• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    SnS2/GCP(石墨烯復(fù)合粉末)微米復(fù)合材料作為鋰離子電池負(fù)極材料的電化學(xué)性能

    2018-01-04 21:18:56崔永福崔金龍文鐘晟孫俊才
    無機化學(xué)學(xué)報 2018年1期
    關(guān)鍵詞:負(fù)極鋰離子粉末

    林 健 崔永福 崔金龍 文鐘晟 孫俊才

    (大連海事大學(xué),大連 116026)

    SnS2/GCP(石墨烯復(fù)合粉末)微米復(fù)合材料作為鋰離子電池負(fù)極材料的電化學(xué)性能

    林 健 崔永福 崔金龍*文鐘晟 孫俊才*

    (大連海事大學(xué),大連 116026)

    以石墨烯復(fù)合粉末為添加劑,采用一步水熱法制備了一種SnS2/GCP微米復(fù)合材料。在所得到的復(fù)合材料中,SnS2納米片相互纏繞組成多孔球狀SnS2顆粒,石墨烯復(fù)合粉末均勻的包裹在球狀SnS2顆粒表面。將所制備的SnS2/GCP微米復(fù)合材料用作鋰離子電池負(fù)極材料測其電化學(xué)性能。結(jié)果顯示,在0.1 A·g-1的電流密度下可逆比容量為795.6 mAh·g-1,循環(huán)100次后比容量損失不到1%。相比于SnS2其比容量和循環(huán)穩(wěn)定性得到了明顯改善,主要是由于石墨烯復(fù)合粉末的加入,不僅緩解了SnS2顆粒在充放電過程中的團聚和體積膨脹,而且還提高了SnS2顆粒的電導(dǎo)率。

    鋰離子電池;二硫化錫;負(fù)極材料;石墨烯復(fù)合粉末

    0 Introduction

    Lithium-ion batteries (LIBs)have been widely utilized in portable electronic devices,electric vehicles and plug-in hybrid electric vehicles owing to their high energy density,light weight and remarkable cycling performance[1-2].For anode materials,current commercial graphite anodes for LIBs have atheoretical capacity of 372 mAh·g-1,which cannot meet the increasing requirement for LIBs with better electrochemical properties[3-4]. Therefore,significant efforts have been devoted to explore advanced anode materials with higher capacity,super cycle stability and better rate capability,as well as lower cost[5].Among variousanode materials,tin-based anode materials have aroused widespread concern because of their high theoretical reversible capacity (987 mAh·g-1)[4-6].Among Sn-based materials,Sn metal and SnO2have been extensively studied[7-10].In addition,transition metal sulfides,such ashave been broadly investigated as promising anode materials for LIBs,owing to their high specific capacity,safety,low cost and effortless synthesis[11-14].SnS2has a typicallayered CdI2-type crystalline structure in which Sn atoms are sandwiched between two layers of hexagonally compactly arranged S atoms,and the adjacent S layers are connected with weak van der Waals forces[15].This specialized crystalline structure is conducive to intercalation of lithium-ions(Li-ions)and hence many researchers have made great efforts to synthesize SnS2with different structures as alternative anode materials[16-17].

    Nevertheless,the practical usage of stannum sulfide for LIBs is severely hampered by remarkable volume change that occurs during Li-ions insertion and extraction reactions.It usually causes the aggregation and pulverization of active material particles with fast capacity fading[18].Consequently,various efforts have been devoted to solving this problem by using SnS2nanostructured particles,such as nanoplates[19-20]and nanosheets[21],hollow spheres[22],and hierarchical structures[17],as well as 3D-hierarchical structures[15-16].These structures could reduce absolute local volume changes and shorten charge transfer pathway,both of which can undoubtedly contribute to improving electrochemical Li-ions storage performance of SnS2electrodes[23].Another specifically effective approachis to fabricate composites of metal sulfides with carbonaceous materials,such as C[24-25],graphene[26-30]or carbon nanotube[31],which not only improves the conductivity,but also buffers the mechanical stress induced by volume change[32].Among these carbonaceous materials,graphene has become the spotlight in LIBs because it owns several desirable features,including superior electrical conductivity,excellent mechanical flexibility,large surface area,and high thermal and chemical stability[33-34].Forming a composite with graphene has been proven to be a useful strategy to improve the cycling stability of SnS2electrodes[26-30].The flexible graphene nanosheets act not only as a buffer to accommodate the volume changes during conversion reactions,but also as a separator to prevent the particles from aggregating upon long life cycling[35].Even so,the high price of graphene increases the production cost of SnS2/Graphene electrodes[36].

