趙丹丹 陶然 劉豫 曹誼林 周廣東
bFGF對(duì)hBMSCs增殖及成軟骨能力影響的實(shí)驗(yàn)研究
趙丹丹 陶然 劉豫 曹誼林 周廣東
目的探索堿性成纖維細(xì)胞生長(zhǎng)因子(bFGF)對(duì)人骨髓間充質(zhì)干細(xì)胞(hBMSCs)增殖和成軟骨能力的影響,并確定適用于hBMSCs體外軟骨構(gòu)建的細(xì)胞代次。方法獲取hBMSCs,分別用DMEM和DMEM+bFGF培養(yǎng)基進(jìn)行培養(yǎng)。兩組細(xì)胞均傳代至第4代,比較兩組各代次hBMSCs的形態(tài)變化、細(xì)胞得率;取第3代細(xì)胞,用pellet法體外成軟骨誘導(dǎo)培養(yǎng)3周,觀察兩組pellet大體觀并進(jìn)行Ⅱ型膠原染色。在上述實(shí)驗(yàn)基礎(chǔ)上,取hBMSCs用DMEM+bFGF培養(yǎng)基進(jìn)行培養(yǎng),1∶3傳代培養(yǎng)至第8代,觀察各代次細(xì)胞的形態(tài)變化;對(duì)各代次pellet體外成軟骨誘導(dǎo)培養(yǎng)3周后,行大體觀察并進(jìn)行Ⅱ型膠原染色。結(jié)果DMEM+bFGF培養(yǎng)體系下的細(xì)胞形態(tài)、細(xì)胞得率及成軟骨能力等方面均優(yōu)于DMEM組。DMEM+bFGF培養(yǎng)體系下,按照1∶3傳代的細(xì)胞傳至第6代仍能維持較好的細(xì)胞形態(tài);第1~4代細(xì)胞均表達(dá)軟骨特異性細(xì)胞外基質(zhì)Ⅱ型膠原,第5及后續(xù)代次的細(xì)胞成軟骨能力較差。結(jié)論bFGF可明顯促進(jìn)hBMSCs增殖,并可更好地維持hBMSCs的成軟骨能力,在該培養(yǎng)體系下的第1~4代細(xì)胞適用于體外軟骨構(gòu)建。
堿性成纖維細(xì)胞生長(zhǎng)因子 人骨髓間充質(zhì)干細(xì)胞 細(xì)胞代次 軟骨再生
軟骨缺損是常見的臨床治療難題,組織工程技術(shù)為軟骨缺損修復(fù)提供了新的思路[1],基于組織工程技術(shù)進(jìn)行軟骨缺損修復(fù)的可行性已在大量研究中得到證實(shí),并有多個(gè)研究團(tuán)隊(duì)已開展臨床試驗(yàn)[2-3]。種子細(xì)胞,作為組織工程三要素之一,是軟骨組織工程臨床轉(zhuǎn)化需解決的首要問題。骨髓間充質(zhì)干細(xì)胞(BMSCs)來源廣泛、易于取材,具有極強(qiáng)的體外增殖和軟骨分化潛能,被認(rèn)為是軟骨組織工程臨床轉(zhuǎn)化理想的種子細(xì)胞來源之一[4-6]。在體外培養(yǎng)過程中維持其增殖和軟骨分化潛能,是BMSCs用于組織工程軟骨構(gòu)建的關(guān)鍵。堿性成纖維細(xì)胞生長(zhǎng)因子(bFGF),具有較強(qiáng)的促細(xì)胞增殖和軟骨再生能力[7-9],是目前細(xì)胞培養(yǎng)最具代表性的生長(zhǎng)因子之一。然而,目前bFGF研究主要以動(dòng)物細(xì)胞為研究對(duì)象,bFGF對(duì)hBMSCs增殖和成軟骨能力的影響尚未確認(rèn)。本研究以hBMSCs為研究對(duì)象,確定bFGF對(duì)其增殖和成軟骨能力的影響,并進(jìn)一步確定其適用于體外軟骨構(gòu)建的細(xì)胞代次,為hBMSCs用于軟骨組織工程臨床轉(zhuǎn)化提供依據(jù)。
骨髓取自上海第六人民醫(yī)院行髖關(guān)節(jié)置換手術(shù)的患者,共6例,每例 5 mL?;颊咂骄挲g(50±5)歲。所有患者對(duì)實(shí)驗(yàn)知情同意,并簽署知情同意書。
低糖DMEM培養(yǎng)基、胎牛血清、青霉素-鏈霉素、兩性霉素 B、磷酸鹽緩沖液(Hyclone,美國(guó));bFGF(B&D,美國(guó));0.25%胰酶(Gibco,美國(guó));羊抗兔Ⅱ型膠原單克隆免疫抗體(DAKO,Oncogene TM,美國(guó))、辣根過氧化物酶標(biāo)記的羊抗兔二抗(DAKO,Carpinteria,美國(guó))。
