• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Evaluation of Viscous Effect on Wave Excitation Force of a Vessel with Transom Stern

    2018-01-04 08:24:54SUNXiaoshuaiDONGWencaiYAOChaobang
    船舶力學(xué) 2017年12期
    關(guān)鍵詞:文才工程系粘性

    SUN Xiao-shuai,DONG Wen-cai,YAO Chao-bang

    (Department of Naval Architecture Engineering,Naval University of Engineering,Wuhan 430033,China)

    Evaluation of Viscous Effect on Wave Excitation Force of a Vessel with Transom Stern

    SUN Xiao-shuai,DONG Wen-cai,YAO Chao-bang

    (Department of Naval Architecture Engineering,Naval University of Engineering,Wuhan 430033,China)

    The accurate prediction of wave excitation force is essential for the prediction of ship motions in waves.The wave excitation force of a ship with transom stern in wave is studied here by two different calculation methods:complicated CFD simulation based on an unsteady RANS approach and boundary element method based on three dimensional translating and pulsating Green Function(3DTP).Comparisons are made between the experimental data and numerical results to validate each numerical method.The viscous effect on wave excitation force is investigated by taking advantage of CFD.The results indicate that both RANS method and 3DTP method give good prediction of wave excitation force,while the RANS method gives slightly better result in the long wave range.The viscous effect accounts for a large component of the roll moment in oblique wave.

    wave excitation force;RANS;viscous effect;three dimensional translating and pulsating Green Function

    0 Introduction

    The accurate solution of diffraction problem of vessel with forward speed is critical for the prediction of ship motions in waves.At the present time,both model experiments and numerical methods are utilized to deal with the diffraction problem.As for the traditional model experiment,it is still difficult to monitor the complex flow field around the ship due to limitation of instrument and technology in measurement[1].

    The numerical methods include potential theory and viscous theory.A lot of efforts have focused on using both linear and nonlinear potential flow for seakeeping problems[2-5].The use of 3D panel method to study seakeeping problem is becoming more common in recent year.However,the potential theory cannot take the effect of viscosity into consideration,which results in poor ability to predict strong nonlinear motions[6].To deal with this situation,Chen&Lu[7],Dutykh[8]added viscous effect into potential theory,but it has not been validated.

    As high-performance computers become more powerful and more accessible,CFD-based RANS methods are rapidly gaining popularity for seakeeping problems.Carrica[9]developed asoftware called CFDSHIP IOWA based on RANS to solve diffraction from with viscosity.Wilson[10]carried out CFD simulations to predict the pitch and heave transfer functions of the S175 ship in head wave.Fang[11]built a numerical wave tank based on RANS and computed the wave forces on forwarding Wigley hull in both head wave and oblique wave.Guo[12]and Kim[13]utilized two different solvers respectively based on RANS to predict the motions and added resistance of KVLCC2,which indicated good agreement with the experimental results.

    To evaluate the effect of viscosity on wave excitation force,the wave excitation of a ship with transom stern in wave is studied here numerically.A numerical wave tank is established based on an unsteady RANS approach and Volume of Fluid(VOF)method,by utilizing the User Defined Function(UDF)in the commercial CFD software Fluent.The boundary element method based on three dimensional translating and pulsating Green Function(3DTP)is applied here to solve the diffraction problem to make comparison with other methods.By taking the advantage of CFD,the viscous effect on wave excitation force is investigated based on RANS.Comparison of different methods indicate that both RANS method and 3DTP method give good prediction of wave excitation force,while the RANS method gives slightly better result in the long wave range.The viscous effect accounts for a large component for the roll moment in oblique wave.

    1 Ship model

    The model in the present work is a hull with bulbous bow,flare side wall and transom stern.The model is a bare hull without rudder or propeller.The main parameters of the hull are given in Tab.1 and the side view is shown in Fig.1.

    The experiments are carried out at three different Fn in head waves with wave amplitude A/L=0.008 67 and λ/L=0.578~3.467 as shown in Tab.2.The numerical calculations including both CFD and BEM are also carried out at one velocity in oblique wave( β=150°).

    Tab.1 Main parameters of the hull model

    Tab.2 Experimental and numerical test cases

    2 CFD simulation

    2.1 Governing equations

    The viscous flow control equations contain continuity equations and momentum equations,which may be written as follows:

    where ρ is the fluid density, μ is the fluid viscosity degree,p is the static pressure,fiis the mass force,uiand ujare the velocity components.

    To model the viscous fluid flow,the solver employed use a finite volume method which discretizes the integral formulations of the Navier-Stokes equations.

    The turbulent model selected in this study is a RNG k-ε model,which is shown as:

    Turbulent fluctuation kinetic energy equation(k equation)is:

    Turbulent energy dissipation rate equation(ε equation)is:

    The free surface is captured by the ‘Volume of Fluid’ (VOF)method which is shown as follows:

    where q=1,2,a1and a2refer to the volume of air-phase and water-phase.

    The second order upwind scheme is adopted to discretize the momentum equation and the turbulent model.The volume fraction of phase is discretized with Geo-reconstruct.The couple method of velocity and pressure is chosen as SIMPLEC.

