• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Method of Estimating the Effect of Marine Fouling on Frictional Resistance of Ships

    2018-01-04 08:24:53MINShaosongPENGFeiWANGZhanzhiZHANGTao
    船舶力學(xué) 2017年12期
    關(guān)鍵詞:工程系污損摩擦阻力

    MIN Shao-song,PENG Fei,WANG Zhan-zhi,ZHANG Tao

    (1.Department of Naval Architecture,Naval University of Engineering,Wuhan 430033,China;2.The 91872th Unit of PLA,Beijing 102442,China)

    Method of Estimating the Effect of Marine Fouling on Frictional Resistance of Ships

    MIN Shao-song1,PENG Fei1,WANG Zhan-zhi1,ZHANG Tao2

    (1.Department of Naval Architecture,Naval University of Engineering,Wuhan 430033,China;2.The 91872th Unit of PLA,Beijing 102442,China)

    Marine fouling has a severe adverse effect on the hydrodynamics of a ship’s hull.In this paper,the marine fouling was approached as a type of hull roughness,and the use of the integral method in estimating its effect on the frictional resistance of ships was studied.Through the calculation of the friction factor of a smooth surface,the accuracy of the integral method was verified and confirmed.The integral method was then adopted to calculate the friction factor of a U.S.Navy FFG-7 class ship under three different calcareous fouling conditions,which gave a result consistent with that from other researchers,indicating the feasibility and accuracy of the integral method in estimating the effect of marine fouling on hull resistance.The result using the integral method for a FFG-7 ship was compared with result from the 1957-ITTC equation and its roughness allowance ΔCf.The result shows that the ΔCfequation proposed by ITTC is not applicable to characterize the impact of fouling on hull resistance.

    marine fouling;frictional resistance;hull roughness;boundary layer integral method

    0 Introduction

    Marine fouling has long been a more problematic issue compared with corrosion.The robust vitality of fouling organism has made fouling problem a formidable barrier for human to conquer the ocean[1].Marine fouling organisms comprise a wide range of organisms,including all animals,plants,and microorganisms that are attached to the surfaces of immersed objects.Fouling results in an uneven hull surface,largely increasing the roughness of the hull and,hence,the frictional resistance.According to monitoring data of ship resistance from different countries,the total resistance of a ship could increase by up to 60%when severely fouled by calcareous organisms[2].For a newly built ship,a roughness allowance,ΔCf,is usually used to calculate the impact of surface roughness on frictional resistance.Further research shows thatΔCfincludes not only the increase of resistance from surface roughness,but also the difference from various friction equations,scale functions,and the efficiency,wake,and thrust-deduction factor of propellers[3].

    Since fouling has a very negative impact on hull resistance,many researchers have been studying the effect of fouling and its estimation method.Townsin[4]summarized the previous studies,suggested a better method of understanding and estimating the effect of fouling,and determined that the effect of calcareous fouling(such as that caused by barnacles)is easier to estimate than bacterial or botanical fouling.Schultz[5]compared the results from studying fouling by barnacles with different sizes and coverages,and found that the size of the barnacle is the dominant factor determining the resistance.Based on the resistance data on the experimental scale and on the similarity law of boundary layers,Schultz[6]estimated a ship’s resistance and power loss under many different fouling conditions.Schultz[7]analyzed the economic loss of fouling on U.S.Navy DDG-51 class ships,and showed that current fouling conditions could result in a ~$560 million annual economic loss.However,the reliability of Schultz’s estimation method needs further verification.

    This work investigated a method of estimating a ship’s frictional resistance under fouling conditions based on the integral method of boundary layers.Taking a U.S.Navy ‘Perry’class corvette(aka a ‘FFG-7’ ship)as the object of study,the ship’s resistance was estimated and analyzed under three different calcareous fouling conditions.

    1 Estimation method

    In addition to conventional physical roughness,fouling can also be considered as hull roughness.In this work,fouling is treated as a type of hull roughness for further study.Previous workers[8]estimated and analyzed the development of a turbulent boundary layer on a rough surface based on the integral method,and the same method is adopted in this work to estimate a ship’s resistance under fouling conditions.

    1.1 Characterization of fouling effect

    The main effect of roughness on the flow near a surface is to change its average velocity distribution[9].Therefore,the decrease of average velocity distribution can be used as a parameter to characterize the effect of roughness on surface flow,as a roughness function ΔU+.According to Coles’equation,which describes the average velocity distribution of flow near a smooth surface,and combining it with the roughness function ΔU+,the velocity distribution in a turbulent boundary layer near a rough surface,U+,can be described as

    where y is the horizontal axis in the boundary layer with the plate surface as the origin,uτis the friction velocity,δ is the boundary-layer thickness,B0is the logarithmic intercept of the smooth surface,κ is Kármán’s constant(usually taken as 0.41),υ is the kinetic viscosity of fluid,and Π is wake parameter that is usually a function of x and dependent on the pressure gradient in the flow direction and on the surface roughness,is a function referred to the ‘law of the wake’.