    Table1 Characteristics of graphene composite powder(GCP)

    In order to reduce the production cost of SnS2/graphene electrodes,graphene composite powder(GCP)was chosen to substitute graphene as an additive in the SnS2synthesis process.GCP is mainly composed of graphene (46.5%,weight percent)and conductive carbon black (46.5%)(Table 1),so it is much cheaper than graphene.In this work,SnS2/GCP microcomposites were synthesized via a facile one-pot hydrothermal approach using stannic chloride(SnCl4·5H2O)and thiourea (CH4N2S)as starting materials in the presence of GCP.The resulting SnS2/GCP microcomposites were composed of SnS2particles intertwined with the interconnected GCP and GCP was uniformly coated on the surfaces of SnS2particles.This unique morphology gave rise to the synergistic effect between SnS2and GCP,which was contributed to an improved specific capacity,high rate capability,as well as outstanding cycle stability up to 400 cycles.

    1 Experimental

    1.1 Materials

    All reagents used in the synthetic process were analytical grade without further purification.Graphene composite powder (GCP) (GC1-Powder 4lib)was supplied by Ningbo Mexi Technology Co.Ltd.The characteristics of GCP are listed in Table 1.Distilled water was employed in all synthesis process.

    1.2 Preparation of SnS2/GCP

    For preparation of SnS2/GCP microcomposite,0.3 g GCP was dispersed in 40 mL deionized water with ultrasonic to form a homogeneous GCP dispersion.3.5 g SnCl4·5H2O and 2.25 g CH4N2S were dissolved into 20 mL deionized water with ultrasonic to obtain 0.5 mol·L-1SnCl4and 1.5 mol·L-1CH4N2S solution,respectively.Then,these two solutions were added dropwise to the above GCP dispersion with buret under continuously stirring orderly.After vigorously stirring for another 0.5 h,the mixed dispersion was transferred to a 150 mL Teflon-lined stainless steel autoclave and heated in an electric oven at 200℃for 24 h.Finally,the autoclave was allowed to cool down to room temperature naturally.The resulting precipitate was collected by vacuum filtration and washed several times with deionized water and ethanol,and finally dried at 80℃in vacuum overnight.As a comparative experiment,SnS2wasprepared underthe same condition without adding GCP.

    1.3 Characterizations

    The X-ray diffraction(XRD)(RigakuD/MAX-3A,Rigaku Corporation,Japan)patterns of pure SnS2,GCP and SnS2/GCP microcomposite were obtained using a Co Kα radiation(λ=0.154 06 nm)at operating voltage of 40 kV and a filament current of 40 mA.The diffraction angle was scanned from 10°to 90°with a rate of 4°·min-1.Raman spectra of them were obtained via a T64000 triple Raman system(HORIBA Jobin Yvon,France)with a 532 nm Ar-ion laser.The morphology of pure SnS2and SnS2/GCP microcomposite was observed using a field emission scanning electron microscope(FE-SEM)(SUPRA 55 SAPPHIRE,CARL ZEISS,Germany)and the elements distribution of SnS2/GCP microcomposite was measured via an energy-dispersive X-ray analysis spectrometer(EDS)(X-Max,OXFORD,UK)adjunctto the SEM.Further morphological and structural investigations of SnS2/GCP microcomposite were identified by highresolution transmission electron microscopy(HRTEM)and selected area electron diffraction (SAED)on a JEOL JEM-2100 microscope system operated at 200 kV.The thermogravimetric measurement (TG)was carried out with a Mettler STARe thermal analyzer in a temperature range of 25~900 ℃ under an air atmosphere at a heating rate of 10℃·min-1.