    2.2 Meshes and boundary conditions

    The calculation field meshes and boundary conditions are shown in Fig.2 and Fig.3.In the process of grip generation,the practical guidelines recommended by the International Towing

    Fig.2 Flow field

    Tank Conference recommended are followed.The total length of the calculation field changes with the wave length λ.The entrance is 1λ ahead of the bow and is set as velocity-inlet which is defined by the User Defined Function(UDF).It is divided into upper and lower layers along the waterline.While the upper layer is air,the lower layer is water.The export is 3λ behind the stern and is set as pressure-out,where the hydrostatic pressure increases with the water depth.The side face and bottom face are set as velocity-inlet and are one hull length L away from the hull surface.The length of the damping zone is 1.5λ.The hull surface is set as wall,which meets the impenetrable condition and no-clip condition.The direction of gravity is perpendicular to the static water.

    Fig.4 Meshes of the hull

    The calculation field is dispersed by full structured grid in software ICEM.The total number of calculation field grid is around 1.5 million.An O-block is introduced around the hull surface to refine the grids in the boundary layer to obtain the complex flow features.Besides,the grids near the waterline are also refined to capture precise information about the free surface.A wall function is used to model the flow around the hull and y+at the hull surface is kept in the range of 40 to 200 except in a limited area close to the bow and stern.The grid of the damping zone increases along the wave spreading direction to provide numerical damping.

    2.3 Numerical wave tank

    The numerical wave tank that can precisely generate the required wave is the basis to solve the diffraction problem.It consists of wave-generating zone,working zone and damping zone,which is depicted in Fig.5.

    The boundary simulation by inputting the velocity function of wave at the entrance is utilized in this essay.In the theory of infinite linear wave,the wave surface and velocity function of regular wave in the fixed coordinate system are shown as follows:

    Fig.5 Numerical wave tank

    Fig.3 Meshes and boundary conditions

    where A is the amplitude,k0is the wave number,ω0is the wave frequency,O0x0is the wave propagate direction,O0y0is the transverse direction,O0z0is the fluctuant direction.

    In the reference coordinate system Oxyz that move with the hull at the forward velocity U0,the wave surface and velocity function of regular wave are shown as follows:

    where ωeis the encounter frequency,β is the wave to course angle.ωe=ω0-kUcosβ.

    A damping zone extends 1~2 times of wavelength is set before the output boundary to eliminate wave reflection and secondary reflection.In order to maintain the continuity of horizontal flow,the damping is just applied to the vertical velocity.The damping coefficient is

    where γ is the control parameter of damping coefficient,xsand xeare the x coordinate of the start point and end point of the damping zone,zband zfare the z coordinate of the damping zone bottom and free surface.

    The Fig.6 indicates the wave surface of the regular wave comes from two different directions(λ=6 m,hw=0.1 m).

    Fig.6 Simulation of regular wave(λ=6 m,hw=0.1 m)

    A wave surface monitor is set six miters after the inlet boundary.The comparison of time history of wave elevation between the numerical wave and the theory wave is shown in Fig.7.As depicted in Fig.7,the results match well with each other,which verifies the wave generat-ing method.Besides,the numerical wave trough is smoother than the theory one,which indicts the effect of nonlinearity.

    The wave pattern of the NWT free surface at one certain time after the computation becomes steady is shown in Fig.8.While no attenuation of the wave height is found along the wave propagate direction before the damping zone,the wave surface becomes smooth in the damping zone.Thus the effectiveness of the damping absorption method is demonstrated.

    Fig.7 Time history of wave elevation at point x=6 m from inlet

    Fig.8 The wave pattern of NWT free surface

    3 Boundary element method based on 3DTP

    The Green function method has the advantages that it requires distribution of singularities on only the wetted hull surface and it satisfies the radiation condition automatically.In the present work,the boundary element method based on the Bessho form three-dimensional translating and pulsating Green function(3DTP)in frequency domain is utilized to predict the wave excitation force,since the integration of this Green function and its derivatives over an elementary panel or the waterline segment can be expressed analytically.

    Single expression of Bessho form translating-pulsating source Green function can be expressed as:

    where,

    The analytical quadrature of this Green function over a panel and a waterline segment can be expressed as,

    With Qlvertices of panelnd Slarea of triangle

    Based on the variable substitution and the steepest descent integration method,a fast numerical calculation method for G,ISand ILcan be obtained[5].

    4 Discussion of results

    4.1 Wave pattern of CFD simulation

    The flow field with free surface around the hull is depicted in Fig.9 at Fn=0.175.The wave motivated by the advancing hull,the incident wave,the radiation wave and the diffraction waveinterfere with each other,while in the damping zone the wave surface becomes smooth.

    4.2 Wave forces

    The time history of the wave forces of the advancing hull in head regular wave based on RANS is depicted in Fig.10(λ=6 m,Fn=0.175).

    Fig.10 Wave forces in head wave(λ=6 m,Fn=0.175)

    The wave forces in wave are converted into non-dimensional form in order to compare with the experimental result.The non-dimensional function is shown as follows:

    where ωeis the encounter frequency,F1a,F2a,F3a,F4a,F5aand F6aare the first order amplitudes of surge,sway,heave,roll,pitch and yaw wave force time history,respectively.

