韓 飛, 李成朋, 董智慧, 禹文峰, 張春林, 焦 玲, 官志忠,4
蛋白激酶Cδ參與帕金森大鼠模型中6-OHDA的神經(jīng)毒性作用
韓 飛1, 李成朋1, 董智慧1, 禹文峰1, 張春林2, 焦 玲3, 官志忠1,4
目的研究蛋白激酶Cδ(PKCδ)細(xì)胞核轉(zhuǎn)移在帕金森大鼠模型神經(jīng)元丟失中的病理作用。方法40只雄性SD大鼠隨機(jī)分為Sham組(10只)和PD組(30只),立體定位右側(cè)紋狀體注射生理鹽水或6-OHDA溶液并通過阿樸嗎啡(APO)誘導(dǎo)旋轉(zhuǎn)進(jìn)行模型篩選,免疫組化檢測黑質(zhì)致密部(SNpc)酪氨酸羥化酶(TH)表達(dá)情況。采用Western blotting檢測PKCδ蛋白表達(dá)并通過共聚焦觀察PKCδ在細(xì)胞核的表達(dá)。結(jié)果PD組SNpc部位TH陽性神經(jīng)元形態(tài)發(fā)生了病理改變且密度顯著下降(P<0.05);Western blotting顯示PD組SNpc組織中PKC δ 及Cleaved PKC δ的表達(dá)較Sham組顯著上調(diào)(P<0.05);共聚焦顯微鏡提示PD組SNpc部位PKC δ與細(xì)胞核有共定位。結(jié)論P(yáng)KC δ的酶解激活及細(xì)胞核轉(zhuǎn)位可能參與了PD的神經(jīng)病理發(fā)生。
6-羥基多巴胺; 帕金森??; 蛋白激酶C δ; 轉(zhuǎn)位
帕金森病(Parkinson’s Disease,PD)是中老年常見的神經(jīng)系統(tǒng)變性疾病,以中腦黑質(zhì)致密部(substantia nigra pars compacta,SNpc)的多巴胺(dopamine,DA)能神經(jīng)元進(jìn)行性變性、缺失以及紋狀體內(nèi)DA水平下降、黑質(zhì)及藍(lán)斑出現(xiàn)路易小體(Lewy body)為主要病理特征[1,2]。目前,多巴胺能神經(jīng)元壞死、缺失的確切發(fā)病機(jī)制尚不清楚。神經(jīng)毒素6-羥基多巴胺(6-OHDA)是DA神經(jīng)遞質(zhì)的羥基化類似物和選擇性DA神經(jīng)元化學(xué)損毀劑,選擇性地作用于DA神經(jīng)元造成氧化應(yīng)激損傷[3]。6-OHDA注射入紋狀體構(gòu)建動(dòng)物模型是PD機(jī)制研究的經(jīng)典方法之一[4]。
PKC( protein kinase C,PKC) 是一種磷脂依賴的蛋白激酶,在細(xì)胞的代謝、生長、增殖、分化等方面都扮演重要角色[5]。PKCδ 是新型PKC家族的一員,其在腦組織,尤其在包括紋狀體和SNpc等多巴胺能神經(jīng)區(qū)域表達(dá)水平很高且隨年齡增長表達(dá)增加[6]。多種研究表明PKCδ與線粒體功能密切相關(guān),PKCδ敲除鼠的線粒體氧化應(yīng)激水平較低[7~9]。此外,早有研究發(fā)現(xiàn)磷酸化PKCδ在PD細(xì)胞模型中表達(dá)上調(diào),且在氧化應(yīng)激條件下磷酸化PKCδ發(fā)生亞細(xì)胞轉(zhuǎn)位[10,11]。PKCδ除磷酸化激活外,還有與凋亡極為相關(guān)的Caspase-3剪切激活[12]。有研究表明,錳化合物誘導(dǎo)的氧化應(yīng)激損傷中觀察到Cleaved PKCδ表達(dá)上調(diào)[13],氧化應(yīng)激還能引起Cleaved PKCδ發(fā)生線粒體轉(zhuǎn)位[14]。但關(guān)于PKCδ的Caspase剪切作用及核轉(zhuǎn)位在PD中的研究極少。目前為止,PD已經(jīng)實(shí)現(xiàn)臨床診斷,但尚無有效治療的良好藥物[15],其原因首要是對(duì)PD發(fā)病機(jī)制不清楚。因此,本研究通過6-OHDA構(gòu)建PD動(dòng)物模型,觀察PKCδ及其剪切體形式的變化,并觀察其細(xì)胞核轉(zhuǎn)移情況,探討PKCδ在PD病理變化中的角色作用。