組織處理儀 (Shandon,UK)、組織切片機(jī)(Slee Mainze,USA)、光學(xué)顯微鏡(Nikon ECLIPSE E600,日本)、恒溫 CO2培養(yǎng)箱(Forma Scientific,美國(guó))、超凈工作臺(tái)(上海博迅實(shí)驗(yàn)器材公司)、普通臺(tái)式離心機(jī)(TDL-40B,上海安亭醫(yī)療儀器廠)、倒置相差顯微鏡(Nikon ECLIPSE TS100,日本)。
對(duì)照組:低糖DMEM培養(yǎng)基 (含10%胎牛血清,青霉素、鏈霉素各100 U/mL);實(shí)驗(yàn)組:低糖DMEM+bFGF培養(yǎng)基(含10%胎牛血清,青霉素、鏈霉素各 100 U/mL,bFGF 5 ng/mL)。
標(biāo)本離心管中加入含10%FBS低糖DMEM培養(yǎng)液約40 mL,混勻制成細(xì)胞懸液,1 800 r/min離心10 min,輕輕吸除脂肪及大部分上清液,震蕩,細(xì)胞重懸,接種于100 mm培養(yǎng)皿,置于37℃、5%CO2、100%飽和濕度培養(yǎng)箱中培養(yǎng),5 d后首次換液。待細(xì)胞80%~90%融合時(shí),0.25%胰酶消化,收集細(xì)胞懸液,1 500 r/min 離心 5 min,計(jì)數(shù),按 0.5×106個(gè)有核細(xì)胞接種于100 mm培養(yǎng)皿。實(shí)驗(yàn)組使用加bFGF的培養(yǎng)基,對(duì)照組使用不加bFGF的培養(yǎng)基。3~4 d后細(xì)胞可達(dá)到80%~90%的融合度,再次傳代培養(yǎng)。兩組細(xì)胞均傳代至第4代,每次傳代時(shí)觀察細(xì)胞形態(tài)變化,并計(jì)算細(xì)胞得率。
取第3代的 hBMSCs制成0.4×106cells/mL的細(xì)胞懸液,將1 mL的細(xì)胞懸液移到15 mL的離心管中用于制成一個(gè)pellet,1 080 r/min離心 5 min,細(xì)胞在離心管底部形成一細(xì)胞團(tuán)。棄上清后,加入成軟骨誘導(dǎo)液,每周換液2次,培養(yǎng)3周后行Ⅱ型膠原染色。
在上述實(shí)驗(yàn)基礎(chǔ)上,取原代hBMSCs用DMEM+bFGF培養(yǎng)基進(jìn)行培養(yǎng),1∶3傳代培養(yǎng)至第8代,觀察各代次細(xì)胞形態(tài)變化;取第1~6代細(xì)胞制備pellet,體外成軟骨誘導(dǎo)培養(yǎng)3周后,行大體觀察并進(jìn)行Ⅱ型膠原染色。
光鏡下觀察到實(shí)驗(yàn)組細(xì)胞呈長(zhǎng)梭型,邊緣較銳利,折光度增加,第1~4代細(xì)胞形態(tài)維持較好;對(duì)照組細(xì)胞生長(zhǎng)較為緩慢、稀疏,第3、4細(xì)胞胞體增大,折光度差(圖1)。
本實(shí)驗(yàn)中hBMSCs擴(kuò)增基數(shù)均為 0.5×106個(gè)有核細(xì)胞,兩組第1代細(xì)胞擴(kuò)增無明顯差異。第2~4代中,實(shí)驗(yàn)組得率均高于對(duì)照組(P<0.05),表明bFGF可維持細(xì)胞良好形態(tài),更有利于細(xì)胞增殖(圖2)。
實(shí)驗(yàn)組pellet體積明顯大于對(duì)照組,呈瓷白色,略有光澤,有彈性;對(duì)照組彈性較差。Ⅱ型膠原染色顯示,實(shí)驗(yàn)組可見黃色沉積和均勻的軟骨陷凹;對(duì)照組只有中間一部分黃染,周圍未見軟骨陷凹。提示bFGF對(duì)hBMSCs向軟骨分化有促進(jìn)作用(圖3)。
觀察每一代細(xì)胞傳代后第2天的細(xì)胞狀態(tài),發(fā)現(xiàn)第1~5代細(xì)胞呈長(zhǎng)梭形,保持成纖維樣細(xì)胞生長(zhǎng);從第6代開始,細(xì)胞鋪展,細(xì)胞胞體變大呈星形、多邊形,呈現(xiàn)明顯老化狀態(tài)(圖4)。
Ⅱ型膠原染色顯示,第1~4代的軟骨基質(zhì)中都可見黃色沉積和均勻的軟骨陷凹;第5代染色稍淡,但仍能看到明顯的軟骨形成;第6代染色偏淡,軟骨形成差(圖 5)。