    The non-dimensional wave forces of the hull model in head regular waves at different Fn are shown in Figs.11~13.Overall,the wave forces based on RANS and 3DTP respectively are in good agreement with experiment.

    The surge forces based on RANS are slightly larger than the 3DTP.In short waves,the 3DTP seems to give a better prediction.While in long waves,RANS results indicate better agreement with the EFD.As for the heave force,good agreement with all methods can be found at Fn=0.153 and Fn=0.175.When comes to the pitch moments,it indicates almost the same trend as the heave forces.The results based on RANS give slightly better prediction in the long waves.

    Fig.12 Heave forces in head waves at different Fn

    Fig.13 Pitch moments in head waves at different Fn

    The time history of wave forces of the advancing hull in oblique regular wave at Fn=0.175 is given in Fig.14(λ=7 m,β=150°).It can be obviously seen that the roll moment and yaw moment contain second order force.However,to make comparison with the result from potential theory,only the first order amplitude is paid attention to.

    Fig.14 Time histories of wave forces in oblique wave at Fn=0.175(λ=7 m,β=150°)

    The non-dimensional wave forces of the hull model in oblique regular waves based on RANS and 3DTP are shown in Fig.15(Fn=0.175, β=150°).Good agreement can be found in the sway force,heave force and pitch moment.The surge force based on RANS outnumbers that based on 3DTP,which is similar like what we found in the head wave.As for roll moment and yaw moment,significant difference could be found in the long wave.The roll moment based on RANS outnumbers that based on 3DTP by a maximum of 14.7%at λ/L=2.6,while the yaw moment based on RANS overweighs that based on 3DTP by a maximum of about 60%at λ/L=3.178.Whether this is due to the viscous effect will be investigated in the next section.

    Fig.15 Wave forces in oblique wave(Fn=0.175,β=150°)

    4.3 Viscous effect

    In the simulation of CFD,both non-linear effect and viscous effect are taken into account.Thus the wave force based on CFD is composed of both frictional force and pressure force.The pressure component can be derived from the total wave force by integrating the pressure on the hull surface,which has been done by utilizing the User Defined Function(UDF).

    The comparison of viscous force and pressure force in head wave is shown in Fig.16(Fn=0.175).It is obvious that the viscous component is minimal during all the wave length,which is within expectation.Additionally,we may assume that the pressure components of wave forces based on RANS should equal the wave forces based on potential theory.However,this is not so in practice.The reason may lie in the different theory and numerical method.The pressure component of surge force based on RANS is slightly bigger than that based on potential theory.

    The comparison of viscous force and pressure force in oblique wave(Fn=0.175,β=150°)as shown in Fig.17 indicates that the pressure force of surge,heave and pitch is in good agreement with the result based on 3DTP.As for sway force and roll moment,3DTP gives a larger prediction than the pressure component based on RANS in the long wave.The viscous effect accounts for maximum 15%of the total wave forces in surge,sway,heave and yaw and that slight viscous effect could be found in the heave force.As for roll moment,the viscous effect contribute more to the total force,especially in the long wave,peaking at 36.44%at λ=11 m.

    Fig.16 The components of wave forces in head wave(Fn=0.175)

    Fig.17 The components of wave forces in oblique wave(Fn=0.175,β=150°)

    5 Conclusions

    In this study,two numerical methods are utilized to predict the wave excitation force of a ship with transom stern:boundary element method based on 3DTP and CFD method based on an unsteady RANS approach.In the case of CFD,a numerical wave tank is established by using the User Defined Function(UDF)on the commercial code Fluent.In addition,the viscous effect on wave excitation force is studied by taking the advantage of CFD.From this study,the following conclusions can be made:

    (1)Compared with the experimental data,both RANS method and 3DTP method give good prediction of wave excitation force,while the RANS method gives slightly better result in the long wave range.

    (2)The viscous effect accounts for a large component for the roll moment in oblique wave.

    [1]Fang Zhaozhao,Zhu Renchuan,Miao Guoping.Numerical simulation on radiation problems of moving vessels in numerical wave tank[J].Chinese Journal of Hydrodynamics,2011,26(1):65-72.(in Chinese)

    [2]Song M J,Kim K H,Kim Y.Numerical analysis and validation of weakly nonlinear ship motions and structural loads on a modern containership[J].Ocean Engineering,2011,38(1):77-87.

    [3]Noblesse F and Hendrix D.On the theory of potential flow about a ship advancing in waves[J].Journal of Ship Research,1992,36(1):17-29.

    [4]Noblesse F,Huang Fuxin,Yang Chi.Evaluation of ship waves at the free surface and removal of short waves[J].European Journal of Mechanics B/Fluids,2013,38(3):22-37.

    [5]Yao C B,Dong W C.A fast integration method for translating-pulsating source Green’s function in Bessho form[J].Journal of Zhejiang University-A,2014,15(2):108-119.

    [6]Simonsen C D,Otzen J F,Joncquez S,Stern F.EFD and CFD for KCS heaving and pitching in regular head waves[J].Journal of Marine Science and Technology,2013,18(4):435-459.

