• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    萘嘧啶鏑和鈰稀土配合物的單分子磁性

    2018-01-12 05:55:23鄒曉艷董艷萍李光明
    關(guān)鍵詞:省部艷萍工程學(xué)

    鄒曉艷,董艷萍,李光明

    (黑龍江大學(xué) a. 功能無機材料化學(xué)省部共建教育部重點實驗室;b. 化學(xué)化工與材料學(xué)院;c.《黑龍江大學(xué)工程學(xué)報》編輯部, 哈爾濱 150080)

    Single-molecule magnet of the homo-multinuclear lanthanide complexes continue to be attractive owing to their potential applications for the uses of high-density magnetic memories, molecular spintronics and quantum computing devices.[1-3]Particular attention has been devoted to DyIIIion, attributed to the inherently large magnetic moment with a Kramers ground state of6H15/2and a large Ising-type magnetic anisotropy. It has indisputably led to the largest number of pure 4f SMMs with various nuclear.[4-5]M. L. Tong, et al. presented a pentagonal bipyramidal DyIIIwhich the effective energy barrier (Ueff=1 025 K) for relaxation of magnetization reached a breakthrough among the SMMs[6].

    More efforts for lanthanide complexes have focused mainly on the construction and preparation of versatile coordination structures, as well as the structure-property relationships. The large ionic radius of lanthanide ions affords high and variable coordination numbers, providing more difficulty in controlling the synthetic reaction than transition-metal ones[7]. Among the strategies, the rational selection of organic ligands or co-ligands according to their length, rigidity and functional groups is important for the assembly of structurally controllable lanthanide complexes with magnetic behaviors. From benzimidazole base ligands (HL1=2-(1H-benzoimidazol-2-yl)-4-bromo-6-methoxy-phenol, Scheme 1a), the lanthanide complexes with various structures were prepared by Jones, Yang and coworkers[8]. We suppose that replacement of phenyl with larger conjugated aromatic system, such as naphthyl group, would enlargement of the fused ring structure might provide different coordination modes. Herein, synthesized 2-(2′-hydroxyphenyl-3′-methoxyl)naphthoimidazole (HL, scheme 1b) and two mononuclear lanthanide complexes have been isolated with crystal structures determined by X-ray crystallographic analysis. Magnetic properties of DyIIIcomplex has been investigated which has scarcely been reported.

    Scheme 1 Structures of HL1 (a) and HL (b)

    1 Experimental

    1.1 Materials and general methods

    Ln(NO)3·6H2O were prepared by the reactions of Ln2O3with nitric acid in the aqueous solution. All the other chemicals were obtained from commercial sources and used without further purification. Fourier transform infrared (FT-IR) data were recorded on a PerkinElmer 100 spectrophotometer in the range of 4 000~500 cm-1using KBr disks. UV-vis spectra (in CH3CN) were recorded on a PerkinElmer Lambda 35 spectrometer. Elemental (C, N, and H) analysis were carried out on a PerkinElmer 2 400 analyzer. Thermal analyses were carried out on a PerkinElmer STA 6000 in the temperature range of 30~800 ℃ with a heating rate of 10 ℃ min-1under atmosphere. Powder X-ray diffraction (PXRD) data were recorded on a Rigaku D/Max-3B X-ray diffractometer with Cu Kα radiation, the scanning rate was 4°/s, 2θ ranging from 5~50°. The magnetic susceptibility for complex1was conducted with a Quantum Design MPMS-XL-7 SQUID-VSM magnetometer. The magnetic corrections were made by using Pascal’s constants.The detailed information of samples is shown in Fig.1-4.

    Fig.1 TG-DSC curves of complex 1

    Fig.2 TG-DSC curves of complex 2

    Fig.3 PXRD patterns of simulated (black) and experimental (red) for complex 1

    Fig.4 PXRD patterns of simulated (black) and experimental (red) for complex 2

    1.2 Syntheses of HL, complexes 1 and 2

    1.2.1 Syntheses of 2-(2′-hydroxyphenyl-3′-methox-yl)naphthoimidazole (HL)

    2-(2′-hydroxyphenyl-3′-methoxyl)naphthoimidazole (HL) have been prepared by refluxing the mixtures of 1,8-diaminonaphthalene (1.58 g, 0.01 mol) and o-Vanillin (3.04 g, 0.02 mol) in EtOH (30 mL) for 4~5 h. The precipitates formed were filtered, washed with cold EtOH, and recrystallized from hot EtOH. Anal. Calcd for C18H14N2O2(290.32): C, 74.47; H, 4.86; N, 9.65 wt%. Found: C, 74.39; H, 4.83; N, 9.69 wt%. Yield, 70 wt%.