    1.4 Electrochemical measurements

    The electrochemical properties of the products were tested using CR2025-type coin cells.The working electrodes were prepared by mixing active materials, polyvinylidene fluoride (PVDF) and acetylene black at a mass ratio of 80 ∶10 ∶10 in NMP solvent to form a slurry.The obtained slurry was uniformly pasted on a thin copper foil and then dried at 80℃undervacuumovernight.Mass loading of active material on the collector is 1.8~2.3 mg·cm-2.The electrodes were then assembled into half cells in an Ar-filled glove box using Li foil as a counter electrode,polypropylene microporous sheet(Celgard 2400)as a separator and Ni foam as a filler.1 mol·L-1LiPF6/EC+DMC (1∶1 in volume)solution was applied as the electrolyte. Galvonostatic charge/discharge was measured on a LAND-2100 (Wuhan,China)battery tester in the voltage window of 0.01~3.0 V versus Li/Li+.Cyclic voltammetry (CV)was performed on a CHI660D electrochemical station(CHI Instrument)at a scan rate 0.05 mV·s-1with a voltage range of 0.01~3.0 V.Electrochemical impedance spectroscopy(EIS)measurements were carried out using the CHI660D electrochemical station in a frequency range from 100 kHz to 0.01 Hz at open circuit potential with an amplitude of 10 mV.

    2 Results and discussion

    2.1 Physicochemical properties

    The XRD patterns of GCP,SnS2and SnS2/GCP microcomposite are shown in Fig.1a.For pure SnS2,the sharp diffraction peaks at about 17.47°,32.865°,37.483°,49.048°,58.733°,and 61.749°can be indexed to(001),(100),(101),(102),(110)and(111)planes of orthorhombic phase (PDF,No.23-0677)[28].Theobtained SnS2/GCP microcompositeshowsa similar XRD pattern to pure SnS2,suggesting that the introduction of GCP does not influence the fabrication of SnS2.The only peak for GCP at about 30.732°is observed,which corresponds to the(002)reflection of graphene and obvious peak related to GCP in the SnS2/GCP microcomposite is also observed.In addition,the intensity of the diffraction peak for GCP is weaker,which confirms the higher content of SnS2in thehybrid structure(Fig.1a).As shown in Fig.1b,Raman spectrum of pure SnS2exhibits an peak at about 311 cm-1,which is attributed to the A1gmode according to the group theory analysis conducted by previous studies[25,37].Moreover,a wide peak between 450 and 650 cm-1could also be observed in pure SnS2,which may be attributed to second-order effects[37-38].In the Raman spectrum of GCP,the peak at about 1 586 cm-1(G band),corresponding to an E2gmode of graphitic sheets,is related to the vibration of the sp2-bonded carbon atoms in a two dimensional hexagonal lattice[39].While,the peak at about 1 327 cm-1(D band)can be assigned to the scattering of the A1gmode associated with sp3-bonded disorder carbon,which is related to the defects or disorder in the hexagonal graphitic layers and the existence of disorder conductive carbon black[40].Furthermore,there is another intense peak at about 2 700 cm-1generally named 2D in the Raman spectrum of GCP,which is the second order of zoneboundary phonons[41].All the peaks of both pure SnS2andGCP could be observed in the Raman spectrum of SnS2/GCP microcomposite, confirming that this microcomposite is constituted of SnS2and GCP(Fig.1b).Besides,the intensity ratio of the D band to the G band (ID/IG)for GCP is much smaller than that of SnS2/GCP microcomposite,which can be attributed to the widely separated graphene layers promoted by the intercalation of SnS2nanosheets[42].

