呂游 侯樹(shù)勛
在世界范圍內(nèi),腰痛 ( low back pain ) 都十分常見(jiàn)[1],部分研究指出,高達(dá) 60%~90% 的成年人在一生之中經(jīng)歷過(guò)腰痛的困擾[2-3]。然而目前對(duì)于腰痛的發(fā)病機(jī)制,仍然存有諸多不明之處[4]。目前已知有多種因素參加這一病理變化,包括椎間盤(pán)退變、椎間關(guān)節(jié)損傷、肌肉筋膜炎癥等[5-7]。病理動(dòng)物模型的制備對(duì)于認(rèn)識(shí)疾病的發(fā)病機(jī)制和自然病程具有十分重要的作用,然而疼痛動(dòng)物模型的制備也存在很多挑戰(zhàn)。雖然腰痛與腰椎間盤(pán)退變的關(guān)系十分密切[8],但椎間盤(pán)退變動(dòng)物模型已經(jīng)非常成熟[9],而腰痛動(dòng)物模型的種類較少,認(rèn)可度也較低。一方面,疼痛本身就是一種主觀感覺(jué)[10],個(gè)體的痛閾差異很大;另一方面,評(píng)估疼痛也存在主觀性因素,現(xiàn)有的評(píng)估方法也存在一定誤差。
目前,對(duì)于動(dòng)物疼痛模型的評(píng)估方法主要分兩類:一是誘發(fā)痛動(dòng)物行為學(xué)的評(píng)價(jià)手段,即通過(guò)各種物理刺激誘發(fā)動(dòng)物的避退行為,從而測(cè)量相應(yīng)的刺激閾值,常用的物理刺激方法包括機(jī)械刺激[11]、熱刺激、冷刺激[12]、電刺激[13]、化學(xué)刺激[14]等;二是觀察法評(píng)價(jià)動(dòng)物行為學(xué),即通過(guò)觀察動(dòng)物的某些異常行為特點(diǎn)來(lái)評(píng)估疼痛程度,常用的方法包括步態(tài)分析[15]、臉譜疼痛評(píng)分[16]、動(dòng)態(tài)負(fù)重試驗(yàn)[17]等。雖然疼痛評(píng)估方法非常多,但不同于人類疼痛能夠通過(guò)語(yǔ)言表述,動(dòng)物疼痛難以準(zhǔn)確測(cè)量。所以,如何在活體動(dòng)物上復(fù)制腰痛并進(jìn)行評(píng)估,建立腰痛動(dòng)物模型,存在較大困難。筆者將現(xiàn)有腰痛動(dòng)物模型進(jìn)行綜述,并根據(jù)模型制備方法的不同分為三種類型。
大量動(dòng)物實(shí)驗(yàn)已經(jīng)證實(shí),椎間盤(pán)退變具有明顯的年齡相關(guān)性特征[18-20],其中以地中海沙鼠的自發(fā)性椎間盤(pán)退變最具代表性。而目前普遍認(rèn)為,椎間盤(pán)退變是腰痛最重要的發(fā)病基礎(chǔ)。由此可以推斷,腰痛在動(dòng)物中具有一定的自發(fā)性特點(diǎn)。然而由于椎間盤(pán)退變和腰痛的自然病程過(guò)于緩慢,無(wú)法滿足腰痛動(dòng)物模型的建立要求。所以,在特定的椎間盤(pán)加速退變的動(dòng)物中,觀察腰痛相關(guān)的行為學(xué)變化,成為制備自發(fā)型腰痛動(dòng)物模型的主要方法。