    [7]Chen X B,Lu D Q.Time-harmonic ship waves with the effect of surface tension and fluid viscosity[C]//Proceedings of the 24th International Workshop on Water Waves and Floating Bodies.Zelenogork,Russia,2009.

    [8]Dutykh D.Visco-potential free surface flows and long wave modeling[J].European Journal of Mechanics B/Fluids,2009,28(3):430-443.

    [9]Carrica P M,Wilson R V,Stern F.Unsteady RANS simulation of the ship forward speed diffraction problem[J].Computers&Fluids,2006,35(6):545-570.

    [10]Wilson R V,Ji L,Karman S L,et al.Simulation of large amplitude ship motions for prediction of fluid-structure interaction[C]//Proceedings of the 27th Symposium on Naval Hydrodynamics.ONR,Seoul,2008.

    [11]Fang Zhaozhao,Zhu Renchuan,Miao Guoping,et al.Numerical simulation of diffraction problems of moving vessels in numerical wave tank[J].Journal of Shanghai Jiaotong University,2012,46(8):65-72.(in Chinese)

    [12]Guo B J,Steen S,Deng G B.Seakeeping prediction of KVLCC2 in head waves with RANS[J].Applied Ocean Research,2012,35:56-67.

    [13]Kim J,Park I,Kim K,et al.Numerical towing tank application to the prediction of added resistance performance of KVLCC2 in regular waves[C].Proceedings of the 2013 International Offshore and Polar Engineering,2013:880-886.

    粘性對(duì)方尾船波浪力的影響分析

    孫小帥,董文才,姚朝幫

    (海軍工程大學(xué) 艦船工程系,武漢 430033)

    航行船舶繞射問(wèn)題的準(zhǔn)確求解是預(yù)報(bào)船舶波浪中運(yùn)動(dòng)的基礎(chǔ)。文章分別采用基于三維移動(dòng)脈動(dòng)源的邊界元法和基于RANS方程的CFD方法求解了規(guī)則波中航行的方尾船模型的波浪力,并通過(guò)與試驗(yàn)結(jié)果比較驗(yàn)證了方法的可靠性。CFD計(jì)算時(shí)通過(guò)從波浪力中分離出粘性力,研究了粘性對(duì)方尾船波浪力的影響。結(jié)果表明,基于RANS方程的波浪力計(jì)算結(jié)果與試驗(yàn)結(jié)果和勢(shì)流理論結(jié)果吻合良好,在長(zhǎng)波中與試驗(yàn)值更接近。粘性對(duì)船模斜浪航行時(shí)的橫搖力矩有較

    大影響。

    波浪力;RANS;粘性;三維移動(dòng)脈動(dòng)源格林函數(shù);繞射問(wèn)題

    U661.1

    A

    國(guó)家自然科學(xué)基金項(xiàng)目(50879090);水動(dòng)力重點(diǎn)基金項(xiàng)目(9140A1403071251311044)

    孫小帥(1990-),男,海軍工程大學(xué)艦船工程系博士研究生;

    董文才(1967-),男,海軍工程大學(xué)教授,博士生導(dǎo)師;

    姚朝幫(1987-),男,海軍工程大學(xué)講師。

    U661.1 Document code:A

    10.3969/j.issn.1007-7294.2017.12.003

    date:2017-07-13

    Supported by the National Natural Science Foundation of China(No.50879090)and by the Key Program of Hydrodynamics of China(No.914A14030712JB11044)

    Biography:SUN Xiao-shuai(1990-),male,Ph.D.candidate of Naval University of Engineering,E-mail:hglastshadow@163.com;DONG Wen-cai(1967-),male,professor/tutor.