    Fig.1 (a)XRD patterns and(b)Raman spectra of GCP,SnS2and SnS2/GCP microcomposite

    Fig.2 TG curve of SnS2/GCP microcomposite

    To further determine the SnS2content in SnS2/GCP microcomposite,the SnS2/GCP microcompo-site was characterized by thermogravimetric analysis(TG)as shown in Fig.2.Two stages of weight loss are seen in the TG curve of SnS2/GCP sample.At first,an apparent weight loss of about 21.5%in the tempera-ture range of 40~500 ℃ is observed,which may be due to the phase conversion from SnS2to.The second weight loss is about 14.5%in the temperature range of 500~900 ℃,which can be attributed to the combustion of GCP.In other words,the weight fraction ofGCP in SnS2/GCP microcompositeis calculated to be 14.5%.After attaining 900℃,the content of remaining SnS2is about 64%in the mixture material.

    Fig.3 FE-SEM images of(a)SnS2/GCP microcomposite and SnS2(inset);(b)EDS mappings of C,S and Sn elements of SnS2/GCP microcomposite;(c)TEM image and SAED patterns(inset)and(d)HRTEM image of SnS2/GCP microcomposite

    2.2 Morphology and structure characterization

    As shown in Fig.3a,the SnS2/GCP microcomposites are constituted of SnS2particles with sphere-like morphology homogeneously coated by the interconnected GCP.GCP coatings act as flexible and conductive matrix to supportthe SnS2particles,forming three dimensional conductivity network for transportation of Li-ions and alleviates the volume change of SnS2particles[43].Furthermore,the spherelike SnS2particle is made of several intertwining SnS2nanosheets accompanied by the formation of many pores on the surface of it(the inset in Fig.3a).Such a porous structure could provide the efficient transport pathways to their interior voids,which could reduce Li-ions diffusion path length and lighten the volume change and mechanical strains[44].Furthermore,this porous structure of SnS2particles could also increase the electrode-electrolyte interfacial area,facilitating electrochemical reactions and supplying more available Li-ions storage sites[45].Thereupon,these structure characterizations would assure the excellent electrochemical performance of the SnS2/GCP electrode[46-47].EDS mapping images from SEM show that C,S and Sn elements have a relatively uniform distribution,manifesting the good contact between SnS2particles and GCP coatings(Fig.3b).It is contributed to not only improving electrical conductivity of the SnS2particles,but also effectually preventing the aggregation of them during Li-ions insertion and extraction[3,47].The TEM image of SnS2/GCP microcomposite demonstrates once again that the SnS2particles are coated by the interconnected GCP(Fig.3c).The SAED patterns of SnS2/GCP microcomposite(the inset in Fig.3c)show that the diffraction spots of it could be placed in five concentric rings.The lattice plane spaces calculated from these rings are in line with SnS2(101),(102),(110)and(004),as well as GCP(002)[48].As shown in Fig.3d,the measured dspacing values of this composite are approximately 0.278 nm,0.215 nm,0.182 nm and 0.335 nm,which could be associated with the crystalline planes of SnS2(101),(102),(110)and GCP(002),respectively.These results are completely in conformity with the XRD analyses.

    Fig.4 Cyclic voltammograms of(a)SnS2and(b)SnS2/GCP electrodes at a rate of 0.05 mV·s-1in a potential range of 0.01 to 3.0 V