    The roughness function ΔU+is dependent on the substantial characteristics of the rough surface and the Reynolds number[10].The format of the roughness function is usually considered to have a logarithmic relationship with respect to the roughness factor,described as

    where h′is the roughness factor and B and C are constants that depend on particular conditions of roughness.There are many methods of characterizing the roughness factor h′,such as the height,interval,and shape features of the roughness element.

    Therefore,the effect of roughness is represented in the equation of velocity distribution within a turbulent boundary layer,directly and indirectly,as the roughness function ΔU+and wake parameter Π,respectively.

    1.2 Numerical method of calculating the turbulent boundary layer of the fouling surface

    (1)Characteristic parameter relationship of the fouling surface

    When y=δ,U=Ue,U is the average velocity at position y,Ueis the free velocity,the velocity of the rough surface,Eq.(1),is converted to

    Letting Eq.(3)subtract Eq.(1),anduτ/Ue,in which Cfis the local friction coefficient,the boundary layer can be derived into another form:

    The relationship between displacement of boundary-layer thickness δ*and momentum thickness θ can be further derived into

    (2)Momentum integral equation

    The two-dimensional momentum integral equation at zero-pressure gradients is

    For the equilibrium boundary layer,the wake parameter Π is independent of x,i.e.,dΠ/dx=0.By substituting the characteristic parameter equation of the boundary layer,Eq.(5),into Eq.(6),an ordinary differential equation can be derived as

    in which

    (3)Rough surface equation

    A rough surface equation is derived according to the velocity distribution within the boundary layer from Eqs.(1)and(2):

    By substituting the characteristic parameter equation of the boundary layer,Eq.(5),into Eq.(9)and performing a derivation to x,an ordinary differential equation can be derived as

    in which

    (4)Friction coefficient of fouling surface

    Combining Eqs.(7)and(10),linear equations can be obtained with dδ/dx and dw/dx as variables.Ordinary differential equations with respect to δ and w can be solved using the Crammer principle.Given a known roughness function ΔU+and velocity distribution at initial conditions,the distribution of δ and w at the rough surface in the flow direction can be calculated by the numerical integral method,resulting in the distribution of the local friction coefficient Cfialong the flow direction.The local frictional resistance fican be further calculated.Integration of fialong the flow direction gives the frictional resistance F and friction coefficient CF.

    where Usiis the potential velocity at position xiand V the velocity.

    2 Verification of the method

    To verify the accuracy of the integral method,the frictional resistance of a smooth surface is calculated before estimating the frictional resistance of a fouled hull.The result is compared with the 1957-ITTC equation,as shown in Fig.1.For a smooth surface,the roughness function ΔU+equals 0.The boundary-layer thickness δ0at the beginning position of the integral(x0)is estimated based on the power-law empirical equation of the smooth surface.As seen in Fig.1,when the Reynolds number ReL(ReL=UL/v,in which U is velocity and L is length)is greater than 106,the result from the integral method matches that from the 1957-ITTC equation.Therefore,the integral method proposed in this work has high accuracy for estimating resistance for regular ships.

    Fig.1 Comparison of frictional resistance coefficient on smooth plates between the integral method and 1957-ITTC formula

    3 Cases

    According to the evaluation method set forth in Naval Ships’Technical Manuals(NSTMs)[11],hull fouling is classified into 10 fouling ratings(FRs),in which FR10-FR30 are membrane or grass fouling,or soft fouling;FR40-FR100 are hard fouling and composite fouling.Since the dominant form in this latter category is calcareous species such as barnacles and tubeworms,fouling in this category is collectively called calcareous fouling,which is the object of study in this work.Schultz et al[6]measured the roughness factor of surfaces subject to different calcareous fouling conditions,as shown in Tab.1,Rtm5( )0 is maximum peak to trough height over a 50 mm sampling length,seen in Ref.

    [12].

    Tab.1 Roughness factor under different calcareous fouling conditions

    Since the barnacle is the dominant species in the biotic community germane to this study,it was chosen as our object of research.The usual shape of a barnacle is conical,and the diameter of its opening is smaller than that of the substrate(the intersection angle between wall and substrate is less than 90°)[13],here,the geometrical setting for a barnacle is a tangent value of intersection angle between wall and substrate of 2.5 and a diameter of the substrate being 3 times the diameter of the opening.According to the definition of the roughness factor h′by the Ship Performance Group at the University of Newcastle upon Tyne(United Kingdom)[14],the roughness factor h′can be calculated as

    where Rqis root mean square roughness height(μm),Sais mean slope of the surface profile.

    Fig.2 The shapes of barnacles(Left:the barnacles attached to hull surfaces;Right:modeling of barnacles)

    Since we cannot obtain the roughness function ΔU+of a barnacle,the constants B and C in the ΔU+equation have to be estimated.Considering that the conical shape of a barnacle is similar to a pyramid,and assuming that a barnacle is firmly attached to the hull,the adhesion shape of a barnacle can be regarded to have the same roughness as that of the experimental surface described in Ref.