富含半胱氨酸的酸性分泌蛋白 ( secreted protein acidic and rich in cysteine,SPARC ) 又稱為骨黏連蛋白,是一種在組織重塑和損傷反應(yīng)中發(fā)揮重要作用的細(xì)胞基質(zhì)蛋白。人椎間盤(pán)細(xì)胞在隨年齡增長(zhǎng)的退變過(guò)程中,SPARC表達(dá)逐漸降低[21]。Gruber 等[22]也已證實(shí), SPARC 基因敲除小鼠具有明顯的年齡相關(guān)的椎間盤(pán)加速退變特征。Millecamps 等[23]在 SPARC 基因敲除小鼠中發(fā)現(xiàn)基因敲除后 78 周出現(xiàn)椎間盤(pán)突出癥狀,同時(shí)伴隨有后足跖皮膚冷刺激過(guò)敏、軀干軸向不適感和運(yùn)功功能受損等腰痛行為學(xué)表現(xiàn),由此建立自發(fā)型腰痛動(dòng)物模型。同一研究團(tuán)隊(duì)在后續(xù)研究中發(fā)現(xiàn),在出現(xiàn)腰痛表現(xiàn)的 SPARC 基因敲除小鼠中,出現(xiàn)了諸多與年齡相關(guān)的病理改變,包括運(yùn)動(dòng)功能受損、椎間盤(pán)感覺(jué)神經(jīng)長(zhǎng)入、背根神經(jīng)節(jié)中降鈣素基因相關(guān)肽 ( calcitonin gene related peptide,CGRP ) 和神經(jīng)肽-Y 上調(diào)以及脊髓后角內(nèi) CGRP、小神經(jīng)膠質(zhì)細(xì)胞、星形膠質(zhì)細(xì)胞上調(diào)[24]。由此推測(cè)椎間盤(pán)內(nèi)感覺(jué)神經(jīng)纖維的神經(jīng)長(zhǎng)入以及感覺(jué)神經(jīng)元和脊髓的神經(jīng)再塑,是引起腰痛的潛在病理學(xué)基礎(chǔ)。
1. 椎間盤(pán)源性:椎間盤(pán)機(jī)械損傷已經(jīng)成為經(jīng)典的椎間盤(pán)退變動(dòng)物模型制備方法,從纖維環(huán)切開(kāi)到纖維環(huán)穿刺[25-26],均已證實(shí)能夠?qū)е伦甸g盤(pán)退變的發(fā)生。但同樣的方法用于制備腰痛動(dòng)物模型存在一定的困難。Kim 等[27-28]在成功采用纖維環(huán)穿刺法制備椎間盤(pán)退變動(dòng)物模型后,繼而對(duì)這一模型進(jìn)行腰痛評(píng)估,結(jié)果顯示,經(jīng) 0.5 mm 穿刺針穿刺后 7 周,在損傷椎間盤(pán)的椎旁組織出現(xiàn)壓力痛覺(jué)過(guò)敏,但大鼠的后足并沒(méi)有出現(xiàn)痛覺(jué)過(guò)敏或機(jī)械性異常疼痛,與對(duì)照組相比,在直腿抬高試驗(yàn)中也沒(méi)有觀察到明顯的痛閾改變。Miyagi 等[29]對(duì)這一制模方法進(jìn)行擴(kuò)展,在纖維環(huán)穿刺的基礎(chǔ)上,還在大鼠尾椎椎間盤(pán)上施加軸向壓力,觀察到穿刺椎間盤(pán)和神經(jīng)節(jié)內(nèi)疼痛和炎癥相關(guān)分子的短時(shí)上調(diào)。
Olmarker 等[30]在纖維環(huán)穿刺的基礎(chǔ)上向椎間盤(pán)內(nèi)注入空氣,同樣發(fā)現(xiàn)能夠引發(fā)大鼠出現(xiàn)過(guò)度的梳洗行為和落水狗抖動(dòng)行為,以此證實(shí)通過(guò)纖維環(huán)穿刺能夠在活體動(dòng)物中復(fù)制椎間盤(pán)源性腰痛。
2. 小關(guān)節(jié)源性:在腰痛的發(fā)病機(jī)制中,小關(guān)節(jié)因素占有重要比重。小關(guān)節(jié)周圍 ( 主要是小關(guān)節(jié)囊表面 ) 的神經(jīng)末梢分布豐富,而且具有低傳導(dǎo)速度的特點(diǎn),對(duì)壓力刺激十分敏感。通過(guò)對(duì)小關(guān)節(jié)進(jìn)行機(jī)械刺激,能夠引發(fā)小關(guān)節(jié)源性腰痛。