    1.2.2 [Dy(HL)2(NO3)3] ]·CH2Cl2(1)

    Dy(NO)3·6H2O (0.1 mmol, 0.045 7 g) and 2-(2′-hydroxyphenyl-3′-methoxyl)naphthoimidazole (HL) (0.2 mmol, 0.085 2 g) were dissolved in a mixture solution of CH3OH/CH2Cl2, (20 mL, v/v, 1/1). The mixture was consequently allowed to stir at room temperature for 4 h. Then hexane (60 mL) was allowed to diffuse slowly into the filtrate. Crystals suitable for single crystal X-ray analysis were obtained in 7 days.Anal. Calcd for C37H30Cl2DyN7O13(1 014.06): C, 43.82; H, 2.98; N, 9.67 wt%. Found: C, 43.70; H, 2.63; N, 9.80 wt%. Yield, 72 wt%. IR (KBr, cm-1): 3 056, 2 939, 2 840, 1 623, 1 508, 1 384, 1 220, 1 065, 1 029, 819. UV-vis [MeOH, λ]: 203, 229, 270, 279, 342 nm.

    1.2.3 [Ce(HL)2(NO3)3] ]·CH2Cl2(2)

    Ce(NO)3·6H2O (0.1 mmol, 0.043 4 g) and 2-(2′-hydroxyphenyl-3′-methoxyl)naphthoimidazole (HL) (0.2 mmol, 0.085 2 g) were dissolved in a mixture solution of CH3OH/CH2Cl2, (20 mL, v/v, 1/1). The mixture was consequently allowed to stir at room temperature for 4 h. Then hexane (60 mL) was allowed to diffuse slowly into the filtrate. Crystals suitable for single crystal X-ray analysis were obtained in 7 days. Anal. Calcd for C37H30Cl2CeN7O13(1 024.08): C, 44.53; H, 3.34; N, 9.67 wt%. Found: C, 44.52;H, 3.32; N, 9.69 wt%. Yield, 80 wt%. IR (KBr, cm-1): 3 060, 2 940, 2 845, 1 623, 1 508, 1 383, 1 285, 1 066, 819, 736. UV-vis [MeOH, λ]: 202, 229, 271, 279, 344 nm.

    1.3 Determination of the crystal structures

    Single crystals of complexes1and2were selected at 293±2 K for X-ray diffraction analysis on an Oxford Xcalibur Gemini Ultra diffractometer using graphite-monochromated Mo-Kα radiation (λ=0.071 073 nm) at room temperature. The structures of complexes1and2were solved by direct methods, and all non-hydrogen atoms were anisotropically refined by full-matrix least squares methods on F2 using SHELXS-97 crystallographic software package[9]. There was one CH2Cl2molecule in the unit cells of complexes1and2, respectively, which has been treated as diffuse contributions to the overall scattering without specific atom positions using the SQUEEZE/PLATON tools, respectively. The SQUEEZE results were consistent with TG-DSC and elemental analysis. The crystal data and structure refinement details were summarized in table 1 for complexes1and2. CCDC No.1441074 and 1441078 contain the supplementary crystallographic data for complexes1and2, respectively. These data can be obtained free of charge from the Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/data_request/cif.

    2 Results and discussions

    2.1 Description of crystal structures

    Structural analysis shows that complexes1and2are isostructural crystallized in the monoclinic P21/cspace group. In a typical structure of complex1(Fig.5a), the DyIIIion is ten-coordinated to four phenolate O atoms from two ligands and six O atoms from three bidentate nitrate groups adopting sphenocorona geometry (Fig.5b). The Dy-O bond lengths are in the range of 0.227 3(90)-0.269 0(107) nm in accordance with the reported values[10]. The N atoms of the ligands remain exclusively uncoordinated. Notably, the two adjacent ligands attached to the DyIIIions pack in an offset head-to-head fashion.

    Table 1 Crystal data and structure refinement for complexes 1 and 2

    2.2 Magnetic Properties

    The temperature dependence curves of the direct current (dc) magnetic susceptibilities under an applied dc field of 100 Oe in the temperature range of 2~300 K (Fig.6) show that the χMT of complex1at 300 K is 14.13 cm3K mol-1, which is close to the expected values for an isolated DyIIIion (S=5/2, L=5, J=15/2,6H15/2, g=4/3). Upon cooling, the χMT product gradually decreased to reach a minimum value of 8.70 cm3K mol-1at 2.0 K for complex1, which is mostly due to the thermal depopulation of the Stark sublevels and/or significant magnetic anisotropy in DyIIIion systems. The field dependence of the magnetization for complex1rises slowly before reaching 4.13 N μBat 2.0 K. Moreover, the absence of a superposition of the M versus H data at higher field indicates the presence of significant magnetic anisotropy in complex1.