    [15].The constants B and C in the ΔU+equation can be assigned values of 0.32 and-2.78,respectively.ΔU+is thus derived as

    Schultz studied the resistance of a ‘Perry’class corvette under different fouling conditions[6].Taking a FFG-7 class ship as the object of our study,the friction coefficient is estimated under three calcareous fouling conditons using the integral method and roughness function.The friction coefficient Cfis calculated under three calcareous fouling conditions using the integral method.The total coefficient CTis then calculated based on the composition of resistance of a FFG-7 ship.The coefficient increase of Cfand CTcaused by fouling is then calculated and compared with the result from Schultz’s research,as shown in Tab.2.

    As seen in the table,at 15 kns,moderate calcareous fouling on a FFG-7 ship increases CTby 53.7%;at 30 kns,the value is 35.9%for CT.Schultz’s results show that moderate calcareous fouling on a FFG-7 ship increases CTby 52%at 15 kns and by 36%at 30 knots[16].Calculational results in this work match Schultz’s results well.Therefore,the integral method proposed in this work shows good feasibility and accuracy in estimating the effect of fouling on hull resistance.

    Tab.2 Comparison of results obtained from integral method and from Schultz’s research

    Fig.3 compared the aforementioned result of the friction coefficient Cfof a FFG-7 ship with the result of 1957-ITTC equation,along with 1957-ITTC result added the roughness allowance ΔCfsuggested by ITTC.As shown in Fig.3,the roughness allowance suggested by ITTC is much larger than that calculated by the integral method,and it is independent of Reynolds number(the line of 1957-ITTC equation is parallel to the line of 1957-ITTC result added the roughness allowance ΔCfsuggested by ITTC).Therefore,the roughness allowance suggested by ITTC is not applicable to the evaluation of the effect of fouling on hull resistance.

    4 Conclusions

    In this work,marine fouling is treated as a category of ship roughness worthy of study.Based on the integral method of turbulent boundary layers on a rough surface,the effect of fouling on hull resistance is studied and estimated.For a smooth surface,the friction coefficient calculated using the integral method exhibits good consistency with that calculated using the 1957-ITTC equation for ships of regular size.The integral method is then used to study the hull resistance of a FFG-7 ship under three calcareous fouling conditions caused by barnacles,and the results are in good agreement with those of other research groups.This demonstrates that the integral method has good feasibility and accuracy for estimating the effect of fouling on hull resistance.The integral method result has been compared to that obtained using the 1957-ITTC equation as well as the roughness allowance,ΔCf,equation,showing that the ΔCfvalue obtained by using the ITTC equation is much larger than that obtained by using the integral method.Therefore,the roughness allowance suggested by the ITTC equation is not applicable for evaluating the effect of fouling on hull resistance.

    Acknowledgements

    We thank LetPub(www.letpub.com)for its linguistic assistance during the preparation of this manuscript.

    [1]Horne R A.Marine chemistry,the structure of water and chemistry of hydrosphere[M].Wiley Interscience,1969.

    [2]Institute W H O.Marine fouling and its prevention[M].Woods Hole:George Banta Publishing Company,1952.

    [3]Sheng Zhenbang,Liu Yingzhong.Chuan bo yuan li[M].Shanghai:Shanghai Jiao Tong University Press,2004.(in Chinese)[4]Townsin R L.The ship hull fouling penalty[J].Biofouling,2003,19(suppl):9-16.

    [5]Schultz M P.Frictional resistance of antifouling coating systems[J].ASME Journal of Fluids Engineering,2004,126(6):1039-1048.

    [6]Schultz M P.Effects of coating roughness and biofouling on ship resistance and powering[J].Biofouling,2007,23(5):331-341.

    [7]Schultz M P,Bendickb J A,Holmb E R,et al.Economic impact of biofouling on a naval surface ship[J].Biofouling,2011,27(1):87-98.

    [8]Zhang Tao,Zhu Xiaojun,Peng Fei,et al.Prediction of the development of turbulent boundary layers on rough walls based on the integration method[J].Chinese Journal of Ship Research,2014,9(5):39-43.

    [9]Jimenéz J.Turbulent flows over rough walls[J].Annu.Rev.Fluid Mech.,2004,36:173-196.

    [10]Schultz M P.Comparison of three roughness function determination methods[J].Experiments in Fluids,2003,35(4):372-379.

    [11]Manual N S T.Waterborne underwater hull cleaning of navy ships[M].Washington:Naval Sea system Command,2006.

    [12]Schultz M P.Frictional resistance of antifouling coating systems[J].Journal of Fluids Engineering,2004,126:1039-1047.

    [13]Huang Zongguo.Marine fouling and its prevention[M].Beijing:Ocean Press,2011.(in Chinese)

    [14]Townsin R L,Spencer D S,Mosaad M.Rough propeller penalties[J].Trans SNAME93,1985,93:165-187.

