal. A tobacco calcium-dependent protein kinase, CDPK1, regulates the transcription factor repression of shoot growth in response to gibberellins. The Plant Cell, 2008, 20(12): 3273-3288.
[44] Cheng S H, Sheen J, Gerrish C,etal. Molecular identification of phenylalanine ammonialyase as a substrate of a specific constitutively activeArabidopsisCDPK expressed in maize protoplasts. FEBS Letters, 2001, 503(23): 185-188.
[45] Chang I F, Curran A, Woolsey R,etal. Proteomic profiling of tandem affinity purified 14-3-3 protein complexes inArabidopsisthaliana. Proteomics, 2009, 9(11): 2967-2985.
[46] Pallucca R, Visconti S, Camoni L,etal. Specificity of ε and non-ε isoforms ofArabidopsis14-3-3 proteins towards the H+-ATPase and other targets. Plos One, 2014, 9(6): e90764.
[47] Cotelle V, Meek S E, Provan F,etal. 14-3-3s regulate global cleavage of their diverse binding partners in sugar-starvedArabidopsiscells. EMBO Journal, 2000, 19(12): 2869-2876.
[48] Lachaud C, Prigent E, Thuleau P,etal. 14-3-3-regulated Ca2+-dependent protein kinase CPK3 is required for sphingolipid-induced cell death inArabidopsis. Cell Death & Differentiation, 2013, 20(2): 209-217.
[49] Denison F C, G?kirmak T, Ferl R J. Phosphorylation-related modification at the dimer interface of 14-3-3ω dramatically alters monomer interaction dynamics. Archives of Biochemistry and Biophysics, 2014, 541: 1-12.
[50] G?kirmak T, Denison F C, Laughner B J,etal. Phosphomimetic mutation of a conserved serine residue inArabidopsisthaliana14-3-3ω suggests a regulatory role of phosphorylation in dimerization and target interactions. Plant Physiology and Biochemistry, 2015, 97: 296-303.
[51] Boer A H D, Kleeff P J M V, Jing G. Plant 14-3-3 proteins as spiders in a web of phosphorylation. Protoplasma, 2013, 250(2): 425.
[52] Wilson R S, Swatek K N, Thelen J J. Regulation of the regulators: post-translational modifications, subcellular, and spatiotemporal distribution of plant 14-3-3 proteins. Frontiers in Plant Science, 2016, 7: 611.
[53] Ormancey M, Thuleau P, Mazars C,etal. CDPKs and 14-3-3 proteins: Emerging Duo in signaling. Trends in Plant Science, 2017, 22(3): 263-272.
[54] Lozano-Durán R, Robatzek S. 14-3-3 proteins in plant-pathogen interactions. Molecular Plant-Microbe Interactions, 2015, 28(5): 511-518.
[55] Cotelle V, Leonhardt N. 14-3-3 proteins in guard cell signaling. Frontiers in Plant Science, 2016, 6(e90734): 1210.
[56] Abbasi F, Onodera H, Toki S,etal. OsCDPK13, a calcium-dependent protein kinase gene from rice, is induced by cold and gibberellin in rice leaf sheath. Plant Molecular Biology, 2004, 55(4): 541-552.
[57] Matschi S, Werner S, Schulze W X,etal. Function of calcium-dependent protein kinase CPK28 ofArabidopsisthalianain plant stem elongation and vascular development. The Plant Journal, 2013, 73(6): 883-896.
[58] Ito T, Nakata M, Fukazawa J,etal. Scaffold function of Ca2+-dependent protein kinase: NtCDPK1 transfers 14-3-3 to the substrate RSG after phosphorylation. Plant Physiology, 2014, 165(4): 1737-1750.
[59] Ito T, Nakata M, Fukazawa J,etal. Scaffold function of Ca2+-dependent protein kinase: tobacco Ca2+-dependent protein kinase1 transfers 14-3-3 to the substrate repression of shoot growth after phosphorylation. Plant Physiology, 2014, 165(4): 1737-1750.
[60] Huang S J, Chang C L, Wang P H,etal. A type III ACC synthase, ACS7, is involved in root gravitropism inArabidopsisthaliana. Journal of Experimental Botany, 2013, 64(14): 4343-4360.
[61] Lyzenga W J, Booth J K, Stone S L. TheArabidopsisRING-type E3 ligase XBAT32 mediates the proteasomal degradation of the ethylene biosynthetic enzyme, 1-aminocyclopropane-1-carboxylate synthase 7. Plant Journal for Cell & Molecular Biology, 2012, 71(1): 23-34.
[62] Kawamoto N, Sasabe M, Endo M,etal. Calcium-dependent protein kinases responsible for the phosphorylation of a bZIP transcription factor FD crucial for the florigen complex formation. Scientific Reports, 2015, 5: 8341.
[63] Taoka K, Ohki I, Tsuji H,etal. Structure and function of florigen and the receptor complex. Trends in Plant Science, 2013, 18(5): 287-294.
[64] Zhao L N, Shen L K, Zhang W Z,etal. Ca2+-dependent protein kinase 11 and 24 modulate the activity of the inward rectifying K+channels inArabidopsispollen tubes. The Plant Cell, 2013, 25(2): 649-661.
[65] Liu H, Che Z, Zeng X,etal. Genome-wide analysis of calcium-dependent protein kinases and their expression patterns in response to herbivore and wounding stresses in soybean. Functional & Integrative Genomics, 2016, 16(5): 481-493.