    Fig.5 (a) The molecular structures of complex 1 (hydrogen atoms have been omitted for clarity). Orientation of the main magnetic anisotropy axes in the ground-state for the DyIII ion center;(b) Polyhedron view of the coordination geometry

    Fig.6 Outset: Temperature dependence of χmT at 1 kOe field for complex 1Inset: The field dependence of magnetizationfor complex 1 at 2.0~8.0 K

    Alternating current (ac) susceptibility curves at zero external field show no in-phase signal (χ′) and out-of-phase signal (χ″) of the ac susceptibility at frequencies up to 1 000 Hz and the temperatures down to 1.8 K for complex1. It suggests that the magnetization relaxation time (τ) is much shorter than 1/2 πν and that the quantum tunnelling of the magnetization (QTM) plays an important role[11]. However, when a static direct current (dc) field of 2 kOe is applied, theχ′ andχ″ component is strongly enhanced indicating that the presence of QTM can be significantly reduced by the applied field (Fig.7)[12]. In the temperature dependent ac magnetic susceptibility data, the clear frequency-dependent full peaks can be observed both inχ′ andχ″ plots in the frequency region of 1~1 000 Hz over the testing temperature range (Fig.7a and Fig.7c). Moreover, theχ″ signals shift to a lowertemperature with decreasing frequency, indicating a thermally activated relaxation process. In the frequency dependent ac magnetic susceptibility data (Fig.7b and Fig.7d), the relaxation times (τ) are calculated from the frequencies (τ-1=2 πν) of the peak maxima at the corresponding temperatures.

    Frequency dependence ofχ″ peaks is analysed through Arrhenius law (τ=τ0exp(Ueff/kT), where T is the temperature of the maximumχ″ at different frequencies,τ=1/2 πν, and Ueffis the anisotropic energy barrier) affords the anisotropic energy barrier of 28 K and the pre-exponential factor τ0of 1.36 ×10-6s (Fig.8a), which are comparable to 50 K (Ueff/ kB) and 6.80 × 10-7s (τ0) for [Dy(L2)(NO3)2]·CH3OH (H2L2=N,N′-bis-pyridin-2-yl-methelene-1,8-diamino-3,6-dioxaoctane)[13]. According to the generalized Debye model for the high frequency region. The Cole-Cole plots at 2~5 K of complex1(Fig.8b) can be fitted well, withαvalues in the range of 0.236~0.409 for complex1(Table 2), indicating a relatively narrow distribution of the relaxation processes.

    Fig.7 Temperature dependence of the in-phase (a) and out-of-phase (c) ac susceptibility and frequency dependence of in-phase (b) and out-of phase (d) ac susceptibilities for complex 1 under 2 kOe dc field

    Fig.8 (a) The τ versus T-1 plot for complex 1 under 2 000 Oe dc fields, the red solid line represent the best fits using the Arrhenius law; (b) The Cole-Cole plots at 2~5 K of complex 1 measured under 2 000 Oe dc field, and the red solid lines are the best fitting according to the generalized Debye model

    Table 2 Relaxation Fitting Parameters from the Least-Square Fitting of the Cole-Cole plots of complex 1 according to the CC-FIT

    To further study the magnetism for complex1, the anisotropy axis for DyIIIion was calculated on the basis of the electrostatic model recently reported by Chilton et al[14]. Following the program MAGELLAN, the ground-state magnetic anisotropy axes for complex1and reported [Dy(L2)(NO3)2]·CH3OH were found (Fig.9). Since the overall shape of free-ion electron density for DyIIIion is oblate, it can increase the energy barrier by longitudinal tensioning the electron density of DyIIIion[15]. The two nitrate groups with electron deficient from [Dy(L2)(NO3)2]·CH3OH are better to longitudinal tension the electron density of DyIIIion in the magnetic anisotropy axis direction. Therefore, the energy barrier of [Dy(L2)(NO3)2]·CH3OH is much higher than that for complex1(Fig.10).

    Fig.9 Orthogonal configurations for the magnetic anisotropy axis in complex 1 (left) and [Dy(L2)(NO3)2]·CH3OH (right) [S1]

    Fig.10 Molecular structure of complex 1 (a) and [Dy(L2)(NO3)2]·CH3OH (b) (hydrogen atoms have been omitted for clarity). Orientation of the main magnetic anisotropy axes in the ground-state for the DyIII ion center

    3 Conclusions

    Isolation of two complexes1and2demonstrates that 2-(2′-hydroxyphenyl-3′-methoxyl)naphthoimidazole is able to coordinate to the lanthanide ions affording mononuclear lanthanide complexes, and the structures of the ligand dominate the structures of the complexes and the coordination geometries of the DyIIIions. Static and dynamitic magnetic analysis suggests that the nature of the DyIIIions produces the single molecule magnetism for complex1. Notably, the ligand 2-(2′-hydroxyphenyl-3′-methoxyl)naphthoimidazole induce the magnetic relaxations of the DyIIIions strengthen the magnetic anisotropy of the DyIIIions, resulting in a 28 K energy barrier. The anions along the magnetic anisotropy axis dominate the magnetism of complex1.

    [1] Sorace L, Nelli C, Tteschi D. Lanthanides in molecular magnetism: old tools in a new field [J]. Chem. Soc. Rev.,2011, 40:3092-3104.

    [2] Woodruff D N, Winpenny R E P, Layfield R A. Lanthanide single molecule magnets [J]. Chem. Rev.,2013, 113:5110-5148.

    [3] Yang P P, Gao X F, Song H B, et al. Slow magnetic relaxation in novel Dy4 and Dy8 compounds [J], Inorg. Chem.,2011, 50:720-722.