    1007-7294(2017)12-1468-12

    猜你喜歡
    文才工程系粘性
    一類具有粘性項(xiàng)的擬線性拋物型方程組
    素甲將軍
    寶藏(2022年3期)2022-08-01 02:29:54
    龍冢
    寶藏(2021年11期)2021-01-01 06:17:22
    官運(yùn)亨通
    寶藏(2021年11期)2021-01-01 06:17:22
    帶粘性的波動(dòng)方程組解的逐點(diǎn)估計(jì)
    電子信息工程系
    機(jī)電工程系簡(jiǎn)介
    粘性非等熵流體方程平衡解的穩(wěn)定性
    穿行:服裝工程系畢業(yè)設(shè)計(jì)作品
    家庭醫(yī)生增強(qiáng)基層首診粘性
    国产成人a区在线观看| 日韩 亚洲 欧美在线| 亚洲精品视频女| 丝瓜视频免费看黄片| 亚洲欧美中文字幕日韩二区| 深爱激情五月婷婷| 精品久久久久久电影网| 日韩视频在线欧美| a 毛片基地| 一级毛片久久久久久久久女| 黄片wwwwww| 欧美区成人在线视频| h视频一区二区三区| 国产 精品1| av播播在线观看一区| 国产伦在线观看视频一区| 免费黄网站久久成人精品| 少妇猛男粗大的猛烈进出视频| 久久久久久久久大av| 男的添女的下面高潮视频| 亚洲欧美成人精品一区二区| videos熟女内射| 亚洲欧美清纯卡通| 青春草亚洲视频在线观看| 我的女老师完整版在线观看| 交换朋友夫妻互换小说| 亚洲欧美日韩东京热| 欧美高清性xxxxhd video| 春色校园在线视频观看| 国产国拍精品亚洲av在线观看| 中文字幕av成人在线电影| 亚洲久久久国产精品| 狠狠精品人妻久久久久久综合| 久久久久性生活片| 国产黄片视频在线免费观看| 国产亚洲午夜精品一区二区久久| 国产亚洲5aaaaa淫片| 国产在线免费精品| 亚洲人成网站在线观看播放| 夜夜爽夜夜爽视频| 免费人成在线观看视频色| 国产淫片久久久久久久久| 一级二级三级毛片免费看| 一边亲一边摸免费视频| 精品人妻视频免费看| 午夜福利高清视频| 国产又色又爽无遮挡免| 亚洲精品一区蜜桃| 亚洲美女搞黄在线观看| 在线亚洲精品国产二区图片欧美 | 在线观看美女被高潮喷水网站| 欧美日韩精品成人综合77777| 中文天堂在线官网| 九草在线视频观看| 精品一品国产午夜福利视频| 亚洲人成网站在线播| 久久6这里有精品| 精品久久久久久久久亚洲| 这个男人来自地球电影免费观看 | 一级片'在线观看视频| 免费播放大片免费观看视频在线观看| 精品熟女少妇av免费看| 岛国毛片在线播放| 国产成人a区在线观看| 午夜精品国产一区二区电影| 中文乱码字字幕精品一区二区三区| 亚洲欧美日韩卡通动漫| 欧美国产精品一级二级三级 | 国产精品一区二区性色av| 免费看不卡的av| 成人一区二区视频在线观看| 久久精品国产亚洲网站| 麻豆成人午夜福利视频| 午夜福利影视在线免费观看| 国产av国产精品国产| av又黄又爽大尺度在线免费看| 婷婷色麻豆天堂久久| 免费av不卡在线播放| 日本黄色日本黄色录像| 高清视频免费观看一区二区| 老熟女久久久| 美女高潮的动态| 女性被躁到高潮视频| 丰满迷人的少妇在线观看| 国产精品免费大片| 又粗又硬又长又爽又黄的视频| 黑人高潮一二区| 亚州av有码| 亚洲av成人精品一二三区| 夫妻性生交免费视频一级片| 青春草视频在线免费观看| 亚洲图色成人| 中文字幕亚洲精品专区| 亚洲国产精品成人久久小说| 国产精品久久久久久av不卡| 超碰av人人做人人爽久久| 国产一区亚洲一区在线观看| 美女国产视频在线观看| 亚洲国产精品专区欧美| 国产伦精品一区二区三区视频9| 欧美精品一区二区免费开放| h日本视频在线播放| 91狼人影院| 国产淫语在线视频| 高清在线视频一区二区三区| 亚洲av不卡在线观看| 天堂俺去俺来也www色官网| av不卡在线播放| 男男h啪啪无遮挡| 国产高清有码在线观看视频| 啦啦啦视频在线资源免费观看| 亚洲欧美日韩卡通动漫| 亚洲精品国产色婷婷电影| 亚洲国产av新网站| 黄片wwwwww| 国产精品偷伦视频观看了| 免费人妻精品一区二区三区视频| 两个人的视频大全免费| 欧美xxⅹ黑人| 在线看a的网站| 久久热精品热| 亚洲精品久久久久久婷婷小说| 国产一区二区三区av在线| 亚洲电影在线观看av| 久久久久久久久久成人| 国产成人freesex在线| 国产成人一区二区在线| 色5月婷婷丁香| 赤兔流量卡办理| 在线观看一区二区三区激情| 麻豆乱淫一区二区| 成人二区视频| 