    2.3 Electrochemical performance

    Cycle voltammetry curves of SnS2and SnS2/GCP electrode were measured between 0.01 and 3.0 V at a scan rate 0.05 mV·s-1,as shown in Fig.4a and b,respectively.For SnS2,the broad peaks at about 1.15 and 0.8 V during the first cathodic scan could be assigned to the conversion of SnS2to Sn(SnS2+4Li++4e-→Sn+2Li2S)[27],and the formation of solid electrolyte interface (SEI),respectively,which should be responsible for the first irreversible capacity loss(Fig.4a).Otherwise,the peak below 0.5 V can be totally due to the formation of LixSn alloy (Sn+xLi++xe-?LixSn(1≤x≤4.4))[28].The anodic peak at about 0.7 V could be attributed to the delithiation reaction of LixSn alloy[32].As for the CV curves of SnS2/GCP electrode,the cathodic peak becomes weak and shifts from 1.2 to 1.6 V during the second cycle,which can be attributed to the weak conversion reaction of SnS2caused by the recomination of Sn4+and S2-with Li during the first cycle[26].In addition,the cathodic peak at 0.01~0.5 V could be assigned to the formation of LixSn alloys and the Li-ions insertion into graphene nanosheets[26].The anodic peaks at about 1.8 and 2.15 V might be originated from the oxygenation of generated Sn at higher potential in the charged stage[28].The additional anodic peaks at 0.01~0.25 V would be attributed to the Li-ions extraction from graphene nanosheets[30].By contrast,the cycling stability of the SnS2electrode could be well improved after the addition of GCP.

    As shown in Fig.5a,the first discharge and charge capacity of SnS2/GCP microcomposite are 1 834.7 and 874.6 mAh·g-1,so the calculated coulombic efficiency is about 47.6%.This high irreversible capacity could mainly originate from the incomplete conversion reaction[27]and the formation of SEI layer on the electrode surface[49].It is clear that all the charge/discharge plateaus are consistent with the peaks in CV curves.In addition,the curves of the 10th and 50th cycles nearly overlap,confirming that this SnS2/GCP electrode has excellent cycling stability(Fig.5a).In order to evaluate the effect of GCP on the electrochemical properties of SnS2/GCP microcomposite,the discharge specific capacities of SnS2/GCP,SnS2and GCP at a current density of 0.1 A·g-1are displayed in Fig.5b. Obviously, the SnS2/GCP electrode shows an improved cycling stability compared with SnS2electrode.After 5 cycles,a capacity of over 795 mAh·g-1can be maintained till 100 cycles for SnS2/GCP electrode.In contrary,the capacity of SnS2electrode sharply decays from an initial capacity of 1 507.3 to 232.2 mAh·g-1after 70 cycles.Poor cycling stability for SnS2electrode was also observed in the previous report[28].In the SnS2/GCP microcomposite,GCP coatings act as conductive and flexible matrix to support the SnS2particles,forming three dimensional conductivity network for transportation of Li-ions and alleviates the volume change of SnS2particles.Thereby,SnS2/GCP electrode exhibits an improved capacity and superb cycling stability compared with pure SnS2.Although GCP has an excellent cycling stability,its specific capacity is too low to be used as commercial electrode material(332.4 mAh·g-1).In addition to the high reversible capacity and remarkable cycle stability,the SnS2/GCP microcomposite also demonstrates an excellent rate capability (Fig.5c).The charge/discharge rates are programmably modified from 0.1 to 0.2,0.4,0.8,1.0 A·g-1and then back to 0.1 A·g-1for 15 cycles.It can be observed that the discharge capacities varies from 857 to 813,704,615,578,550 mAh·g-1and finally reversibly back to 825 mAh·g-1at current rates of 0.1,0.2,0.4,0.8,1.0 A·g-1and 0.1 A·g-1,respectively.It is noted that the SnS2/GCP electrode can still deliver a capacity of 550 mAh·g-1even at the high current rate of 1.0 A·g-1,which is still higher than the theoretical capacity of traditional graphite.