    [4] Habib F, Lin P H, Long J, et al. The use of magnetic dilution to elucidate the slow magnetic relaxation effects of a Dy2 single-molecule magnet [J]. J. Am. Chem. Soc.,2011, 133:8830-8833.

    [5] Chen Y C, Liu J L, Ungur L, et al. Symmetry-supported magnetic blocking at 20 K in pentagonal bipyramidal Dy(III) single-ion magnets [J].J. Am. Chem. Soc.,2016, 138:2829-2837.

    [6] Liu J, Chen Y C, Liu J L, et al. A stable pentagonal-bipyramidal Dy(III) single-ion magnet with a record magnetization reversal barrier over 1000 K [J]. J. Am. Chem. Soc.,2016, 138:5441-5450.

    [7] Feng X, Ling X L, Liu L, et al. A series of 3D lanthanide frameworks constructed from aromatic multi-carboxylate ligand: structural diversity, luminescence and magnet [J]. Dalton Trans.,2013, 42:10292-10303.

    [8] Yang X, Jones R A, Oye M M, et al. Transformation of a luminescent benzimidazole-based Yb3 cluster into a one-dimensional coordination polymer [J].New J. Chem.,2011, 35:310-312.

    [9] Sheldrick G M. SHELXL-97, a crystallographic program for structure refinement, Germany:University of G?ttingen,1997.

    [10] Ma Y, Xu G F, Yang X, et al. Pyrazine-bridged Dy2 single-molecule magnet with a large anisotropic barrier [J]. Chem. Commun.,2010, 46:8264-8266.

    [11] Liu J L, Yuan K, Leng J D, et al. Anion-induced self-assembly of luminescent and magnetic homoleptic cyclic tetranuclear Ln4(salen)4 and Ln4(salen)2 complexes (Ln = Nd, Yb, Er, or Gd) [J]. Inorg. Chem.,2012, 51:8538-8542.

    [12] Poneti G, Bernot K, Bogani L, et al.A rational approach to the modulation of the dynamics of the magnetisation in a dysprosium-nitronyl-nitroxide radical complex[J].Chem. Commun,2007:1807-1809.

    [13] Campbell V E, Guillot R G, Riviere E, et al. Subcomponent self-assembly of rare-earth single-molecule magnets [J]. Inorg. Chem.,2013, 52:5194-5200.

    [14] Chilton N F, Collison D, McInnes E J L, et al. An electrostatic model for the determination of magnetic anisotropy in dysprosium complexes [J]. Nat. Commun.,2013, 4:2551-2557.

    [15] Rinehart J D, Long J R, Exploiting single-ion anisotropy in the design of f-element single-molecule magnets [J].Chem. Sci.,2011, 2:2078-2085.