圖1 hBMSCs在兩種培養(yǎng)體系下連續(xù)傳代培養(yǎng)的形態(tài)學(xué)觀察(40×)Fig.1 Morphologicalobservation of hBMSCs under successively passaged culture in two expansion systems(40×)
圖3 兩種不同體系的pellet大體觀及II型膠原染色比較Fig.3 Gross view and collagenⅡimmunohistochemical staining of hBMSCs'pellets in two expansion systems
圖4 各代次hBMSCs在DMEM+bFGF體系中連續(xù)傳代培養(yǎng)下的形態(tài)學(xué)觀察(40×)Fig.4 Morphological observation of hBMSCs under successively passaged culture in DMEM+bFGF expansion system(40×)
圖5 各代次pellet大體觀及II型膠原染色觀察Fig.5 Gross view and collagen II immunohistochemical staining of hBMSCs'pellets of each passage
基于組織工程技術(shù)進(jìn)行軟骨缺損修復(fù)已進(jìn)入臨床轉(zhuǎn)化的關(guān)鍵階段。作為最具臨床應(yīng)用前景的種子細(xì)胞之一,如何獲取足量的BMSCs以滿足大規(guī)模臨床應(yīng)用的要求,仍需在大動(dòng)物實(shí)驗(yàn)的基礎(chǔ)上,以hBMSCs進(jìn)行驗(yàn)證[10]。
本實(shí)驗(yàn)首先探討了bFGF臨床應(yīng)用的必要性。bFGF有較強(qiáng)的促細(xì)胞增殖的作用,對(duì)BMSCs的促增殖作用已在動(dòng)物實(shí)驗(yàn)中得到證實(shí)[11]。本實(shí)驗(yàn)進(jìn)一步以hBMSCs為對(duì)象進(jìn)行研究。結(jié)果顯示,在低糖DMEM+bFGF培養(yǎng)基中,第1~4代細(xì)胞呈長(zhǎng)梭形,細(xì)胞量多,體積無明顯改變;而在低糖DMEM培養(yǎng)基中,細(xì)胞從第3代即開始鋪展、體積變大、排布稀疏;兩組除第1代的細(xì)胞得率無明顯差異外,DMEM+bFGF組第2~4代的細(xì)胞得率均明顯高于DMEM組。表明bFGF對(duì)hBMSCs的促增殖作用與動(dòng)物實(shí)驗(yàn)結(jié)果一致。pellet法可排除傳統(tǒng)組織工程方法中支架材料的干擾,因此,本實(shí)驗(yàn)以pellet法驗(yàn)證bFGF對(duì)hBMSCs成軟骨能力的影響[12]。結(jié)果表明,DMEM+bFGF培養(yǎng)體系下所構(gòu)建pellet的體積為DMEM培養(yǎng)體系的2倍以上,且再生軟骨均質(zhì),具有典型的軟骨陷凹;而DMEM培養(yǎng)體系下所構(gòu)建pellet體積小,再生軟骨不均質(zhì),僅局部可見典型的軟骨陷凹。提示bFGF培養(yǎng)體系下,hBMSCs具有更強(qiáng)的成軟骨能力,在軟骨再生臨床轉(zhuǎn)化中具有十分重要的應(yīng)用價(jià)值。
雖然已有大量BMSCs用于軟骨缺損修復(fù)的研究,但是大部分研究所用細(xì)胞代次為第3代,究竟哪些代次的BMSCs適用于軟骨構(gòu)建尚無系統(tǒng)研究[13]。本實(shí)驗(yàn)在驗(yàn)證bFGF應(yīng)用必要性的基礎(chǔ)上,進(jìn)一步探討了細(xì)胞代次對(duì)BMSCs軟骨再生能力的影響。細(xì)胞形態(tài)顯示,第1~5代細(xì)胞呈長(zhǎng)梭形,保持成纖維樣細(xì)胞生長(zhǎng);從第6代開始,細(xì)胞鋪展,細(xì)胞胞體變大呈星形、多邊形,呈現(xiàn)明顯老化狀態(tài)。成軟骨能力評(píng)價(jià)結(jié)果表明,第1~6代構(gòu)建了不同體積的pellet,均呈瓷白色,第1~4代細(xì)胞再生軟骨均質(zhì),并具有典型的軟骨陷凹,P第5代細(xì)胞再生軟骨不均質(zhì)、僅局部區(qū)域具有軟骨陷凹,而第6代細(xì)胞再生組織無典型軟骨陷凹形成。提示bFGF體系下培養(yǎng)細(xì)胞在第1~4代仍保持良好的軟骨再生能力,第5代及后續(xù)代次細(xì)胞軟骨再生能力較差。與常用的第3代細(xì)胞相比,本研究為hBMSCs臨床應(yīng)用的細(xì)胞代次選擇提供了更多借鑒。