1.1 材料
健康雄性SD大鼠40只,體重250~300 g,貴州醫(yī)科大學(xué)動(dòng)物實(shí)驗(yàn)中心提供,動(dòng)物許可證號(hào):SCXK黔2012-0004。藍(lán)星腦立體定位儀(淮北正華生物儀器設(shè)備有限公司),石蠟切片機(jī)(Leica,德國),正置熒光顯微鏡(Nikon,日本),倒置共聚焦顯微鏡(Zeiss,德國)。酪氨酸羥化酶(tyrosine hydroxylase,TH) 抗體(博士德,中國),兔PKCδ抗體(Sigma,美國),兔β-actin抗體(Santa,美國),抗兔熒光二抗Alex 568(Thermo fisher,美國)。6-OHDA、地昔帕明、帕吉林、抗壞血酸(L-ascorbic acid)、阿樸嗎啡(Apomorphine,APO)均為美國sigma公司生產(chǎn)。DAPI、DAB、ABC試劑均為美國Vector 公司生產(chǎn)。
1.2 方法
1.2.1 模型制備及篩選 大鼠自由攝食及飲水,適應(yīng)性飼養(yǎng)1 w后,40只SD大鼠隨機(jī)分為control組10只,PD組30只。于造模手術(shù)前30 min,腹腔注射地昔帕明(25 mg/kg)及帕吉林 (5 mg/kg)以減少非DA能神經(jīng)元對(duì)6-OHDA吸收并增強(qiáng)其有效性[16]。常規(guī)麻醉后將大鼠頭部固定于立體定位儀上,切開頭皮及皮下組織,鈍性分離顱骨外膜,充分暴露前囟。以前囟為中心,根據(jù)Paxinos和Watson大鼠立體定位圖譜定位(A/P 1.0 mm,R/N 3.0 mm,D/V 5.0 mm),進(jìn)針(1 mm/min)入右側(cè)紋狀體[17]。Sham組注射0.02%抗壞血酸溶液4 μl,PD組注射6-OHDA溶液4 μl(5 g/L,溶于0.02%抗壞血酸溶液)。使用微量進(jìn)樣器以約 0.4 μl/min勻速注入,注射完成后留針5 min緩慢退針(1 mm/min),局部消毒縫合頭皮,連續(xù) 7 d每天腹腔注射20萬單位青霉素以預(yù)防感染。術(shù)后第7 w,采用2 mg/kg的APO腹腔誘導(dǎo)旋轉(zhuǎn),電腦監(jiān)控記錄30 min內(nèi)向左側(cè)轉(zhuǎn)圈數(shù),選取旋轉(zhuǎn)速度介于(2~4)圈/min的大鼠作為本次研究的PD模型[18]。
1.2.2 免疫組織化學(xué)染色SNpc部位TH神經(jīng)元 用10%水合氯醛腹腔注射麻醉后迅速灌注固定取腦,經(jīng)梯度脫水包埋,在中腦黑質(zhì)區(qū)以4 μm的厚度連續(xù)冠狀切片。切片經(jīng)脫蠟,0.03%過氧化氫滅活以及微波小火抗原修復(fù),再經(jīng)10%山羊血清封閉后滴加TH抗體(1∶200)4 ℃孵育過夜。按SABC免疫組織化學(xué)試劑盒說明書孵育二抗及ABC,經(jīng)DAB顯色、脫水后中性樹膠封片,在正置顯微鏡下觀察拍照。隨機(jī)選取4個(gè)視野,在同一放大倍數(shù)(×40,×400),同一背景光強(qiáng)度下采集圖像并采用Image-Pro Plus圖像軟件進(jìn)行分析。