Henry 等[31]采用外科手段對(duì)椎間小關(guān)節(jié)進(jìn)行機(jī)械加壓制備軸向腰痛模型。方法是對(duì)大鼠的腰椎小關(guān)節(jié)進(jìn)行外科顯露,然后使用特殊鉗夾裝置對(duì)小關(guān)節(jié)進(jìn)行 3 min 加壓處理。結(jié)果發(fā)現(xiàn)小關(guān)節(jié)經(jīng)機(jī)械加壓處理后出現(xiàn)部分軟骨缺損,同時(shí)發(fā)現(xiàn)手術(shù)區(qū)域的壓力敏感性增強(qiáng)以及后足機(jī)械性異常疼痛,由此認(rèn)為小關(guān)節(jié)機(jī)械加壓能夠制備一種新型小關(guān)節(jié)源性腰痛動(dòng)物模型。
Kim 等[32]在使用細(xì)針穿刺方法成功制備椎間盤(pán)源性腰痛動(dòng)物模型后,采用類似的穿刺方法制備小關(guān)節(jié)源性腰痛動(dòng)物模型。具體方法是使用直徑 26 G 穿刺針經(jīng)皮穿刺至 SD 大鼠小關(guān)節(jié)內(nèi)造成損傷,形成類似骨關(guān)節(jié)炎病理改變,繼而對(duì)大鼠的行為學(xué)改變進(jìn)行評(píng)估,包括壓力痛覺(jué)過(guò)敏、機(jī)械性異常疼痛、活動(dòng)觀察、直腿抬高試驗(yàn)和運(yùn)動(dòng)協(xié)調(diào)性,結(jié)果證實(shí)動(dòng)物出現(xiàn)類似腰痛癥狀。由此證實(shí)小關(guān)節(jié)病理改變?cè)谘吹陌l(fā)生中具有重要作用。
3. 背根神經(jīng)節(jié)源性:嚴(yán)格意義上講,對(duì)背根神經(jīng)節(jié)進(jìn)行干預(yù)后所獲得的疼痛模型屬于坐股神經(jīng)痛模型,與腰痛模型并不相同,在此僅作簡(jiǎn)單介紹。Hu 等[33]曾于 1998年制備背根神經(jīng)節(jié)慢性壓迫動(dòng)物模型,方法是使用長(zhǎng)度4 mm,直徑 0.5~0.8 mm 不銹鋼釘置入大鼠腰椎椎間孔,由此形成椎間孔狹窄并慢性壓迫背根神經(jīng)節(jié)。術(shù)后疼痛相關(guān)行為觀察發(fā)現(xiàn)傷側(cè)出現(xiàn)自發(fā)疼痛以及足底持續(xù)機(jī)械性痛覺(jué)過(guò)敏。
1. 椎間盤(pán)源性:Lee 等[34]采用完全弗氏佐劑 ( complete freund’s adjuvant,CFA ) 注入椎間盤(pán)的方法建立腰痛動(dòng)物模型。使用外科技術(shù)經(jīng)腹膜入路顯露 SD 大鼠的 L5~6椎間盤(pán)側(cè)前方,于前縱韌帶側(cè)方使用 26 G 針頭將 10 μl CFA 注入 L5~6椎間盤(pán),CFA 可破壞周圍組織形成大量炎癥聚集,由此引發(fā)椎間盤(pán)炎病理改變。術(shù)后 7 周,可以觀察到注入 CFA 大鼠的后爪退縮反應(yīng)明顯增加,同時(shí)背根神經(jīng)節(jié)中疼痛相關(guān)介質(zhì)表達(dá)明顯上調(diào),包括 CGRP、前列腺素 E ( prostaglandins E,PGE )、誘導(dǎo)型一氧化氮合酶( nitric oxide synthase ),證實(shí)腰痛動(dòng)物模型建立成功。
2. 小關(guān)節(jié)源性:Cavanaugh 等[35]將致炎物質(zhì)注射于椎間小關(guān)節(jié),制成小關(guān)節(jié)源性腰痛動(dòng)物模型。動(dòng)物選取的是新西蘭白兔,致炎物質(zhì)包括角叉菜膠或白陶土。致炎物質(zhì)在引發(fā)小關(guān)節(jié)發(fā)生急性炎癥后,可以觀察到小關(guān)節(jié)表面神經(jīng)的敏感性和興奮性增加,并導(dǎo)致腰痛發(fā)生。