    猜你喜歡
    省部艷萍工程學(xué)
    工程學(xué)和圓柱
    《水利水運工程學(xué)報》征稿簡則
    A SPECTRAL METHOD FOR A WEAKLY SINGULAR VOLTERRA INTEGRO-DIFFERENTIAL EQUATION WITH PANTOGRAPH DELAY*
    重型機械裝備省部共建協(xié)同創(chuàng)新中心簡介
    陜西中藥資源產(chǎn)業(yè)化省部共建協(xié)同創(chuàng)新中心
    黑龍江省人民政府辦公廳關(guān)于印發(fā)黑龍江省合理膳食行動省部合作項目實施方案的通知
    《照明工程學(xué)報》征稿簡則
    NUMERICAL ANALYSIS FOR VOLTERRA INTEGRAL EQUATION WITH TWO KINDS OF DELAY?
    4個涉煤省部共建協(xié)同創(chuàng)新中心獲認(rèn)定
    中國煤炭(2019年10期)2019-01-19 08:52:17
    學(xué)吹泡泡
    高清视频免费观看一区二区| 亚洲精品美女久久久久99蜜臀| 一二三四社区在线视频社区8| 欧美激情高清一区二区三区| bbb黄色大片| 久久影院123| 丁香六月欧美| 91大片在线观看| 久久99热这里只频精品6学生| 色婷婷久久久亚洲欧美| 免费看a级黄色片| 啦啦啦 在线观看视频| a在线观看视频网站| 欧美黄色淫秽网站| 美女福利国产在线| 嫩草影视91久久| 亚洲第一青青草原| 欧美在线一区亚洲| 欧美国产精品一级二级三级| av免费在线观看网站| 丁香六月天网| 18禁美女被吸乳视频| 久久久精品国产亚洲av高清涩受| 中文欧美无线码| 一级毛片电影观看| 麻豆乱淫一区二区| 黄片小视频在线播放| 欧美精品一区二区大全| 午夜久久久在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 国产精品久久久av美女十八| 91成年电影在线观看| 国产熟女午夜一区二区三区| 一级毛片精品| 国产精品影院久久| 精品免费久久久久久久清纯 | 大片免费播放器 马上看| 亚洲国产欧美日韩在线播放| 十八禁网站网址无遮挡| 欧美精品一区二区免费开放| 国产av国产精品国产| 蜜桃国产av成人99| 国产亚洲欧美在线一区二区| 一区二区av电影网| 色综合婷婷激情| 丝袜在线中文字幕| videosex国产| 亚洲成a人片在线一区二区| 国精品久久久久久国模美| 欧美日韩黄片免| 欧美激情 高清一区二区三区| 亚洲精华国产精华精| 欧美中文综合在线视频| 亚洲熟女毛片儿| 国产av一区二区精品久久| 精品福利永久在线观看| 亚洲欧洲精品一区二区精品久久久| 亚洲精品一卡2卡三卡4卡5卡| h视频一区二区三区| 亚洲一码二码三码区别大吗| 亚洲欧洲精品一区二区精品久久久| 少妇 在线观看| 久久久精品免费免费高清| 亚洲一码二码三码区别大吗| 成人影院久久| 欧美 日韩 精品 国产| 精品人妻熟女毛片av久久网站| 国产精品偷伦视频观看了| 国产精品一区二区在线不卡| 每晚都被弄得嗷嗷叫到高潮| 午夜福利在线免费观看网站| 婷婷丁香在线五月| 国产精品亚洲一级av第二区| 啦啦啦 在线观看视频| 99精品久久久久人妻精品| 国产一区二区 视频在线| 成人特级黄色片久久久久久久 | 99热网站在线观看| 国产精品国产高清国产av | 国产精品久久久久久人妻精品电影 | 999精品在线视频| www.999成人在线观看| 国产成人影院久久av| 2018国产大陆天天弄谢| 又紧又爽又黄一区二区| 99re6热这里在线精品视频| 久久午夜亚洲精品久久| 色播在线永久视频| 美女午夜性视频免费| 亚洲精品中文字幕一二三四区 | 一二三四社区在线视频社区8| 久久香蕉激情| 黄色毛片三级朝国网站| 日韩制服丝袜自拍偷拍| 黑丝袜美女国产一区| 国产成人欧美在线观看 | 欧美在线黄色| 免费人妻精品一区二区三区视频| 精品国内亚洲2022精品成人 | 美女午夜性视频免费| av超薄肉色丝袜交足视频| 性少妇av在线| 欧美日韩精品网址| 天堂动漫精品| 久久久久久亚洲精品国产蜜桃av| 国产精品免费视频内射| 亚洲中文av在线| 菩萨蛮人人尽说江南好唐韦庄| 一本综合久久免费| 国产免费av片在线观看野外av| 十八禁人妻一区二区| 色视频在线一区二区三区| 欧美日韩亚洲高清精品| 国产有黄有色有爽视频| 亚洲国产中文字幕在线视频| 久久婷婷成人综合色麻豆| 美女高潮到喷水免费观看| 亚洲国产av新网站| 777久久人妻少妇嫩草av网站| 两个人免费观看高清视频| 国产精品久久久久久人妻精品电影 | 亚洲 国产 在线| 