精品亚洲乱码少妇综合久久| 免费看日本二区| 精品人妻熟女av久视频| 日韩亚洲欧美综合| 一区二区三区免费毛片| 一区二区三区免费毛片| 女人十人毛片免费观看3o分钟| 午夜免费鲁丝| 久久99热这里只频精品6学生| 中国国产av一级| 天天躁日日操中文字幕| 精品久久久久久久末码| 欧美另类一区| 久久久精品94久久精品| 黑人猛操日本美女一级片| 久久精品久久精品一区二区三区| 成人影院久久| 校园人妻丝袜中文字幕| 91精品国产国语对白视频| 一区二区三区免费毛片| 美女cb高潮喷水在线观看| 一本一本综合久久| 亚洲欧美日韩另类电影网站 | 国产乱来视频区| 国产一级毛片在线| 天堂俺去俺来也www色官网| 欧美成人精品欧美一级黄| 国产深夜福利视频在线观看| 久久精品国产鲁丝片午夜精品| 精品人妻一区二区三区麻豆| 国产免费又黄又爽又色| 乱码一卡2卡4卡精品| 精品一品国产午夜福利视频| 内射极品少妇av片p| 91精品国产国语对白视频| 王馨瑶露胸无遮挡在线观看| 一本久久精品| 亚洲精品国产av成人精品| 国产老妇伦熟女老妇高清| 国产精品熟女久久久久浪| 丝袜脚勾引网站| 亚洲人与动物交配视频| 国产精品一二三区在线看| 午夜激情福利司机影院| 狠狠精品人妻久久久久久综合| 午夜精品国产一区二区电影| 免费黄频网站在线观看国产| 伊人久久国产一区二区| 亚洲国产精品国产精品| 如何舔出高潮| 国产 一区 欧美 日韩| 日韩视频在线欧美| 亚洲av中文字字幕乱码综合| 亚洲性久久影院| 国产av精品麻豆| 男女啪啪激烈高潮av片| 街头女战士在线观看网站| 国产成人免费观看mmmm| 一本—道久久a久久精品蜜桃钙片| 麻豆国产97在线/欧美| 男女国产视频网站| 深爱激情五月婷婷| 精品久久久久久久末码| 日本黄色片子视频| 免费黄频网站在线观看国产| 亚洲成人av在线免费| 国产真实伦视频高清在线观看| 夫妻午夜视频| 五月天丁香电影| 亚洲国产毛片av蜜桃av| 亚洲色图av天堂| 在线观看一区二区三区| 人人妻人人添人人爽欧美一区卜 | 在线观看国产h片| 丰满迷人的少妇在线观看| 91久久精品国产一区二区成人| 天天躁日日操中文字幕| 在线免费十八禁| 国产精品国产三级国产专区5o| 久久久久久人妻| 国产午夜精品一二区理论片| 黄色一级大片看看| 九九在线视频观看精品| 精品人妻偷拍中文字幕| 亚洲av日韩在线播放| 国产精品国产三级专区第一集| 中文欧美无线码| 菩萨蛮人人尽说江南好唐韦庄| 色婷婷av一区二区三区视频| 97超视频在线观看视频| 免费av中文字幕在线| 嫩草影院新地址| 插阴视频在线观看视频| 国产中年淑女户外野战色| 精品99又大又爽又粗少妇毛片| 国产亚洲av片在线观看秒播厂| 久久这里有精品视频免费| 伦理电影大哥的女人| 制服丝袜香蕉在线| 亚洲熟女精品中文字幕| 国产亚洲午夜精品一区二区久久| 色视频在线一区二区三区| 国产亚洲精品久久久com| 国产精品99久久99久久久不卡 | 视频中文字幕在线观看| 亚洲aⅴ乱码一区二区在线播放| 欧美成人一区二区免费高清观看| 久久久久网色| 热re99久久精品国产66热6| 老熟女久久久| 国产在线男女| 精品少妇黑人巨大在线播放| 永久免费av网站大全| 99热国产这里只有精品6| 男女国产视频网站| 插阴视频在线观看视频| 熟女人妻精品中文字幕| 超碰97精品在线观看| 亚洲图色成人| 成年女人在线观看亚洲视频| 91精品一卡2卡3卡4卡| 久久久久久久久久久免费av| 国产探花极品一区二区| 日韩在线高清观看一区二区三区| 欧美日本视频| 99精国产麻豆久久婷婷| 夜夜看夜夜爽夜夜摸| 日日啪夜夜撸| 在线观看三级黄色| 久久精品久久精品一区二区三区| 最近的中文字幕免费完整| 男人添女人高潮全过程视频| 国产白丝娇喘喷水9色精品| h日本视频在线播放| 亚洲av欧美aⅴ国产| 欧美日韩在线观看h| 亚洲伊人久久精品综合| 国产精品一区二区在线不卡| 精品久久久精品久久久| www.av在线官网国产| 在线天堂最新版资源| 国产女主播在线喷水免费视频网站| 3wmmmm亚洲av在线观看| 亚洲精品乱久久久久久| 噜噜噜噜噜久久久久久91| 好男人视频免费观看在线| 免费黄色在线免费观看| 久久久久久久大尺度免费视频| 97在线人人人人妻| 秋霞伦理黄片| 日本免费在线观看一区| 国产高清不卡午夜福利| 成人高潮视频无遮挡免费网站| 欧美xxⅹ黑人| 亚洲精品久久久久久婷婷小说| 国产精品国产三级专区第一集| 亚洲天堂av无毛| 国产 一区精品| 美女国产视频在线观看| 九色成人免费人妻av| 青青草视频在线视频观看| av不卡在线播放| 