1.2.3 Western blotting檢測PKCδ表達(dá) 大鼠頸椎脫臼處死,冰上快速分離黑質(zhì),裂解后離心收集上清。BCA定量后以等量蛋白進(jìn)行10%聚丙烯酰胺凝膠電泳,然后轉(zhuǎn)至PVDF膜。室溫封閉后孵育PKCδ抗體(1∶1000)或β-actin抗體,4 ℃孵育過夜,繼以與HRP標(biāo)記的二抗室溫孵育1 h。ECL顯影,化學(xué)發(fā)光呈相儀觀察并拍照。
1.2.4 共聚焦檢測PKCδ與細(xì)胞核共定位 如方法1.2.2步驟制備黑質(zhì)石蠟切片后,經(jīng)脫蠟后抗原修復(fù),再以10%山羊血清封閉后滴加兔源PKCδ(1∶25),4 ℃孵育過夜。次日,用0.25% PBST輕洗3次,滴加熒光二抗(抗兔1∶100)室溫避光孵育30 min 后,DAPI 封片。熒光共聚焦顯微鏡(×630油鏡)觀察拍照。
2.1 APO誘導(dǎo)旋轉(zhuǎn)行為 APO是多巴胺受體的激動(dòng)劑,腹腔注射誘導(dǎo)其向健側(cè)旋轉(zhuǎn)是評(píng)價(jià)單側(cè)損傷PD模型的金標(biāo)準(zhǔn)。術(shù)后第7 w,經(jīng)APO誘導(dǎo)后,PD組模型大鼠發(fā)生向左側(cè)旋轉(zhuǎn)行為,首尾相接(見圖1)。PD組篩選旋轉(zhuǎn)速度為(2~4)圈/min作為本次研究的PD模型,共20只。
2.2 SNpc部位的TH陽性神經(jīng)元 Sham組大鼠右側(cè)SNc部位DA能神經(jīng)元TH呈陽性表達(dá),主要集中在胞漿,神經(jīng)元胞體密集,輪廓清晰可見,胞體飽滿且周圍纏繞大量神經(jīng)纖維束(見圖2A紅色箭頭所指);PD組右側(cè)SNpc部位DA神經(jīng)元細(xì)胞明顯減少或缺失,殘存的細(xì)胞萎縮且突觸纖維殘缺減少,提示該區(qū)域內(nèi)的DA能神經(jīng)元變性壞死(見圖2 B紅色箭頭所指)。通過軟件對(duì)SNpc部位右側(cè)TH陽性神經(jīng)元進(jìn)行計(jì)數(shù)分析后,發(fā)現(xiàn)PD組注射側(cè)陽性細(xì)胞數(shù)目顯著減少(P<0.05)。
2.3 Western blotting檢測PKCδ剪切片段表達(dá)上調(diào) 與Sham組比較,PD組SNpc中PKCδ 表達(dá)相對(duì)Sham組明顯上調(diào)(P<0.05),此外,Cleaved PKCδ片段也表達(dá)上調(diào),差異具有統(tǒng)計(jì)學(xué)意義(P<0.05)(見圖3)。
2.4 PKCδ與細(xì)胞核共定位 共聚焦檢測PKCδ與細(xì)胞核共定位情況,PKCδ在胞漿中陽性表達(dá)呈紅色熒光,細(xì)胞核呈藍(lán)色熒光,且無共定位現(xiàn)象。在PD組中,可看到PKCδ強(qiáng)陽性的表達(dá),顏色稍深,且均勻擴(kuò)散至細(xì)胞核部位,與藍(lán)色熒光發(fā)生共定位現(xiàn)象,使得細(xì)胞核呈現(xiàn)紫色(見圖4)。
圖1 APO誘導(dǎo)PD大鼠旋轉(zhuǎn)行為
圖2 大鼠SNpc區(qū)TH陽性DA能神經(jīng)元(圖A、B分別為圖a、b中藍(lán)色方框圖片放大)
圖3 Western blotting檢測SNpc 部位PKCδ及其剪切體的表達(dá)(與Sham組比較*P<0.05)
圖4 共聚焦檢測PKCδ 與細(xì)胞核共定位情況(×630)