天天添夜夜摸| 正在播放国产对白刺激| 日韩制服丝袜自拍偷拍| 欧美精品人与动牲交sv欧美| 日日摸夜夜添夜夜添小说| 97在线人人人人妻| 免费看十八禁软件| 亚洲av成人一区二区三| 在线观看一区二区三区激情| 青草久久国产| 国产99久久九九免费精品| av线在线观看网站| 男女之事视频高清在线观看| 制服人妻中文乱码| 亚洲国产成人一精品久久久| 夜夜爽天天搞| 国产成人av激情在线播放| 三上悠亚av全集在线观看| 人人妻人人爽人人添夜夜欢视频| 欧美黄色淫秽网站| 另类精品久久| 免费观看人在逋| 国产亚洲午夜精品一区二区久久| 亚洲专区中文字幕在线| 国产精品 国内视频| 久久久久精品国产欧美久久久| 久久久精品区二区三区| 亚洲成av片中文字幕在线观看| 一夜夜www| 亚洲天堂av无毛| 一级毛片精品| 男女无遮挡免费网站观看| 91国产中文字幕| 久久国产亚洲av麻豆专区| 女人被躁到高潮嗷嗷叫费观| 国产精品一区二区在线观看99| 18禁裸乳无遮挡动漫免费视频| 一边摸一边抽搐一进一出视频| 午夜福利,免费看| 国产成人av教育| 久久精品亚洲熟妇少妇任你| 19禁男女啪啪无遮挡网站| av片东京热男人的天堂| 97人妻天天添夜夜摸| 精品少妇黑人巨大在线播放| 久久久久国产一级毛片高清牌| 亚洲精品成人av观看孕妇| 日本黄色日本黄色录像| 精品久久蜜臀av无| 建设人人有责人人尽责人人享有的| 性高湖久久久久久久久免费观看| 大码成人一级视频| 999久久久国产精品视频| 天堂中文最新版在线下载| 在线播放国产精品三级| 亚洲少妇的诱惑av| 久久精品成人免费网站| 91精品国产国语对白视频| 精品一区二区三卡| 日本一区二区免费在线视频| 欧美日韩精品网址| 黄色视频,在线免费观看| 欧美日韩亚洲国产一区二区在线观看 | 美国免费a级毛片| 两个人免费观看高清视频| 精品熟女少妇八av免费久了| 水蜜桃什么品种好| 国产精品自产拍在线观看55亚洲 | 国产精品98久久久久久宅男小说| 亚洲精品国产精品久久久不卡| 首页视频小说图片口味搜索| 中文字幕制服av| 在线看a的网站| 我的亚洲天堂| 亚洲国产看品久久| tocl精华| 在线十欧美十亚洲十日本专区| 深夜精品福利| 国产精品久久电影中文字幕 | 精品一区二区三卡| 国产一区二区在线观看av| 国产精品98久久久久久宅男小说| 女人久久www免费人成看片| 精品欧美一区二区三区在线| 在线亚洲精品国产二区图片欧美| 日韩大码丰满熟妇| 热99国产精品久久久久久7| 亚洲男人天堂网一区| 国产97色在线日韩免费| 中文字幕制服av| 交换朋友夫妻互换小说| 美国免费a级毛片| 欧美黄色片欧美黄色片| 欧美另类亚洲清纯唯美| 每晚都被弄得嗷嗷叫到高潮| 最新的欧美精品一区二区| 亚洲av成人一区二区三| 亚洲精品一二三| 色婷婷av一区二区三区视频| 午夜视频精品福利| 国产精品偷伦视频观看了| 亚洲自偷自拍图片 自拍| 高清视频免费观看一区二区| 色尼玛亚洲综合影院| 欧美+亚洲+日韩+国产| 中亚洲国语对白在线视频| 丝袜美足系列| www.999成人在线观看| 精品午夜福利视频在线观看一区 | 欧美亚洲 丝袜 人妻 在线| 一区二区三区乱码不卡18| 欧美激情 高清一区二区三区| 成人国语在线视频| 亚洲熟女毛片儿| 久久久水蜜桃国产精品网| 最黄视频免费看| 啦啦啦在线免费观看视频4| 日韩成人在线观看一区二区三区| 久久精品91无色码中文字幕| 黑人欧美特级aaaaaa片| 亚洲专区中文字幕在线| 久久久久精品人妻al黑| 亚洲成a人片在线一区二区| av免费在线观看网站| 老汉色av国产亚洲站长工具| 亚洲国产av影院在线观看| 99精品在免费线老司机午夜| 中文字幕制服av| 蜜桃在线观看..| a级毛片在线看网站| 国产日韩一区二区三区精品不卡| 欧美激情久久久久久爽电影 | 亚洲精品粉嫩美女一区| 夜夜爽天天搞| 18禁裸乳无遮挡动漫免费视频| 丁香六月欧美| 动漫黄色视频在线观看| 人妻一区二区av| 日韩大码丰满熟妇| av片东京热男人的天堂| 最新美女视频免费是黄的| 曰老女人黄片| 欧美在线黄色| 性色av乱码一区二区三区2| 国产精品 欧美亚洲| 久久久精品区二区三区| 麻豆av在线久日| 高清欧美精品videossex| 19禁男女啪啪无遮挡网站| 国产人伦9x9x在线观看| 日韩欧美一区视频在线观看| 欧美日韩亚洲国产一区二区在线观看 | 亚洲欧美精品综合一区二区三区| 男女免费视频国产| 国产在视频线精品| 女人久久www免费人成看片| 伦理电影免费视频| 精品视频人人做人人爽| 操美女的视频在线观看| 久久精品国产a三级三级三级| 香蕉国产在线看| 精品福利观看| 纵有疾风起免费观看全集完整版| 老司机深夜福利视频在线观看| 