啦啦啦视频在线资源免费观看| 国产精品一区www在线观看| 国产精品嫩草影院av在线观看| 久久人人爽人人片av| 精品一区二区三卡| 久久国产精品大桥未久av | 日韩成人伦理影院| 两个人的视频大全免费| 日本午夜av视频| 黑人猛操日本美女一级片| 午夜福利影视在线免费观看| 国产精品蜜桃在线观看| 久久久精品免费免费高清| 全区人妻精品视频| 99热国产这里只有精品6| 欧美精品国产亚洲| 国产免费视频播放在线视频| 国产老妇伦熟女老妇高清| 热re99久久精品国产66热6| av线在线观看网站| 国产精品麻豆人妻色哟哟久久| 联通29元200g的流量卡| 九草在线视频观看| 免费人妻精品一区二区三区视频| 亚洲自偷自拍三级| 亚洲va在线va天堂va国产| 久久久久久人妻| 中国美白少妇内射xxxbb| 日韩一本色道免费dvd| 国产精品欧美亚洲77777| 国产在视频线精品| 少妇 在线观看| 精品久久久噜噜| 国产熟女欧美一区二区| 免费观看a级毛片全部| av又黄又爽大尺度在线免费看| 欧美xxxx黑人xx丫x性爽| 国产亚洲一区二区精品| tube8黄色片| 黄色配什么色好看| 国产女主播在线喷水免费视频网站| 亚洲av成人精品一二三区| 亚洲av电影在线观看一区二区三区| 亚洲精品日本国产第一区| 一级毛片aaaaaa免费看小| 我的老师免费观看完整版| 一本—道久久a久久精品蜜桃钙片| 亚洲成人手机| 欧美日韩亚洲高清精品| 极品少妇高潮喷水抽搐| 国产成人精品福利久久| 91久久精品电影网| 亚洲精品色激情综合| 夜夜骑夜夜射夜夜干| 亚洲av不卡在线观看| 久久久久久人妻| 日韩成人伦理影院| 国产高潮美女av| 精品久久久久久久久av| 久久国产亚洲av麻豆专区| 99久久综合免费| 人妻少妇偷人精品九色| 国产精品国产三级国产专区5o| 日韩欧美一区视频在线观看 | 国产日韩欧美在线精品| 欧美激情极品国产一区二区三区 | 永久网站在线| 精品一区二区免费观看| 欧美成人一区二区免费高清观看| 国产高清三级在线| 我的老师免费观看完整版| av免费在线看不卡| 国产成人免费无遮挡视频| 麻豆乱淫一区二区| 久久这里有精品视频免费| 国产熟女欧美一区二区| 成人国产麻豆网| 国精品久久久久久国模美| 蜜桃亚洲精品一区二区三区| 高清视频免费观看一区二区| 蜜臀久久99精品久久宅男| 国产一区亚洲一区在线观看| 大香蕉97超碰在线| 国产深夜福利视频在线观看| 一级爰片在线观看| 国产又色又爽无遮挡免| 欧美日韩综合久久久久久| 亚洲精品,欧美精品| 精品久久久久久久久av| 免费看光身美女| 免费高清在线观看视频在线观看| 一本色道久久久久久精品综合| 好男人视频免费观看在线| 国产亚洲一区二区精品| 中国美白少妇内射xxxbb| 欧美日韩在线观看h| 久久久久久久精品精品| 啦啦啦啦在线视频资源| 国产成人freesex在线| 菩萨蛮人人尽说江南好唐韦庄| 美女内射精品一级片tv| 亚洲精品第二区| 日韩电影二区| av网站免费在线观看视频| 亚洲国产欧美人成| 国产精品嫩草影院av在线观看| 老师上课跳d突然被开到最大视频| 亚洲av二区三区四区| 国产精品av视频在线免费观看| 91精品国产国语对白视频| 久久精品国产a三级三级三级| 波野结衣二区三区在线| 亚洲伊人久久精品综合| 久久国产亚洲av麻豆专区| 亚洲av不卡在线观看| 亚洲欧美日韩东京热| 国产伦精品一区二区三区视频9| 青春草亚洲视频在线观看| 国产片特级美女逼逼视频| 91精品国产九色| 午夜免费观看性视频| 我的老师免费观看完整版| 亚洲欧美成人综合另类久久久| 91精品国产国语对白视频| 久热久热在线精品观看| 新久久久久国产一级毛片| 欧美高清成人免费视频www| av播播在线观看一区| 成人18禁高潮啪啪吃奶动态图 | 国产美女午夜福利| 亚洲无线观看免费| 视频区图区小说| 一本久久精品| 久久亚洲国产成人精品v| 一区二区三区精品91| 观看美女的网站| 精品99又大又爽又粗少妇毛片| 日本-黄色视频高清免费观看| 久久人人爽人人爽人人片va| 亚洲精品第二区| 国产欧美亚洲国产| 久久久久久久久大av| 在现免费观看毛片| 男女无遮挡免费网站观看| 国产免费一级a男人的天堂| 免费久久久久久久精品成人欧美视频 | 久久精品国产自在天天线| 在线观看三级黄色| 啦啦啦视频在线资源免费观看| 妹子高潮喷水视频| 大香蕉久久网| 高清日韩中文字幕在线| 男男h啪啪无遮挡| 国产69精品久久久久777片| 国产又色又爽无遮挡免| 国产永久视频网站| 五月玫瑰六月丁香| 丝袜脚勾引网站| 欧美人与善性xxx| 