PD為繼阿爾茨海默病后第2個(gè)常見的神經(jīng)退行性疾病,主要病理特征是DA能神經(jīng)元的缺失,但該病理機(jī)制尚不清楚。PKCδ具有廣泛生理作用,近年甚至有學(xué)者強(qiáng)調(diào)以其作為治療人類疾病的靶點(diǎn)[8]。全長的PKCδ由N端調(diào)節(jié)區(qū)(38 kDa)及C端催化區(qū)域(40 kDa)通過鉸鏈結(jié)構(gòu)連接組成,其鉸鏈結(jié)構(gòu)是凋亡過程中主要效應(yīng)蛋白Caspase-3的酶切靶點(diǎn)[19]。細(xì)胞在應(yīng)答凋亡刺激的過程中,被激活的PKCδ將發(fā)生轉(zhuǎn)位現(xiàn)象。PKCδ可以轉(zhuǎn)位到幾乎所有的亞細(xì)胞結(jié)構(gòu),如細(xì)胞核、線粒體等[20]。PKCδ核定位信號(hào)區(qū)可能位于PKCδ的催化區(qū)[21],其轉(zhuǎn)位到細(xì)胞核后與核內(nèi)蛋白相互作用通過多種途徑誘導(dǎo)細(xì)胞凋亡。核轉(zhuǎn)位的PKCδ可直接與DNA依賴性激酶C端結(jié)合并使其磷酸化導(dǎo)致該酶與DNA 分離,使DNA 的修復(fù)過程被抑制而DNA 斷裂增加[22];PKCδ還能與DNA依賴性激酶形成復(fù)合物調(diào)控p53磷酸化,從而誘導(dǎo)凋亡[23]。Caspase-3酶切PKCδ導(dǎo)致該激酶被永久激活,Cleaved PKCδ不僅可直接入核誘導(dǎo)DNA碎片化,還能反饋激活Caspase 3級(jí)聯(lián)放大凋亡作用[24]。由此可見,PKCδ剪切對(duì)細(xì)胞凋亡有重要作用,但該激活方式在PD中研究極少。
本研究通過6-OHDA注射大鼠右側(cè)紋狀體,經(jīng)黑質(zhì)-紋狀體通路逆向運(yùn)輸至SNpc部位,模擬PD發(fā)生的緩慢進(jìn)程特點(diǎn)。通過APO誘導(dǎo)旋轉(zhuǎn)行為評(píng)價(jià)了模型建立效果,并選取旋轉(zhuǎn)圈數(shù)(2~4)圈/min,從而使其病理進(jìn)程相對(duì)一致且接近于PD早期。此外,還進(jìn)一步通過病理學(xué)檢測觀察SNpc部位DA能神經(jīng)元損毀情況。本研究發(fā)現(xiàn),native PKCδ在PD 大鼠黑質(zhì)中表達(dá)上調(diào),差異有統(tǒng)計(jì)學(xué)意義(P<0.05),且其剪接體Cleaved PKCδ在6-OHDA神經(jīng)毒性作用下也發(fā)生明顯上調(diào)(P<0.05)。該研究與Hanrott等研究發(fā)現(xiàn)6-OHDA 誘導(dǎo)引起Cleaved PKCδ上調(diào)符合[25],但本文中剪切激活更為明顯,可能是6-OHDA注射劑量相對(duì)增加一倍導(dǎo)致。此外,本文觀察到了PKCδ的核轉(zhuǎn)移現(xiàn)象,但還需后續(xù)實(shí)驗(yàn)探究轉(zhuǎn)位的是native PKCδ還是Cleaved PKCδ,多數(shù)研究表明在其氧化應(yīng)激下發(fā)生核轉(zhuǎn)位的是后者[24],不過該觀點(diǎn)尚存爭議[26]。
綜上所述,本研究通過6-OHDA立體定位注射大鼠右側(cè)紋狀體構(gòu)建單側(cè)損傷PD動(dòng)物模型,表明了PKCδ激活與其Caspase-3酶切作用參與了PD的多巴胺能神經(jīng)元丟失,且PKCδ的細(xì)胞核轉(zhuǎn)位也參與該病理改變。該研究指出了PKCδ酶切及核轉(zhuǎn)位與PD的發(fā)生密切相關(guān),對(duì)PD的病理機(jī)制探索提供了更廣泛的思路。
[1]Dauer W,Przedborski S. Parkinson’s disease mechanisms and models[J]. Neuron,2003,39(6):889-909.