国产免费现黄频在线看| 在线观看免费高清a一片| 午夜福利,免费看| 欧美中文综合在线视频| av欧美777| 最新在线观看一区二区三区| 亚洲精品在线观看二区| 美女主播在线视频| 飞空精品影院首页| tocl精华| 999精品在线视频| 又大又爽又粗| 亚洲欧美精品综合一区二区三区| 久久亚洲真实| 日韩一区二区三区影片| 老司机影院毛片| 看免费av毛片| 久久精品熟女亚洲av麻豆精品| 两人在一起打扑克的视频| 首页视频小说图片口味搜索| 一级毛片精品| 欧美黑人欧美精品刺激| 国产在线精品亚洲第一网站| 欧美老熟妇乱子伦牲交| 欧美精品av麻豆av| 一区福利在线观看| 成人三级做爰电影| 国产不卡一卡二| 日韩大片免费观看网站| 国产男靠女视频免费网站| 欧美日韩福利视频一区二区| 午夜精品国产一区二区电影| 99香蕉大伊视频| 丰满饥渴人妻一区二区三| 中亚洲国语对白在线视频| 久久久久网色| 在线看a的网站| 夜夜骑夜夜射夜夜干| 午夜福利免费观看在线| 丝袜美足系列| 黑丝袜美女国产一区| 国产免费视频播放在线视频| 色94色欧美一区二区| 国产av国产精品国产| 亚洲久久久国产精品| av天堂久久9| av视频免费观看在线观看| 亚洲avbb在线观看| 精品国产一区二区三区四区第35| 777米奇影视久久| 色在线成人网| 成人国语在线视频| 亚洲第一av免费看| 色综合欧美亚洲国产小说| tube8黄色片| 老司机午夜十八禁免费视频| 国产在线一区二区三区精| 国产精品美女特级片免费视频播放器 | 日韩欧美免费精品| 搡老熟女国产l中国老女人| 国产一区二区三区在线臀色熟女 | 青青草视频在线视频观看| 宅男免费午夜| 9色porny在线观看| 精品人妻熟女毛片av久久网站| 欧美久久黑人一区二区| 欧美黑人欧美精品刺激| 国产99久久九九免费精品| 久久久久精品人妻al黑| 啦啦啦视频在线资源免费观看| 久久久水蜜桃国产精品网| 日本av手机在线免费观看| 欧美黄色片欧美黄色片| 免费在线观看日本一区| 大香蕉久久网| 久久精品国产综合久久久| 日韩视频一区二区在线观看| 91九色精品人成在线观看| 黄色视频,在线免费观看| 久久精品国产综合久久久| 国产男女超爽视频在线观看| 无限看片的www在线观看| 久久中文字幕一级| 在线十欧美十亚洲十日本专区| 性色av乱码一区二区三区2| 亚洲自偷自拍图片 自拍| 肉色欧美久久久久久久蜜桃| 免费日韩欧美在线观看| 51午夜福利影视在线观看| av电影中文网址| 中文字幕人妻丝袜制服| 热99国产精品久久久久久7| 亚洲七黄色美女视频| 色婷婷久久久亚洲欧美| 最近最新免费中文字幕在线| 建设人人有责人人尽责人人享有的| 欧美日韩成人在线一区二区| 在线观看www视频免费| 香蕉国产在线看| 老司机靠b影院| 美女主播在线视频| 老熟女久久久| 欧美黄色淫秽网站| 一区福利在线观看| 91大片在线观看| 高清视频免费观看一区二区| 中文字幕av电影在线播放| 国产在线免费精品| netflix在线观看网站| 亚洲性夜色夜夜综合| 久久精品亚洲精品国产色婷小说| 高清黄色对白视频在线免费看| 下体分泌物呈黄色| 一边摸一边抽搐一进一小说 | 亚洲成av片中文字幕在线观看| 日本av手机在线免费观看| 国产午夜精品久久久久久| 中文字幕高清在线视频| 久久中文字幕一级| 欧美精品啪啪一区二区三区| av超薄肉色丝袜交足视频| 国产视频一区二区在线看| 国产精品成人在线| 亚洲全国av大片| 亚洲伊人久久精品综合| 免费少妇av软件| 亚洲国产中文字幕在线视频| 欧美黄色片欧美黄色片| 91精品国产国语对白视频| 黄色视频,在线免费观看| 超碰成人久久| 免费看十八禁软件| 12—13女人毛片做爰片一| 三级毛片av免费| 国产日韩欧美亚洲二区| 久久久国产一区二区| 在线永久观看黄色视频| 国产成人av激情在线播放| 亚洲精品粉嫩美女一区| 国产成+人综合+亚洲专区| 久久99一区二区三区| 久热爱精品视频在线9| 欧美亚洲 丝袜 人妻 在线| 国产成人欧美| 99热网站在线观看| 日韩视频在线欧美| 最近最新中文字幕大全电影3 | 免费女性裸体啪啪无遮挡网站| 757午夜福利合集在线观看| 老鸭窝网址在线观看| 亚洲三区欧美一区| 黄色片一级片一级黄色片| 久久久国产欧美日韩av| 亚洲国产中文字幕在线视频| 日本精品一区二区三区蜜桃| 亚洲av成人一区二区三| 天天操日日干夜夜撸| 久热爱精品视频在线9| 日本av免费视频播放| 自线自在国产av| 国产单亲对白刺激| 国产不卡av网站在线观看| 天堂8中文在线网| 女人久久www免费人成看片| 久久精品亚洲精品国产色婷小说| 午夜福利在线观看吧| 久久婷婷成人综合色麻豆| 18禁国产床啪视频网站| 国产成人免费观看mmmm| 