趙花妮,王欣欣,楊明霞
(隴東學(xué)院 數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,甘肅 慶陽 745000)
n取n-k+1系統(tǒng)在多監(jiān)控下剩余壽命隨機(jī)性質(zhì)的研究
趙花妮,王欣欣,楊明霞
(隴東學(xué)院 數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,甘肅 慶陽 745000)
n取n-k+1系統(tǒng)在可靠性理論和實(shí)際應(yīng)用中扮演著非常的角色。本文考慮由兩組獨(dú)立元件分別構(gòu)成的兩個(gè)n取n-k+1系統(tǒng)在多個(gè)監(jiān)控下剩余壽命的隨機(jī)比較問題。結(jié)果表明,n取n-k+1系統(tǒng)在雙監(jiān)控下剩余壽命的一些隨機(jī)性質(zhì)在3個(gè)監(jiān)控下同樣成立,并進(jìn)一步得出分別由兩組獨(dú)立同分布元件組成的兩個(gè)系統(tǒng)在多個(gè)監(jiān)控下剩余壽命關(guān)于似然比序的隨機(jī)比較。
似然比序;剩余壽命;多監(jiān)控
所謂n取n-k+1系統(tǒng)是指由n個(gè)元件組成的系統(tǒng)中,系統(tǒng)要正常工作當(dāng)且僅當(dāng)至少有n-k+1個(gè)元件正常工作[1]。令X1,X2,…,Xn為n個(gè)獨(dú)立且與X同分布的元件壽命,其構(gòu)成的系統(tǒng)的壽命記為X,記X1:n,X2:n,…,Xn:n為X1,X2,…,Xn由小到大排列的順序統(tǒng)計(jì)量。令Y1,Y2,…,Yn為n個(gè)獨(dú)立且與Y同分布的元件壽命,其構(gòu)成的系統(tǒng)的壽命記為Y,記Y1:n,Y2:n,…,Yn:n為Y1,Y2,…,Yn由小到大排列的順序統(tǒng)計(jì)量[2]。在可靠性和統(tǒng)計(jì)分析中,n取n-k+1系統(tǒng)的剩余壽命是一類很重要的問題,并有許多學(xué)者對(duì)其進(jìn)行了研究。例如,Zhang[3]研究了由n個(gè)獨(dú)立同分布元件構(gòu)成的n取n-k+1系統(tǒng)在雙監(jiān)控下剩余壽命的隨機(jī)比較。Poursaeed[4]研究了并聯(lián)系統(tǒng)在多個(gè)監(jiān)控下平均剩余壽命的隨機(jī)性質(zhì)。本文考慮由兩組獨(dú)立元件分別構(gòu)成的兩個(gè)n取n-k+1系統(tǒng)在多個(gè)監(jiān)控下剩余壽命關(guān)于似然比序的隨機(jī)比較。
定義[5]若X、Y分別為兩個(gè)非負(fù)隨機(jī)變量,分別用f(x)、g(x)代表其密度函數(shù),如果f(x)/g(x)關(guān)于x是遞減的,則稱X以似然比序小于等于Y,記為X≤lrY。
在這里,首先考慮3個(gè)監(jiān)控下的情形。定義由n個(gè)元件組成的n取n-k+1系統(tǒng),服從獨(dú)立同分布F,設(shè)在3個(gè)監(jiān)控下,系統(tǒng)在時(shí)刻t1總的元件失效個(gè)數(shù)為r個(gè),在時(shí)刻t2(t1
P(Xk:n-t3>x|Xr:n
(1)
定理1揭示了n取n-k+1系統(tǒng)的剩余壽命在雙監(jiān)控下關(guān)于似然比序的結(jié)論在3個(gè)監(jiān)控下同樣成立,顯然此結(jié)論加強(qiáng)了引理的結(jié)論。通過引理[4]以及以上定理,可以看到它們具有相似的結(jié)構(gòu)。因此,我們可以把這種情形推廣到一般情形。設(shè)在l個(gè)監(jiān)控下,元件在ti時(shí)的失效個(gè)數(shù)為mi個(gè),i=1,2,...,l-1并且在tl(t1 P(Xk:n-tl>x|Xm1:n (2) 可以看到式(2)與式(1)具有類似的結(jié)構(gòu),因而,可以把這種情形在多監(jiān)控下做進(jìn)一步的推廣。 證明:運(yùn)用式(2),證明方法同上,此處省略。 [1] 索清輝,錢永久,張方.基于概率理論對(duì)既有結(jié)構(gòu)剩余壽命的評(píng)估[J].建筑技術(shù)開發(fā),2004,31(3):4-4. [2] Poursaeed M H.A note on the mean past and the mean residual life of a (n-k+1)-out-of-nsystem under multi monitoring[J].Stat Papers,2010(51):409-419. [3] Zhang Z C,Yang Y H.Ordered properties on the residual life and inactivity time of(n-k+1)-out-of-nsystems under double monitoring[J].Statistics and Probability Letters,2010(80):711-717. [4] Poursaeed M H, Nematollahi A R.On the Mean Past and the Mean Residual Life Under Double Monitoring[J].Communicationsinstatistics-TheoryandMethods,2008(37):1119-1133. [5] Shaked M,Shanthikumar J G.Two variability order[J].Probadility in the Enaineerina and Informational Sciences,1998(12):1-23. Study of Ordered Properties on Residual Life of (n-k+1)-out-of-nSystems under Multi-monitoring ZHAO Huani, WANG Xinxin, YANG Mingxia (Longdong University, Qingyang 745000, China) (n-k+1)-out-of-nsystems plays an important role in the theory of reliability and the practical application. This paper studies the stochastic comparisons based on residual life of (n-k+1)-out-of-nsystems under multi-monitor, which is respectively created by two sets of independent components. The results show that the random nature of the residual life for these systems takes place under both double and three monitors, and the likelihood radio rate order stochastic components under multi-monitor have also carried out in two different systems consisting of two separate sets of independent and evenly distributed components. likelihood ratio rate order; residual life; multi-monitor 10.3969/j.issn.1674-5403.2017.04.017 O123.2 A 1674-5403(2017)04-0076-03 2017-09-05 趙花妮(1986-)女,甘肅慶陽人,碩士,助教,主要從事應(yīng)用概率統(tǒng)計(jì)與隨機(jī)分析方面的研究. 甘肅省高等學(xué)??蒲许?xiàng)目(2017A-099).