[2]Recasens A,Dehay B. Alpha-synuclein spreading in Parkinson’s disease [J]. Front Neuroanat,2014,8(10):159-167.
[3]Jagmag SA,Tripathi N,Shukla SD,et al. Evaluation of models of Parkinson’s disease [J]. Front Neurosci,2016,9(1):503-515.
[4]Schober A. Classic toxin-induced animal models of Parkinson’s disease:6-OHDA and MPTP [J]. Cell Tissue Res,2004,318:215-224.
[5]Giorgi C,Agnoletto C,Baldini C,et al. Redox control of protein kinase C:cell-and disease-specific aspects [J]. Antioxid Redox Sign,2010,13(7):1051-1085.
[6]Leibersperger H,Gschwendt M,Gernold M,et al. Immunological demonstration of a calcium-unresponsive protein kinase C of the delta-type in different species and murine tissues. Predominance in epidermis [J]. J Biol Chem,1991,266(22):1478-1484.
[7]Shin EJ,Dang DK,Tran HQ,et al. PKC delta knockout mice are protected from para-methoxymethamphetamine-induced mitochondrial stress and associated neurotoxicity in the striatum of mice [J]. Neurochemistry international,2016,100:146-158.
[8]Reyland ME,Jones DN. Multifunctional roles of PKC delta:Opportunities for targeted therapy in human disease [J]. Pharmacol Therapeutics,2016,165:1-13.
[9]Basu A,Pal D. Two faces of protein kinase Cδ:the contrasting roles of PKCδ in cell survival and cell death[J]. Scientific World J,2010,10(10):2272-2284.
[10]Fan Y,Li J,Zhang YQ,et al. Protein kinase C delta mediated cytotoxicity of 6-Hydroxydopamine via sustained extracellular signal-regulated kinase 1/2 activation in PC12 cells[J]. Neurological Res,2014,36(1):53-64.
[11]Zheng H,Liu J,Liu C,et al. Calcium-sensing receptor activating phosphorylation of PKCδ translocation on mitochondria to induce cardiomyocyte apoptosis during ischemia/ reperfusion[J]. Molecular Cellular Biochemistry,2011,358(1/2):335-343.
[12]Yoshida K. PKCδ signaling:Mechanisms of DNA damage response and apoptosis[J]. Cellular Signalling,2007,19(5):892-901.
[13]Anantharam V,Kitazawa M,Wagner J,et al. Caspase-3-dependent proteolytic cleavage of protein kinase C delta is essential for oxidative stress-mediated dopaminergic cell death after exposure to methylcyclopentadienyl manganese tricarbonyl[J]. J Neurosci,2002,22(5):1738-1751.
[14]Shin EJ,Dang DK,Tran HQ,et al. PKCδ knockout mice are protected from para-methoxymethamphetamine-induced mitochondrial stress and associated neurotoxicity in the striatum of mice[J]. Neurochemistry International,2016,100:146-158.
[15]Dexter DT,Jenner P. Parkinson disease:from pathology to molecular disease mechanisms[J]. Free Rad Biol Med,2013,62(5):132-144.
[16]Thiele SL,Warre R,Nash JE. Development of a Unilaterally-lesioned 6-OHDA Mouse Model of Parkinson’s Disease[J]. J Vis Exp,2012,60:e3234.
[17]Paxinos G,Watson CR. The rat brain in stereotaxic coordinates[M]. New York:Academic Press,1986. 6.
[18]Decressac M,Mattsson B,Bj?rklund A. Comparison of the behavioural and histological characteristics of the 6-OHDA and α-synuclein rat models of Parkinson’s disease[J]. Exp Neurol,2012,235(1):306-315.
[19]Steinberg SF. Distinctive activation mechanisms and functions for protein kinase C delta[J]. Biochem J,2004,384(3):449-459.
[20]朱思薇,徐 揚(yáng),李慶偉. 蛋白激酶C-δ在細(xì)胞凋亡中的作用及其分子機(jī)制 [J]. 中國生物化學(xué)與分子生物學(xué)報(bào),2016,32(7):755-762.
[21]Devries TA,Neville MC,Reyland ME. Nuclear import of PKCdelta is required for apoptosis:identification of a novel nuclear import sequence[J]. Embo J,2002,21(22):6050-6060.