    [15]Schultz M P,Flack K A.Turbulent boundary layers on a systematically varied rough wall[J].Physics of Fluids,2009,21(015104):1-9.

    [16]Schultz M P.Effects of coating roughness and biofouling on ship resistance and powering[J].Biofouling,2007,23(5):331-341.

    海洋污損對船體摩擦阻力影響的預(yù)測方法

    閔少松1,彭 飛1,王展智1,張 濤2

    (1.海軍工程大學(xué) 艦船工程系,武漢430033;2.中國人民解放軍91872部隊,北京102442)

    海洋污損對船體阻力具有嚴(yán)重的不利影響。文章將海洋污損歸類到船體粗糙度的范疇內(nèi),基于邊界層積分法研究了污損對船體摩擦阻力影響的預(yù)測方法。通過對光滑平板摩擦阻力系數(shù)的計算驗證了積分法的準(zhǔn)確性。然后采用積分法對美軍FFG-7艦在3種鈣質(zhì)污損狀況下的摩擦阻力系數(shù)進行了計算,計算結(jié)果與國外學(xué)者的研究結(jié)論吻合得較好,說明了積分法預(yù)測污損對船體摩擦阻力的影響具有可行性,且準(zhǔn)確性較高。最后將積分法在FFG-7艦的計算結(jié)果與19 57-ITTC公式及其粗糙度補貼系數(shù)ΔCf進行了對比,結(jié)果表明ITTC提出的ΔCf公式不適于表征污損對船體阻力的影響。

    海洋污損;摩擦阻力;船體粗糙度;邊界積分法

    U661.3

    A

    國家自然科學(xué)基金資助(51479207);海洋工程國家重點實驗室基金資助(1514)

    閔少松(1978-),男,博士,海軍工程大學(xué)艦船工程系講師;

    彭 飛(1975-),男,博士,海軍工程大學(xué)艦船工程系副教授;

    王展智(1986-),男,博士,海軍工程大學(xué)艦船工程系講師;

    張 濤(1987-),男,博士,中國人民解放軍91872部隊工程師。

    U661.3 Document code:A

    10.3969/j.issn.1007-7294.2017.12.002

    date:2017-09-03

    Supported by the National Natural Science Foundation of China(Grant No.51479207);the State Key Laboratory of Ocean Engineering(Grant No.1514)

    Biography:MIN Shao-song(1978-),male,Ph.D.,lecturer of Naval University of Engineering,

    E-mail:minshaosong@163.com;PENG Fei(1975-),male,Ph.D.,associate professor of

    Naval University of Engineering.