Kim 等[36]將 0.02 mg 含碘乙酸鈉注入 SD 大鼠腰椎小關(guān)節(jié)腔內(nèi),明顯破壞關(guān)節(jié)軟骨,導(dǎo)致小關(guān)節(jié)發(fā)生類似骨關(guān)節(jié)炎退行性改變。通過(guò)痛覺(jué)測(cè)驗(yàn)計(jì)和直腿抬高試驗(yàn)方法評(píng)估疼痛反應(yīng),結(jié)果出現(xiàn)壓力痛覺(jué)過(guò)敏和慢性疼痛行為學(xué)改變,由此成功建立小關(guān)節(jié)源性慢性腰痛動(dòng)物模型。Gong等[37]在同一時(shí)間采取了非常相似的方法制備這一模型,同樣采用含碘乙酸鈉注入大鼠小關(guān)節(jié)腔內(nèi),觀察到類似的關(guān)節(jié)軟骨和軟骨下骨病理改變,而行動(dòng)學(xué)測(cè)試也觀察到動(dòng)物機(jī)械疼痛刺激敏感性增強(qiáng),同時(shí)檢測(cè)到白介素-1β 和腫瘤壞死因子-α 在干預(yù)后短期內(nèi)明顯增高,證實(shí)小關(guān)節(jié)疼痛動(dòng)物模型建立成功。
Shuang 等[38]在應(yīng)用 CFA 成功建立腰椎小關(guān)節(jié)骨性關(guān)節(jié)炎大鼠模型的基礎(chǔ)上,將尿激酶型纖溶酶原激活物作為小關(guān)節(jié)腔內(nèi)注入物,進(jìn)行大鼠腰椎小關(guān)節(jié)退變疼痛模型的誘導(dǎo),測(cè)量機(jī)械縮爪閾值及熱刺痛閾值評(píng)估實(shí)驗(yàn)動(dòng)物行為學(xué)改變,并取材進(jìn)行病理學(xué)染色和免疫組化染色,結(jié)果證實(shí)通過(guò)這一化學(xué)物質(zhì)的注射,可成功建立小關(guān)節(jié)源性疼痛動(dòng)物模型。
綜上所述,腰痛動(dòng)物模型的制備對(duì)于揭示癥狀性腰椎退變的發(fā)病機(jī)制具有重要作用,在完全研究清楚腰痛的發(fā)病機(jī)制之前,動(dòng)物模型仍然是重要的研究工具。動(dòng)物模型有助于了解腰痛的自然病程,并可以進(jìn)一步探討腰痛的治療方法。
目前現(xiàn)有的腰痛動(dòng)物模型多為椎間盤(pán)源性或小關(guān)節(jié)源性,制備方法較為單一。不同于人類腰痛的慢性自然病程,上述腰痛動(dòng)物模型多是在短時(shí)間內(nèi)借助于機(jī)械損傷或化學(xué)損傷制成,這是目前腰痛動(dòng)物模型的主要局限。隨著對(duì)腰痛理解的深入,相信能夠制備更加接近于人體病理狀態(tài)的新型動(dòng)物模型。
[1] Vos T, Flaxman AD, Naghavi M, et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990-2010: a systematic analysis for the global burden of disease study 2010[J]. Lancet, 2012, 380 (9859):2163-2196.
[2] Andersson GB. Epidemiological features of chronic low-back pain[J]. Lancet, 1999, 354(9178):581-585.