九九久久精品国产亚洲av麻豆| 美女cb高潮喷水在线观看| 国产成人a区在线观看| 国产精品成人在线| 春色校园在线视频观看| 欧美+日韩+精品| 少妇被粗大猛烈的视频| 日日摸夜夜添夜夜爱| tube8黄色片| 亚洲精品视频女| 美女国产视频在线观看| 国产成人精品福利久久| 国产成人免费观看mmmm| 在线免费观看不下载黄p国产| 国产精品一区二区三区四区免费观看| av又黄又爽大尺度在线免费看| 建设人人有责人人尽责人人享有的 | 老女人水多毛片| 一区二区三区精品91| 亚洲综合精品二区| 免费看光身美女| 久久久国产一区二区| 丝瓜视频免费看黄片| 日日啪夜夜撸| 日韩欧美精品免费久久| 内射极品少妇av片p| 一边亲一边摸免费视频| 国产精品一二三区在线看| 国产熟女欧美一区二区| 国产精品精品国产色婷婷| 久久久久久久久久久丰满| 男女啪啪激烈高潮av片| 欧美成人a在线观看| 欧美变态另类bdsm刘玥| 男女下面进入的视频免费午夜| 简卡轻食公司| 国产精品一区二区在线观看99| 免费av中文字幕在线| 高清毛片免费看| 在线观看av片永久免费下载| 高清不卡的av网站| 80岁老熟妇乱子伦牲交| 亚洲欧美日韩无卡精品| 毛片女人毛片| 人妻制服诱惑在线中文字幕| 精品久久国产蜜桃| 狠狠精品人妻久久久久久综合| 男女啪啪激烈高潮av片| 国产免费一区二区三区四区乱码| 日韩欧美一区视频在线观看 | 久久99蜜桃精品久久| 人妻少妇偷人精品九色| 一级毛片黄色毛片免费观看视频| 久久人人爽av亚洲精品天堂 | 99久久精品热视频| 久久久久性生活片| 在线看a的网站| 91在线精品国自产拍蜜月| 一级毛片aaaaaa免费看小| 国产精品偷伦视频观看了| 最近2019中文字幕mv第一页| a级毛色黄片| 久久女婷五月综合色啪小说| 18禁在线播放成人免费| 国产精品人妻久久久久久| 国产精品免费大片| 免费黄频网站在线观看国产| 少妇人妻 视频| 伊人久久国产一区二区| 亚洲欧美成人综合另类久久久| 高清毛片免费看| 亚洲国产精品专区欧美| 国产乱人偷精品视频| 99久久中文字幕三级久久日本| 国产色爽女视频免费观看| 在线观看三级黄色| 男女无遮挡免费网站观看| 99热网站在线观看| 亚洲不卡免费看| 亚洲国产精品专区欧美| 亚洲不卡免费看| 欧美日韩视频精品一区| 国产美女午夜福利| 欧美三级亚洲精品| 亚洲婷婷狠狠爱综合网| 亚洲在久久综合| 亚洲av电影在线观看一区二区三区| 亚洲三级黄色毛片| 日韩伦理黄色片| 免费看av在线观看网站| 亚洲精品久久久久久婷婷小说| 中文乱码字字幕精品一区二区三区| 九九在线视频观看精品| 天天躁日日操中文字幕| 欧美人与善性xxx| 国产高清国产精品国产三级 | 精品人妻视频免费看| 三级国产精品片| 久久久亚洲精品成人影院| 男人爽女人下面视频在线观看| 日本黄大片高清| av不卡在线播放| 国产熟女欧美一区二区| 亚洲欧美日韩卡通动漫| 看免费成人av毛片| 日本av手机在线免费观看| 欧美高清成人免费视频www| 成人国产av品久久久| 久久女婷五月综合色啪小说| 久久精品久久精品一区二区三区| 日韩成人伦理影院| 我要看日韩黄色一级片| av视频免费观看在线观看| 大片电影免费在线观看免费| 又黄又爽又刺激的免费视频.| 美女国产视频在线观看| av线在线观看网站| 日韩精品有码人妻一区| 国产91av在线免费观看| 菩萨蛮人人尽说江南好唐韦庄| 涩涩av久久男人的天堂| 色吧在线观看| 高清毛片免费看| 免费播放大片免费观看视频在线观看| 欧美日韩亚洲高清精品| 亚洲成人中文字幕在线播放| 人妻系列 视频| 国产黄色免费在线视频| 最近2019中文字幕mv第一页| 国内少妇人妻偷人精品xxx网站| 色婷婷久久久亚洲欧美| 制服丝袜香蕉在线| 热99国产精品久久久久久7| 全区人妻精品视频| 天天躁日日操中文字幕| 网址你懂的国产日韩在线| 少妇裸体淫交视频免费看高清| 欧美老熟妇乱子伦牲交| 国产高清国产精品国产三级 | 最近中文字幕2019免费版| 美女福利国产在线 | 男女啪啪激烈高潮av片| 人妻少妇偷人精品九色| 亚洲精品aⅴ在线观看| 日韩一区二区视频免费看| 多毛熟女@视频| 国产在线男女| 久久久久人妻精品一区果冻| 国产毛片在线视频| 久久综合国产亚洲精品| 亚洲在久久综合| 国产男人的电影天堂91| 亚洲丝袜综合中文字幕| 成人特级av手机在线观看| 国产伦在线观看视频一区| 久久精品久久精品一区二区三区| 少妇高潮的动态图| 97热精品久久久久久| av.在线天堂| 51国产日韩欧美| 国产一区二区在线观看日韩| 在线观看人妻少妇|