    1007-7294(2017)12-1460-08

    猜你喜歡
    工程系污損摩擦阻力
    基于視覺顯著度的污損圖像缺陷識別方法研究
    計算機仿真(2022年9期)2022-10-25 12:14:48
    空間機構(gòu)用推力滾針軸承摩擦阻力矩分析
    軸承(2022年6期)2022-06-22 08:54:52
    污損的成績單
    航空發(fā)動機起動過程摩擦阻力矩計算分析
    污損土地修復(fù)現(xiàn)狀與發(fā)展趨勢研究
    污損土地修復(fù)發(fā)展前景探究
    電子信息工程系
    超大型集裝箱船靠泊分析
    中國水運(2017年6期)2017-06-13 01:22:52
    機電工程系簡介
    穿行:服裝工程系畢業(yè)設(shè)計作品
    精品午夜福利视频在线观看一区 | 日韩欧美三级三区| 久久人妻av系列| 大陆偷拍与自拍| 午夜视频精品福利| 无限看片的www在线观看| 免费av中文字幕在线| 日本wwww免费看| 亚洲色图 男人天堂 中文字幕| 色94色欧美一区二区| 中文字幕人妻丝袜一区二区| 国产淫语在线视频| 国产真人三级小视频在线观看| 国产欧美日韩一区二区三区在线| 亚洲五月色婷婷综合| 国产欧美日韩综合在线一区二区| 在线看a的网站| 黄片小视频在线播放| 亚洲伊人色综图| 亚洲精品一卡2卡三卡4卡5卡| av又黄又爽大尺度在线免费看| 国产免费现黄频在线看| 免费在线观看视频国产中文字幕亚洲| av一本久久久久| 99热国产这里只有精品6| 男女下面插进去视频免费观看| av有码第一页| 日本五十路高清| 一区二区三区激情视频| 91精品国产国语对白视频| 国产亚洲午夜精品一区二区久久| 黄色片一级片一级黄色片| 免费人妻精品一区二区三区视频| 肉色欧美久久久久久久蜜桃| 人人妻人人爽人人添夜夜欢视频| videos熟女内射| 天堂俺去俺来也www色官网| 午夜91福利影院| 正在播放国产对白刺激| 色婷婷av一区二区三区视频| 最近最新中文字幕大全免费视频| 久久久久精品人妻al黑| 久久久国产欧美日韩av| 侵犯人妻中文字幕一二三四区| 国产成人av激情在线播放| 亚洲国产欧美在线一区| 久久午夜亚洲精品久久| 精品亚洲成a人片在线观看| 欧美精品啪啪一区二区三区| 国产av国产精品国产| 国产精品欧美亚洲77777| 最新在线观看一区二区三区| 成人手机av| 亚洲av第一区精品v没综合| www.999成人在线观看| 国产亚洲精品一区二区www | 国产三级黄色录像| kizo精华| 一区福利在线观看| 午夜福利视频在线观看免费| 蜜桃国产av成人99| 欧美日韩精品网址| 亚洲av片天天在线观看| 最近最新中文字幕大全电影3 | 在线观看66精品国产| 国产老妇伦熟女老妇高清| netflix在线观看网站| netflix在线观看网站| 精品久久久精品久久久| 天堂8中文在线网| 法律面前人人平等表现在哪些方面| 十分钟在线观看高清视频www| 三级毛片av免费| 日本一区二区免费在线视频| 久久久国产成人免费| 高清毛片免费观看视频网站 | 国产欧美日韩综合在线一区二区| 国产黄色免费在线视频| 亚洲av日韩在线播放| 俄罗斯特黄特色一大片| 成人亚洲精品一区在线观看| 亚洲精品粉嫩美女一区| 亚洲视频免费观看视频| 蜜桃在线观看..| 人妻一区二区av| 免费黄频网站在线观看国产| 美女午夜性视频免费| 久久狼人影院| h视频一区二区三区| 国产精品香港三级国产av潘金莲| 亚洲第一av免费看| 丁香欧美五月| h视频一区二区三区| 久久精品熟女亚洲av麻豆精品| 99re在线观看精品视频| 精品一品国产午夜福利视频| 国产一卡二卡三卡精品| 精品视频人人做人人爽| 日韩欧美一区视频在线观看| 精品视频人人做人人爽| 亚洲国产看品久久| 80岁老熟妇乱子伦牲交| 欧美日韩黄片免| 欧美国产精品va在线观看不卡| 国产日韩一区二区三区精品不卡| 久久久国产一区二区| 亚洲欧洲日产国产| 91麻豆av在线| av网站在线播放免费| 99久久精品国产亚洲精品| 国产黄频视频在线观看| 久久天躁狠狠躁夜夜2o2o| 久久精品国产亚洲av高清一级| 欧美激情极品国产一区二区三区| videosex国产| 亚洲,欧美精品.