綜上所述,bFGF可明顯促進(jìn)細(xì)胞增殖,并在保持hBMSCs軟骨再生能力方面具有重要作用,因此在hBMSCs軟骨再生中的臨床應(yīng)用中是必要的。同時(shí),bFGF體系下,第4代之前代次的細(xì)胞軟骨再生能力良好,第5代及后續(xù)代次細(xì)胞軟骨再生能力較差,故建議以第1~4代BMSCs開展臨床應(yīng)用。
[1] Keeney M,Lai JH,Yang F.Recent progress in cartilage tissue engineering[J].Curr Opin Biotechnol,2011,22(5):734-740.
[2] Gobbi A,Whyte GP.One-stage cartilage repair using a hyaluronic acid-based scaffold with activated bone marrow-derived mesenchymal stem cells compared with microfracture:five-year follow-up[J].Am J Sports Med,2016,44(11):2846-2854.
[3] Soler R,Orozco L,Munar A,et al.Final results of a phase I-II trial using ex vivo expanded autologous Mesenchymal Stromal Cells for the treatment of osteoarthritis of the knee confirming safety and suggesting cartilage regeneration[J].Knee,2016,23(4):647-654.
[4] Confalonieri D,Schwab A,Walles H,et al.ATMPs:a guide for bone marrow-derived MSCs application in bone and cartilage tissue engineering[J].Tissue Eng Part B Rev,2017,[Epub ahead of print].
[5] Vinatier C,Bouffi C,Merceron C,et al.Cartilage tissue engineering:towards a biomaterial-assisted mesenchymal stem cell therapy[J].Curr Stem Cell Res Ther,2009,4(4):318-329.
[6] Mackay AM,Beck SC,Murphy JM,et al.Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow[J].Tissue Eng,1998,4(4):415-428.
[7] Jiang X,Zou S,Ye B,et al.bFGF-Modified BMMSCs enhance bone regeneration following distraction osteogenesis in rabbits[J].Bone,2010,46(4):1156-1161.
[8] Neubauer M,Fischbach C,Bauerkreisel P,et al.Basic fibroblast growth factor enhances PPARgamma ligand-induced adipogenesis of mesenchymal stem cells[J].FEBS Lett,2004,577(1-2):277-283.