[3] Deyo RA, Weinstein JN. Low back pain[J]. N Engl J Med,2001, 344(5):363-370.
[4] Jensen MC, Brant-Zawadzki MN, Obuchowski N, et al.Magnetic resonance imaging of the lumbar spine in people without back pain[J]. N Engl J Med, 1994, 331(2):69-73.
[5] Gr?nblad M, Weinstein JN, Santavirta S. Immunohistochemical observations on spinal tissue innervation: a review of hypothetical mechanisms of back pain[J]. Acta Orthop Scand,1991, 62(6):614-622.
[6] Cavanaugh JM. Neural mechanisms of lumbar pain[J]. Spine,1995, 20(16):1804-1809.
[7] Manchikanti L, Pampati V, Beyer C, et al. Evaluation of psychological status in chronic low back pain: Comparison with general population[J]. Pain Physician, 2002, 5(2):149-155.
[8] Luoma K, Riihim?ki H, Luukkonen R, et al. Low back pain in relation to lumbar disc degeneration[J]. Spine, 2000, 25(4):487-492.
[9] 呂游, 陳輝, 鄭召民. 椎間盤(pán)退變實(shí)驗(yàn)動(dòng)物模型的研究進(jìn)展[J]. 中國(guó)脊柱脊髓雜志, 2006, 16(1):68-71.
[10] Hopkin K. Show me where it hurts: tracing the pathway of pain[J]. J NIH Res, 1997, 9:37-43.
[11] Mogil JS, Davis KD, Derbyshire SW. The necessity of animal models in pain research[J]. Pain, 2010, 151(1):12-17.
[12] Allchorne AJ, Broom DC, Woolf CJ. Detection of cold pain,cold allodynia and cold hyperalgesia in freely behaving rats[J].Mol Pain, 2005, 1:36.
[13] Simen BB, Duman CH, Simen AA, et al. TNFalpha signaling in depression and anxiety: behavioral consequences of individual receptor targeting[J]. Biol Psychiatry, 2006, 59(9):775-785.
[14] Gawade SP. Acetic acid induced painful endogenous infliction in writhing test on mice[J]. J Pharmacol Pharmacother, 2012,3(4):348.
[15] Sakuma T, Kamoda H, Miyagi M, et al. Comparison of CatWalk analysis and von Frey testing for pain assessment in a rat model of nerve crush plus inflammation[J]. Spine, 2013,38(15):E919-924.
[16] Leach MC, Klaus K, Miller AL, et al. The assessment of post-vasectomy pain in mice using behaviour and the Mouse Grimace Scale[J]. PLoS One, 2012, 7(4):e35656.
[17] Robinson I, Sargent B, Hatcher JP. Use of dynamic weight bearing as a novel end-point for the assessment of Freund’s Complete Adjuvant induced hypersensitivity in mice[J].Neurosci Lett, 2012, 524(2):107-110.
[18] Silberberg R. Histologic and morphometric observations on vertebral bone of aging sand rats[J]. Spine, 1988, 13(2):202-208.
[19] Melrose J, Taylor TK, Ghosh P. Variation in intervertebral disc serine proteinase inhibitory proteins with ageing in a chondrodystrophoid (beagle) and a non-chondrodystrophoid(greyhound) canine breed[J]. Gerontology, 1996, 42(6):322-329.
[20] Lauerman WC, Plateberg RC, Cain JE, et al. Age-related disk degeneration: preliminary report of a naturally occurring baboon model[J]. J Spinal Disord, 1992, 5(2):170-174.
[21] Gruber HE, Ingram JA, Leslie K, et al. Cellular, but not matrix,immunolocalization of SPARC in the human intervertebral disc:decreasing localization with aging and disc degeneration[J].Spine, 2004, 29(20):2223-2228.
[22] Gruber HE, Sage EH, Norton HJ, et al. Targeted deletion of the SPARC gene accelerates disc degeneration in the aging mouse[J]. J Histochem Cytochem, 2005, 53(9):1131-1138.