| 国产精品久久久av美女十八| 男女午夜视频在线观看| 国产深夜福利视频在线观看| 欧美+亚洲+日韩+国产| 涩涩av久久男人的天堂| 亚洲少妇的诱惑av| 黑人巨大精品欧美一区二区蜜桃| 国产精品久久久久久精品古装| 日韩制服丝袜自拍偷拍| 十八禁高潮呻吟视频| 涩涩av久久男人的天堂| 国产又色又爽无遮挡免费看| 久久婷婷成人综合色麻豆| 黄色 视频免费看| 久久人人97超碰香蕉20202| 乱人伦中国视频| 国内毛片毛片毛片毛片毛片| 另类亚洲欧美激情| 精品少妇黑人巨大在线播放| 亚洲中文av在线| 99国产精品一区二区蜜桃av | 人人妻,人人澡人人爽秒播| 美女视频免费永久观看网站| 少妇 在线观看| 一级a爱视频在线免费观看| 9191精品国产免费久久| 国产1区2区3区精品| 一边摸一边抽搐一进一出视频| 日本wwww免费看| 丝袜人妻中文字幕| 欧美日韩亚洲综合一区二区三区_| 热99久久久久精品小说推荐| 日韩欧美一区视频在线观看| 国产一区二区三区在线臀色熟女 | 两人在一起打扑克的视频| 亚洲avbb在线观看| 一级毛片精品| 国产精品熟女久久久久浪| 在线观看免费视频日本深夜| 久久亚洲精品不卡| 女性生殖器流出的白浆| 国产成人精品久久二区二区91| 国产精品美女特级片免费视频播放器 | 久久久精品94久久精品| 亚洲 欧美一区二区三区| 老司机深夜福利视频在线观看| 国产成人欧美| 亚洲美女黄片视频| 欧美午夜高清在线| 男女床上黄色一级片免费看| 性色av乱码一区二区三区2| 国产有黄有色有爽视频| 露出奶头的视频| 国产午夜精品久久久久久| 最近最新中文字幕大全免费视频| 精品久久久久久电影网| 一级毛片电影观看| 欧美乱码精品一区二区三区| 一边摸一边做爽爽视频免费| 免费黄频网站在线观看国产| 十八禁网站免费在线| 满18在线观看网站| 国产色视频综合| 日本wwww免费看| 中文字幕av电影在线播放| 国产无遮挡羞羞视频在线观看| 精品一品国产午夜福利视频| 国产精品九九99| 欧美在线一区亚洲| 午夜老司机福利片| 色尼玛亚洲综合影院| netflix在线观看网站| 激情在线观看视频在线高清 | 久久久久久免费高清国产稀缺| 狠狠精品人妻久久久久久综合| 国产高清激情床上av| 人成视频在线观看免费观看| 亚洲成a人片在线一区二区| 欧美精品av麻豆av| 下体分泌物呈黄色| 欧美黑人精品巨大| 久久精品国产亚洲av高清一级| 久久九九热精品免费| 精品国产一区二区久久| 欧美成人免费av一区二区三区 | 久久av网站| 叶爱在线成人免费视频播放| 国产色视频综合| 精品午夜福利视频在线观看一区 | 999精品在线视频| 免费少妇av软件| av有码第一页| 成年人黄色毛片网站| 精品一区二区三区四区五区乱码| 欧美国产精品一级二级三级| 精品国产国语对白av| 超碰97精品在线观看| 国产野战对白在线观看| 国产在线免费精品| 亚洲黑人精品在线| 午夜精品久久久久久毛片777| 91麻豆av在线| 日日夜夜操网爽| 国产精品1区2区在线观看. | 成年人午夜在线观看视频| 免费少妇av软件| 老鸭窝网址在线观看| 精品熟女少妇八av免费久了| 成人国语在线视频| 国产精品一区二区在线不卡| 亚洲av成人一区二区三| 国产日韩欧美视频二区| 在线观看人妻少妇| 99精品欧美一区二区三区四区| 俄罗斯特黄特色一大片| 国产成人影院久久av| 欧美日韩福利视频一区二区| 欧美日韩亚洲国产一区二区在线观看 | 男人舔女人的私密视频| 啦啦啦免费观看视频1| av有码第一页| 麻豆av在线久日| 菩萨蛮人人尽说江南好唐韦庄| 男女高潮啪啪啪动态图| 亚洲中文日韩欧美视频| 色老头精品视频在线观看| 欧美 日韩 精品 国产| 欧美在线黄色| 黄色视频不卡| 欧美在线一区亚洲| 黄色片一级片一级黄色片| svipshipincom国产片| 大片免费播放器 马上看| 女人爽到高潮嗷嗷叫在线视频| 亚洲中文字幕日韩| 欧美精品高潮呻吟av久久| 亚洲男人天堂网一区| 51午夜福利影视在线观看| www.精华液| 精品卡一卡二卡四卡免费| 成人特级黄色片久久久久久久 | 亚洲熟妇熟女久久| 国产精品久久久久久人妻精品电影 | 成年女人毛片免费观看观看9 | 久久久国产成人免费| 亚洲成a人片在线一区二区| 我的亚洲天堂| 黄色视频在线播放观看不卡| 亚洲全国av大片| 欧美午夜高清在线| 狠狠婷婷综合久久久久久88av| 两性夫妻黄色片| 少妇的丰满在线观看| 亚洲色图综合在线观看| 亚洲午夜精品一区,二区,三区| 美女视频免费永久观看网站| 一区福利在线观看| 色94色欧美一区二区| 中国美女看黄片| 一本色道久久久久久精品综合| 亚洲精品av麻豆狂野| 国产亚洲一区二区精品| 国产又色又爽无遮挡免费看| 一个人免费在线观看的高清视频| 国产精品成人在线| 狂野欧美激情性xxxx| 少妇猛男粗大的猛烈进出视频| 久久国产精品影院| 少妇精品久久久久久久| 19禁男女啪啪无遮挡网站| 叶爱在线成人免费视频播放| 一区二区三区精品91| 人妻久久中文字幕网| 亚洲精品久久午夜乱码| 国产老妇伦熟女老妇高清| 