[66] Giacometti S, Marrano C A, Bonza M C,etal. Phosphorylation of serine residues in the N-terminus modulates the activity of ACA8, a plasma membrane Ca2+-ATPase ofArabidopsisthaliana. Journal of Experimental Botany, 2012, 63(3): 1215-1224.
[67] Li W G, Komatsu S. Cold stress-induced calcium-dependent protein kinase (s) in rice (OryzasativaL.) seedling stem tissues. Theoretical and Applied Genetics, 2000, 101(3): 355-363.
[68] Giammaria V, Grandellis C, Bachmann S,etal. StCDPK2 expression and activity reveal a highly responsive potato calcium-dependent protein kinase involved in light signalling. Planta, 2011, 233(3): 593.
[69] Zou J J, Wei F J, Wang C,etal.Arabidopsiscalcium-dependent protein kinase CPK10 functions in abscisic acid-and Ca2+-mediated stomatal regulation in response to drought stress. Plant Physiology, 2010, 154(3): 1232-1243.
[70] Xu J, Tian Y S, Peng R H,etal. AtCPK6, a functionally redundant and positive regulator involved in salt/drought stress tolerance inArabidopsis. Planta, 2010, 231(6): 1251-1260.
[71] Romeis T, Ludwig A A, Martin R,etal. Calcium-dependent protein kinases play an essential role in a plant defence response. EMBO Journal, 2001, 20(20): 5556-5567.
[72] Zhang M, Liang S, Lu Y T. Cloning and functional characterization of NtCPK4, a new tobacco calcium-dependent protein kinase. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression, 2005, 1729(3): 174-185.
[73] Ma S Y, Wu W H. AtCPK23 functions inArabidopsisresponses to drought and salt stresses. Plant Molecular Biology, 2007, 65(4): 511-518.
[74] Liu G, Chen J, Wang X. VfCPK1, a gene encoding calcium-dependent protein kinase fromViciafaba, is induced by drought and abscisic acid. Plant, Cell & Environment, 2006, 29(11): 2091-2099.
[75] Yu X C, Zhu S Y, Gao G F,etal. Expression of a grape calcium-dependent protein kinase ACPK1 inArabidopsisthalianapromotes plant growth and confers abscisic acid-hypersensitivity in germination, postgermination growth, and stomatal movement. Plant Molecular Biology, 2007, 64(5): 531-538.
[76] Berberich T, Kusano T. Cycloheximide induces a subset of low temperature-inducible genes in maize. Molecular and General Genetics MGG, 1997, 254(3): 275-283.
[77] Wan B, Lin Y, Mou T. Expression of rice Ca2+-dependent protein kinases (CDPKs) genes under different environmental stresses. FEBS Letters, 2007, 581(6): 1179-1189.
[78] Ye S, Wang L, Xie W,etal. Expression profile of calcium-dependent protein kinase (CDPKs) genes during the whole lifespan and under phytohormone treatment conditions in rice (OryzasativaL. ssp. indica). Plant Molecular Biology, 2009, 70(3): 311-325.
[79] Lanteri M L, Pagnussat G C, Lamattina L. Calcium and calcium-dependent protein kinases are involved in nitric oxide-and auxin-induced adventitious root formation in cucumber. Journal of Experimental Botany, 2006, 57(6): 1341-1351.
[80] Munemasa S, Hauser F, Park J,etal. Mechanisms of abscisic acid-mediated control of stomatal aperture. Current Opinion in Plant Biology, 2015, 28: 154-162.
[81] Zhang T, Chen S, Harmon A C. Protein phosphorylation in stomatal movement. Plant Signaling & Behavior, 2014, 9(11): e972845.
[82] Ronzier E, Corratgé-Faillie C, Sanchez F,etal. CPK13, a noncanonical Ca2+-dependent protein kinase, specifically inhibits KAT2 and KAT1 shaker K+channels and reduces stomatal opening. Plant Physiology, 2014, 166(1): 314-326.
[83] Sato A, Sato Y, Fukao Y,etal. Threonine at position 306 of the KAT1 potassium channel is essential for channel activity and is a target site for ABA-activated SnRK2/OST1/SnRK2. 6 protein kinase. Biochemical Journal, 2009, 424(3): 439-448.
[84] Geiger D, Scherzer S, Mumm P,etal. Guard cell anion channel SLAC1 is regulated by CDPK protein kinases with distinct Ca2+affinities. Proceedings of the National Academy of Sciences, 2010, 107(17): 8023-8028.
[85] Mori I C, Murata Y, Yang Y,etal. CDPKs, CPK6 and CPK3 function in ABA regulation of guard cell S-type anion-and Ca2+-permeable channels and stomatal closure. PLoS Biology, 2006, 4(10): e327.
[86] Brandt B, Brodsky D E, Xue S,etal. Reconstitution of abscisic acid activation of SLAC1 anion channel by CPK6 and OST1 kinases and branched ABI1 PP2C phosphatase action. Proceedings of the National Academy of Sciences, 2012, 109(26): 10593-10598.
[87] Latz A, Mehlmer N, Zapf S,etal. Salt stress triggers phosphorylation of theArabidopsisvacuolar K+channel TPK1 by calcium-dependent protein kinases (CDPKs). Molecular Plant, 2013, 6(4): 1274-1289.