[22]Bharti A,Kraeft SK,Gounder M,et al. Inactivation of DNA-dependent protein kinase by protein kinase Cδ:implications for apoptosis[J]. Mol CellBiol,1998,18(11):6719-6728.
[23]Ren J,Datta R,Shioya H,et al. p73beta is regulated by protein kinase Cdelta catalytic fragment generated in the apoptotic response to DNA damage[J]. J Biologic Chem,2002,277(37):33758-33765.
[24]Kanthasamy AG,Kitazawa M,Kanthasamy A,et al. Role of proteolytic activation of protein kinase Cdelta in oxidative stress-induced apoptosis[J]. Antioxidants Redox Signaling,2003,5(5):609-620.
[25]Hanrott K,Murray T,Orfali ZM,et al. Differential activation of PKCdelta in the substantia nigra of rats following striatal or nigral 6-hydroxydopamine lesions[J]. Euro J Neurosci,2008,27(5):1086-1096.
[26]Devriesseimon TA,Ohm AM,Humphries MJ,et al. Induction of apoptosis is driven by nuclear retention of protein kinase C delta[J]. J Biol Chem,2007,282(31):22307-22314.
PKCδparticipatedintheneurotoxicityof6-OHDAinratmodelofParkinson’sdisease
HANFei,LIChengpeng,DONGZhihui,etal.
(TheEducationMinistryKeyLaboratoryofEndemicDiseaseandDiseasesofEthenicMinority,GuizhouMedicalUniversity,Guiyang550004,China)
ObjectiveTo investigate the pathological role of proteolytic activation of protein kinase Cδ (PKCδ) in the loss of dopaminergic neurons in rat model of Parkinson’s disease (PD).Methods40 male SD rats were randomly divided into Sham group (10) and PD group (30). All rats were stereotacticly injected by saline or 6-OHDA solution,and screened by Apomorphine (APO) induced rotation. Immunohischemical staining was adopted to observe the positive neurons of tyrosine hydroxylase (TH) in substantia nigra pars compacta (SNpc). The expression of PKCδ was detected by Western blotting;the translocation of PKCδ into nucleus was detected by confocal microscope.ResultsImmunohischemistry showed the pathological change of TH positive neurons and its significant decrease in SNpc of PD (P<0.05);Western blotting showed that the expression of PKC δ and Cleaved PKC δ were significantly upregulated in SNpc of PD (P<0.05);confocal microscope showed localization of PKC δ in nucleus in the SNpc of PD.ConclusionProteolytic activation and nucleus translocation of PKC δ were possibly involved in the neuropathogenesis of PD.
6-Hydroxydopamine; Parkinson’s disease; Protein kinase C δ; Translocation
1003-2754(2017)11-0969-04
2017-07-15;
2017-10-10
國家自然科學(xué)基金(No. 81360199);教育部科學(xué)技術(shù)研究項(xiàng)目(No. 213032A);貴州省國際科技合作計(jì)劃項(xiàng)目{黔科合外G字[2013]7026};貴州省創(chuàng)新計(jì)劃項(xiàng)目{黔教合協(xié)同創(chuàng)新中心[2014]06};貴州省教育廳項(xiàng)目(2015年貴州省普通高等學(xué)校地方病和少數(shù)民族疾病防控創(chuàng)新團(tuán)隊(duì))
(1.貴州醫(yī)科大學(xué)地方病與少數(shù)民族疾病教育部重點(diǎn)實(shí)驗(yàn)室;貴州省醫(yī)學(xué)分子生物學(xué)重點(diǎn)實(shí)驗(yàn)室;貴州醫(yī)科大學(xué)分子生物學(xué)重點(diǎn)實(shí)驗(yàn)室,貴州 貴陽 550004;2.貴州醫(yī)科大學(xué)生物學(xué)教研室,貴州 貴陽550004;3.貴州醫(yī)科大學(xué)附院神經(jīng)內(nèi)科,貴州 貴陽 550004;4.貴州醫(yī)科大學(xué)病理學(xué)教研室,貴州 貴陽 550004)
禹文峰,E-mail:wenfengyu2013@163.com
R741.02;R742.5
A