男人舔女人的私密视频| www.999成人在线观看| 电影成人av| 老司机深夜福利视频在线观看| 国产精品国产高清国产av | 老司机靠b影院| 欧美变态另类bdsm刘玥| 夜夜爽天天搞| 成人影院久久| 岛国在线观看网站| 久久人人97超碰香蕉20202| 热99久久久久精品小说推荐| 精品免费久久久久久久清纯 | 成人手机av| 国产精品欧美亚洲77777| 老司机深夜福利视频在线观看| 精品人妻1区二区| 国产欧美亚洲国产| 桃红色精品国产亚洲av| 国产激情久久老熟女| 我要看黄色一级片免费的| 蜜桃国产av成人99| 亚洲视频免费观看视频| 天天操日日干夜夜撸| 亚洲成a人片在线一区二区| 美女福利国产在线| 亚洲中文字幕日韩| 国产免费av片在线观看野外av| 欧美精品一区二区大全| 久久久久视频综合| 老司机深夜福利视频在线观看| 亚洲少妇的诱惑av| 国产免费现黄频在线看| 日本一区二区免费在线视频| 亚洲色图综合在线观看| 水蜜桃什么品种好| 国产又爽黄色视频| 18禁美女被吸乳视频| 亚洲国产av新网站| 精品高清国产在线一区| 亚洲伊人色综图| 国产午夜精品久久久久久| 后天国语完整版免费观看| 丰满迷人的少妇在线观看| 成年人午夜在线观看视频| 亚洲美女黄片视频| 成人亚洲精品一区在线观看| 国产成人av教育| 亚洲中文日韩欧美视频| 飞空精品影院首页| 亚洲av美国av| 嫁个100分男人电影在线观看| 中文字幕最新亚洲高清| 久久精品国产综合久久久| 国产高清视频在线播放一区| 日韩欧美一区二区三区在线观看 | 狠狠精品人妻久久久久久综合| 日韩欧美三级三区| 在线观看免费日韩欧美大片| svipshipincom国产片| 在线十欧美十亚洲十日本专区| 日韩视频在线欧美| 中文字幕人妻丝袜制服| 老司机午夜十八禁免费视频| 黄色a级毛片大全视频| 国产无遮挡羞羞视频在线观看| 蜜桃在线观看..| 国产男女超爽视频在线观看| 黑丝袜美女国产一区| 国产伦人伦偷精品视频| 欧美精品一区二区免费开放| 最新美女视频免费是黄的| 超碰成人久久| 亚洲精品在线观看二区| 国产亚洲欧美在线一区二区| tocl精华| 久久99热这里只频精品6学生| 国产精品亚洲一级av第二区| h视频一区二区三区| 少妇裸体淫交视频免费看高清 | 免费在线观看完整版高清| 纵有疾风起免费观看全集完整版| 国产精品亚洲av一区麻豆| 91九色精品人成在线观看| av天堂在线播放| 国产一区二区三区在线臀色熟女 | 九色亚洲精品在线播放| 纯流量卡能插随身wifi吗| 日本a在线网址| 久久ye,这里只有精品| 国产野战对白在线观看| 欧美精品人与动牲交sv欧美| 亚洲综合色网址| 亚洲 欧美一区二区三区| 国产日韩欧美视频二区| 精品人妻在线不人妻| 夜夜爽天天搞| 国产人伦9x9x在线观看| 午夜免费成人在线视频| 最近最新免费中文字幕在线| 国产成人av激情在线播放| av线在线观看网站| 一级片免费观看大全| 精品少妇久久久久久888优播| 男人舔女人的私密视频| 亚洲精品一二三| 一区二区三区精品91| 免费在线观看日本一区| 好男人电影高清在线观看| www.999成人在线观看| 男女边摸边吃奶| 99香蕉大伊视频| 99精品在免费线老司机午夜| 十八禁高潮呻吟视频| 亚洲精华国产精华精| 精品国产乱子伦一区二区三区| 亚洲 国产 在线| 国产精品av久久久久免费| 久久午夜综合久久蜜桃| 日韩一区二区三区影片| 午夜福利免费观看在线| 成人国语在线视频| 亚洲五月色婷婷综合| 久热爱精品视频在线9| 国产精品久久久人人做人人爽| 日本一区二区免费在线视频| 岛国在线观看网站| 亚洲av电影在线进入| 熟女少妇亚洲综合色aaa.| 侵犯人妻中文字幕一二三四区| 午夜福利免费观看在线| 女人精品久久久久毛片| 国产亚洲av高清不卡| 亚洲中文av在线| 色综合欧美亚洲国产小说| 老熟妇乱子伦视频在线观看| 国产精品麻豆人妻色哟哟久久| 亚洲久久久国产精品| 欧美乱妇无乱码| 女人爽到高潮嗷嗷叫在线视频| 久久亚洲精品不卡| 国产成人影院久久av| 精品高清国产在线一区| 在线永久观看黄色视频| 如日韩欧美国产精品一区二区三区| 日日爽夜夜爽网站| 精品一区二区三卡| 欧美一级毛片孕妇| 妹子高潮喷水视频| 国产精品av久久久久免费| 人人妻人人添人人爽欧美一区卜| 婷婷成人精品国产| 亚洲色图 男人天堂 中文字幕| 久久久精品94久久精品| 欧美性长视频在线观看| 亚洲av成人不卡在线观看播放网| 国产一区二区三区综合在线观看| 一级,二级,三级黄色视频| 午夜成年电影在线免费观看| 国产精品一区二区精品视频观看| avwww免费| 久久免费观看电影| 国产精品欧美亚洲77777| a级毛片黄视频| 