一区福利在线观看| 日本av手机在线免费观看| 亚洲人成77777在线视频| 不卡av一区二区三区| 久久精品成人免费网站| 狠狠精品人妻久久久久久综合| 色婷婷av一区二区三区视频| 日韩欧美一区视频在线观看| 久久青草综合色| 亚洲九九香蕉| 侵犯人妻中文字幕一二三四区| 在线观看免费日韩欧美大片| 国产深夜福利视频在线观看| 国产人伦9x9x在线观看| 国产三级黄色录像| 757午夜福利合集在线观看| 日韩大码丰满熟妇| 成人国产一区最新在线观看| 欧美成人免费av一区二区三区 | 欧美日韩中文字幕国产精品一区二区三区 | 97在线人人人人妻| √禁漫天堂资源中文www| 99精品欧美一区二区三区四区| 丝袜美足系列| 一级片免费观看大全| 精品国产亚洲在线| aaaaa片日本免费| 日韩 欧美 亚洲 中文字幕| 黑人欧美特级aaaaaa片| 国产精品av久久久久免费| 下体分泌物呈黄色| 久久香蕉激情| 日本欧美视频一区| 天堂8中文在线网| 极品教师在线免费播放| 亚洲欧美精品综合一区二区三区| 精品国产乱码久久久久久小说| 国产成人系列免费观看| 久久人人爽av亚洲精品天堂| 叶爱在线成人免费视频播放| 女性被躁到高潮视频| 免费人妻精品一区二区三区视频| 日本五十路高清| 久久久精品94久久精品| 女人久久www免费人成看片| www日本在线高清视频| 高清毛片免费观看视频网站 | 搡老熟女国产l中国老女人| 一级片免费观看大全| 午夜视频精品福利| av网站在线播放免费| www.999成人在线观看| 久久精品亚洲精品国产色婷小说| 黄片大片在线免费观看| videos熟女内射| 正在播放国产对白刺激| 老司机影院毛片| 亚洲精品一卡2卡三卡4卡5卡| 欧美日韩福利视频一区二区| 男女无遮挡免费网站观看| 精品少妇久久久久久888优播| 国产亚洲精品久久久久5区| 日韩中文字幕欧美一区二区| 夜夜夜夜夜久久久久| 国产精品国产av在线观看| 精品高清国产在线一区| 久久天堂一区二区三区四区| 午夜日韩欧美国产| 最近最新免费中文字幕在线| 丝瓜视频免费看黄片| 免费久久久久久久精品成人欧美视频| 亚洲精品国产精品久久久不卡| 岛国在线观看网站| av福利片在线| 欧美黑人精品巨大| 精品高清国产在线一区| 午夜福利在线观看吧| 丝瓜视频免费看黄片| 国产精品欧美亚洲77777| 视频区欧美日本亚洲| av免费在线观看网站| 无人区码免费观看不卡 | 日日摸夜夜添夜夜添小说| 纵有疾风起免费观看全集完整版| 在线亚洲精品国产二区图片欧美| 午夜久久久在线观看| 女性生殖器流出的白浆| 亚洲va日本ⅴa欧美va伊人久久| 欧美乱妇无乱码| 丁香欧美五月| 亚洲色图综合在线观看| av网站免费在线观看视频| 国产欧美日韩一区二区三区在线| √禁漫天堂资源中文www| 欧美日韩中文字幕国产精品一区二区三区 | 国产精品香港三级国产av潘金莲| 黄色毛片三级朝国网站| 中亚洲国语对白在线视频| 亚洲伊人色综图| 制服人妻中文乱码| 肉色欧美久久久久久久蜜桃| 久久婷婷成人综合色麻豆| 久久久国产一区二区| av有码第一页| 侵犯人妻中文字幕一二三四区| aaaaa片日本免费| 精品乱码久久久久久99久播| 国产成+人综合+亚洲专区| 亚洲色图 男人天堂 中文字幕| 国产xxxxx性猛交| 啦啦啦视频在线资源免费观看| 亚洲国产欧美一区二区综合| 嫩草影视91久久| av天堂久久9| 少妇裸体淫交视频免费看高清 | 国产成人免费无遮挡视频| 久久久久久久精品吃奶| www.自偷自拍.com| 久久ye,这里只有精品| 极品教师在线免费播放| 超碰97精品在线观看| 久久久国产一区二区| videosex国产| 亚洲成人免费电影在线观看| 成年女人毛片免费观看观看9 | 久久99一区二区三区| 亚洲专区中文字幕在线| 国产人伦9x9x在线观看| 中文字幕人妻丝袜制服| 老熟妇仑乱视频hdxx| 丰满人妻熟妇乱又伦精品不卡| 丝袜美腿诱惑在线| 999久久久精品免费观看国产| 一级片'在线观看视频| 日韩熟女老妇一区二区性免费视频| 欧美日韩精品网址| 操美女的视频在线观看| 一二三四社区在线视频社区8| 精品福利观看| 精品一区二区三区四区五区乱码| 人妻一区二区av| 亚洲午夜精品一区,二区,三区| 亚洲人成伊人成综合网2020| 久久av网站| 国产精品久久久久久精品电影小说| 精品国产一区二区久久| 美女高潮喷水抽搐中文字幕| 成年人午夜在线观看视频| 三级毛片av免费| 亚洲男人天堂网一区| 老熟妇乱子伦视频在线观看| 国产精品秋霞免费鲁丝片| 蜜桃在线观看..| 色婷婷久久久亚洲欧美| 久久久精品国产亚洲av高清涩受| 国产伦理片在线播放av一区| 激情在线观看视频在线高清 | 夜夜骑夜夜射夜夜干| 精品国产乱码久久久久久小说| 宅男免费午夜|