[23] Millecamps M, Tajerian M, Naso L, et al. Lumbar intervertebral disc degeneration associated with axial and radiating low back pain in ageing SPARC-null mice[J]. Pain, 2012, 153(6):1167-1179.
[24] Miyagi M, Millecamps M, Danco TA. Increased innervation and sensory nervous system plasticity in a mouse model of low back pain due to intervertebral disc degeneration[J]. Spine,2014, 39(17):1345-1354.
[25] Lipson SJ, Muir H. Proteoglycans in experimental intervertebral disc degeneration[J]. Spine, 1981, 6(3):194-210.
[26] Sobajima S, Kompel JF, Kim JS, et al. A slowly progressive and reproducible animal model of intervertebral disc degeneration characterized by MRI, X-ray, and histology[J]. Spine, 2005,30(1):15-24.
[27] Kim KS, Yoon ST, Li J, et al. Disc degeneration in the rabbit:a biochemical and radiological comparison between four disc injury models[J]. Spine, 2005, 30(1):33-37.
[28] Kim JS, Kroin JS, Li X, et al. The rat intervertebral disk degeneration pain model: relationships between biological and structural alterations and pain[J]. Arthritis Res Ther, 2011,13(5):R165.
[29] Miyagi M, Ishikawa T, Kamoda H, et al. Disc dynamic compression in rats produces long-lasting increases in inflammatory mediators in discs and induces long-lasting nerve injury and regeneration of the afferent fibers innervating discs:a pathomechanism for chronic discogenic low back pain[J].Spine, 2012, 37(21):1810.
[30] Olmarker K. Puncture of a lumbar intervertebral disc induces changes in spontaneous pain behavior: an experimental study in rats[J]. Spine, 2008, 33(8):850-855.
[31] Henry JL, Yashpal K, Vernon H, et al. Lumbar facet joint compressive injury induces lasting changes in local structure,nociceptive scores, and inflammatory mediators in a novel rat model[J]. Pain Res Treat, 2012, 2012:127636.
[32] Kim JS, Ahmadinia K, Li X, et al. Development of an experimental animal model for lower back pain by percutaneous injury-induced lumbar facet joint osteoarthritis[J].J Cell Physiol, 2015, 230(11):2837-2847.
[33] Hu SJ, Xing JL. An experimental model for chronic compression of dorsal root ganglion produced by intervertebral foramen stenosis in the rat[J]. Pain, 1998, 77(1):15-23.
[34] Lee M, Kim BJ, Lim EJ, et al. Complete Freund’s adjuvantinduced intervertebral discitis as an animal model for discogenic low back pain[J]. Anesth Analg, 2009, 109(4):1287-1296.
[35] Cavanaugh JM, Ozaktay AC, Yamashita T, et al. Mechanisms of low back pain: a neurophysiologic and neuroanatomic study[J]. Clin Orthop Relat Res, 1997, (335):166-180.
[36] Kim JS, Kroin JS, Buvanendran A, et al. Characterization of a new animal model for evaluation and treatment of back pain due to lumbar facet joint osteoarthritis[J]. Arthritis Rheum,2011, 63(10):2966-2973.
[37] Gong K, Shao W, Chen H, et al. Rat model of lumbar facet joint osteoarthritis associated with facet-mediated mechanical hyperalgesia induced by intra-articular injection of monosodium iodoacetate[J]. J Formos Med Assoc, 2011, 110(3):145-152.
[38] Shuang F, Zhu J, Song K, et al. Establishment of a rat model of adjuvant-induced osteoarthritis of the lumbar facet joint[J]. Cell Biochem Biophys, 2014, 70(3):1545-1551.
[39] Shuang F, Hou SX, Zhu JL, et al. Establishment of a rat model of lumbar facet joint osteoarthritis using intraarticular injection of urinary plasminogen activator[J]. Sci Rep, 2015, 5:9828.
中國(guó)骨與關(guān)節(jié)雜志2018年2期