[9] Li Q,Liu T,Zhang L,et al.The role of bFGF in down-regulating α-SMA expression of chondrogenically induced BMSCs and preventing the shrinkage of BMSC engineered cartilage[J].Biomaterials,2011,32(21):4773-4781.
[10] Baugé C,Boumédiene K.Use of adult stem cells for cartilage tissue engineering:current status and future developments[J].Stem Cells Int,2015,2015:438026.
[11] Hori Y,Inoue S,Hirano Y,et al.Effect of culture substrates and fibroblast growth factor addition on the proliferation and differentiation of rat bone marrow stromal cells[J].Tissue Eng,2004,10(7-8):995-1005.
[12] He A,Xia H,Xiao K,et al.Cell yield,chondrogenic potential and regenerated cartilage-type of chondrocytes derived from ear,nasoseptal,and costal cartilage[J].J Tissue Eng Regen Med,2017,[Epub ahead of print].
[13] Yamasaki S,Mera H,Itokazu M,et al.Cartilage repair with autologous bone marrow mesenchymal stem cell transplantation:review of preclinical and clinical studies[J].Cartilage,2014,5(4):196-202.
Experimental Study of the Impacts of bFGF on Proliferation and Chondrogenesis of Human Bone Marrow Stromal Cells
ZHAO Dandan1,2,3,TAO Ran2,3,LIU Yu2,3,CAO Yilin2,3,ZHOU Guangdong1,2,3.1 Plastic Surgery Research Institute,Weifang Medical College,Weifang 261042,China;2 Department of Plastic and Reconstructive Surgery,Shanghai Key Laboratory of Tissue Engineering,Shanghai Ninth People's Hospital,Shanghai Jiaotong University School of Medicine,Shanghai 200011,China;3 National Tissue Engineering Center of China,Shanghai 200241,China.Corresponding author:ZHOU Guangdong(E-mail:guangdongzhou@126.com).
ObjectiveTo explore the effect of basic fibroblast growth factor (bFGF)on the proliferation and chondrogenesis of human bone marrow mesenchymal stem cells (hBMSCs),and to determine the cell generation schedule suitable for in vitro cartilage construction of hBMSCs.MethodshBMSCs were obtained and cultured respectively in two culture systems:DMEM and DMEM+bFGF.Two groups of cells were repeatedly passaged to P4 generation,the morphological changes and cell yield rates of hBMSCs were compared between the two groups.At the same time the two groups of P3 cells were induced forchondrogenic differentiation using pelletculture for3 weeks in vitro.Gross observation,immunohistochemical staining of collagenⅡwere used to evaluate the results of each group.Based on the study mentioned above,the DMEM+bFGF culture group was subcultured to P8 to observe the morphological changes of each subculture.After chondrogenic differentiation using pellet culture for 3 weeks in vitro,gross observation and immunohistochemical staining of collagenⅡwere evaluated as before.ResultsThe cell morphology,cell yield and cartilage differentiation in DMEM+bFGF group was far greater than that of DMEM group.Under the culture system of DMEM+bFGF,cells passaged at 1∶3 could still maintain a good cell morphology in P6 generation.Immunohistochemistry showed that cartilage-specific extracellular matrix typeⅡcollagen was expressed better in P1-4 generation.ConclusionbFGF can significantly promote the proliferation andchondrogenesis of hBMSCs.P1-4 generation cells in DMEM+bFGF culture system is suitable for in vitro cartilage construction.
Basic fibroblast growth factor;Bone marrow stromal stem cells; Cell generation; Cartilage regeneration
Q813.1+2
A
1673-0364(2017)06-0318-04
10.3969/j.issn.1673-0364.2017.06.004
261042 山東省濰坊市 濰坊醫(yī)學(xué)院整形外科研究所(趙丹丹,周廣東);200011 上海市 上海交通大學(xué)醫(yī)學(xué)院附屬第九人民醫(yī)院整復(fù)外科,上海市組織工程研究重點(diǎn)實(shí)驗(yàn)室(趙丹丹,陶然,劉豫,曹誼林,周廣東);200241 上海市 組織工程國(guó)家工程研究中心(趙丹丹,陶然,劉豫,曹誼林,周廣東)。
周廣東(E-mail:guangdongzhou@126.com)。
2017年10月11日;
2017年10月28日)