久久久国产欧美日韩av| 欧美日韩亚洲综合一区二区三区_| 色婷婷av一区二区三区视频| 国产成人免费无遮挡视频| 中文亚洲av片在线观看爽 | 亚洲自偷自拍图片 自拍| 99久久人妻综合| 欧美激情高清一区二区三区| 国产成人免费观看mmmm| 亚洲专区字幕在线| 日韩成人在线观看一区二区三区| 黄频高清免费视频| 亚洲精品乱久久久久久| 国产精品98久久久久久宅男小说| 久久国产精品男人的天堂亚洲| 一级,二级,三级黄色视频| 国产高清国产精品国产三级| 少妇粗大呻吟视频| 老司机影院毛片| 黄色片一级片一级黄色片| 夜夜骑夜夜射夜夜干| 国产精品久久久人人做人人爽| 国产欧美日韩综合在线一区二区| 动漫黄色视频在线观看| 久久精品91无色码中文字幕| 久久精品国产综合久久久| 日韩三级视频一区二区三区| 国产高清videossex| 成年动漫av网址| 老司机福利观看| 日本黄色视频三级网站网址 | 欧美亚洲 丝袜 人妻 在线| 成人永久免费在线观看视频 | 大片免费播放器 马上看| 国产在线视频一区二区| 久久久精品94久久精品| 天天躁狠狠躁夜夜躁狠狠躁| 如日韩欧美国产精品一区二区三区| 美女国产高潮福利片在线看| 国产精品自产拍在线观看55亚洲 | 亚洲 欧美一区二区三区| 久久久水蜜桃国产精品网| 多毛熟女@视频| 免费黄频网站在线观看国产| 美女主播在线视频| 老司机在亚洲福利影院| 久久久国产精品麻豆| 国产aⅴ精品一区二区三区波| 亚洲国产看品久久| 最新在线观看一区二区三区| 狠狠精品人妻久久久久久综合| 久久九九热精品免费| 欧美日韩av久久| 亚洲欧美一区二区三区黑人| 欧美日韩国产mv在线观看视频| 天堂动漫精品| 国产成人啪精品午夜网站| 久久久国产欧美日韩av| 人人妻人人澡人人看| 热re99久久精品国产66热6| 亚洲av欧美aⅴ国产| 在线观看舔阴道视频| 亚洲精品美女久久av网站| 最新美女视频免费是黄的| 男女无遮挡免费网站观看| 亚洲国产av影院在线观看| 亚洲国产欧美日韩在线播放| 免费人妻精品一区二区三区视频| 一边摸一边抽搐一进一出视频| 亚洲性夜色夜夜综合| 久久国产亚洲av麻豆专区| 国产欧美亚洲国产| 黄色怎么调成土黄色| 亚洲av美国av| 国产片内射在线| 国产淫语在线视频| 成年女人毛片免费观看观看9 | av国产精品久久久久影院| 欧美老熟妇乱子伦牲交| 高清在线国产一区| avwww免费| 婷婷丁香在线五月| 久久久国产欧美日韩av| 啦啦啦在线免费观看视频4| 国产91精品成人一区二区三区 | 极品少妇高潮喷水抽搐| 国产国语露脸激情在线看| 成人av一区二区三区在线看| 欧美精品一区二区免费开放| 亚洲三区欧美一区| 亚洲精华国产精华精| 一边摸一边做爽爽视频免费| 日本av免费视频播放| 亚洲精品在线美女| 国产熟女午夜一区二区三区| 久久久久久久大尺度免费视频| 亚洲av第一区精品v没综合| 超碰成人久久| 18禁美女被吸乳视频| 中文字幕精品免费在线观看视频| 久久国产精品大桥未久av| 中文字幕高清在线视频| 亚洲精品国产精品久久久不卡| 看免费av毛片| 久久久水蜜桃国产精品网| 亚洲精品久久午夜乱码| 亚洲男人天堂网一区| 制服人妻中文乱码| 国产欧美日韩一区二区三| 久久久精品94久久精品| 久久精品aⅴ一区二区三区四区| 亚洲avbb在线观看| 久久精品熟女亚洲av麻豆精品| 自拍欧美九色日韩亚洲蝌蚪91| 涩涩av久久男人的天堂| 国产区一区二久久| 天天躁狠狠躁夜夜躁狠狠躁| 最新在线观看一区二区三区| 午夜免费成人在线视频| 色婷婷av一区二区三区视频| 日本五十路高清| 日韩大片免费观看网站| tube8黄色片| 精品久久蜜臀av无| 日本欧美视频一区| 中文字幕色久视频| 天天影视国产精品| 午夜久久久在线观看| kizo精华| 亚洲色图综合在线观看| 欧美日本中文国产一区发布| 黄色毛片三级朝国网站| 午夜福利免费观看在线| 一本大道久久a久久精品| av网站免费在线观看视频| 777久久人妻少妇嫩草av网站| 亚洲人成电影观看| 国产视频一区二区在线看| 蜜桃在线观看..| 久久99热这里只频精品6学生| 99国产综合亚洲精品| 女性被躁到高潮视频| 久久久久国内视频| 久久婷婷成人综合色麻豆| 18禁黄网站禁片午夜丰满| 国产亚洲精品第一综合不卡| 国产精品久久电影中文字幕 | 色老头精品视频在线观看| 69av精品久久久久久 | 大型av网站在线播放| 久久国产精品影院| 如日韩欧美国产精品一区二区三区| 日韩免费av在线播放| 欧美日韩福利视频一区二区| 精品亚洲成a人片在线观看| 十分钟在线观看高清视频www| 精品一区二区三卡| 国产精品 欧美亚洲| kizo精华| 国产99久久九九免费精品|