    Fig.5 (a)Galvanostatic discharge/charge curves of SnS2/GCP electrode for the 1st,10th,and 50th cycles at 0.1 A·g-1;(b)Discharge specific capacity of SnS2/GCP,SnS2and GCP electrodes at 0.1 A·g-1;(c)Rate capability of SnS2/GCP electrode at 0.1,0.2,0.4,0.8 and 1.0 A·g-1;(d)Cycling performance of SnS2/GCP electrode at 0.5 A·g-1

    The cyclic performance of SnS2/GCP electrode was tested at 0.5 A·g-1with voltage range of 0.01~3.0 V,and the result is plotted in Fig.5d.Although the cyclic performance curve is slightly fluctuating,the SnS2/GCP electrode exhibits high reversible capacity,approximately 642.8 A·g-1,which is much higher than SnS2/graphene aerogels (300 mAh·g-1at 0.5 A·g-1)[27]and SnS2/MWCNTs (multiwalled carbon nanotubes)hybrid(510 mAh·g-1at 0.1 A·g-1)[31].Table 2 lists the comparison of specific capacities of SnS2composite synthesized using carbonaceous materials as additive.Notwithstanding the specific capacity of SnS2/GCP microcomposite is not the highest,the lower cost and less usage of GCP would make it widely available for commercial production.Meanwhile,the coulombic efficiency is very close to 100%all over the 400 cycles after the first cycle.The distinct behavior of SnS2/GCP and pure SnS2indicates that the addition of GCP can not only prominently enhance the specific capacities of this microcomposite,but also effectively improve its cycling stabilities.

    Table2 Comparison of specific capacities of SnS2composites

    Fig.6 Nyquist plots of SnS2and SnS2/GCP electrodes after 100th cycle

    Such outstanding electrochemical properties of this resulting SnS2/GCP microcomposite could be explained by multiple factors:(1)Although the capacity of GCP itself is not very high,the conductive GCP can provide many pathways for electrons and Li-ions and improve the whole conductivity of the composite electrode.(2)C,S and Sn elements have a relatively uniform distribution,which could effectually prevent the aggregation ofSnS2particlesduring Li-ions insertion and extraction.(3)The porous structure and GCP coatings of SnS2/GCP particles could facilitate electrochemical reactions,supply more available Liions storage sites and lighten the volume change and mechanical strains. These characteristics could guarantee high reversible capacity and superb cyclic stability of the resulting SnS2/GCP microcomposite.

    To explain the different electrochemical behaviorsbetween SnS2/GCP microcomposite and SnS2,EIS were measured after cycling for 100 cycles as shown in Fig.6.For both electrodes,the Nyquist plots are consisted of a depressed semicircle in the high-to-middle frequency region and a slopping line in the low frequency region[50].These plots are fitted by an equivalent circuit given in the inset of Fig.6.The semicircle in the high frequency region corresponds to the charge transfer resistance (Rct)of the anode and the straight line in the low-frequency domain corresponds to the Li-diffusion process within electrodes.In addition,the intersections of the semicircle with the real axis at high frequency region (denoted as Re)are attributed to the internal resistance,associating with electronic resistance of the anode and the ionic resistance of the liquid electrolyte[3,51].According the fitting results,the values of Reand Rctof SnS2/GCP electrode after 100 cycles are 35.02 and 30.85 Ω,respectively,which are lower than those of SnS2electrode(71.24 and 76.03 Ω).These results indicate that the addition of GCP can significantly increase the electronic conductivity of composite electrode and enhance rapid electron transport during the Li-ions insertion/extraction process,so the electrochemical performance of SnS2could be effectively improved[52].

    3 Conclusions

    Through the hydrothermal method,the SnS2/GCP microcompositeswhich could beused asanode materials for lithium-ion batteries were effectively prepared.The resulting SnS2/GCP microcomposites showed an impressive electrochemical performance with a specific capacity of about 642.8 mAh·g-1and excellent cyclic stability without any degradation after 400 charge/discharge cycles at 0.5 A·g-1in the voltage window of 0.01~3.0 V.The addition of GCP was very helpful to provide good electronic conductivity and lighten the volume change of SnS2particles.

    [1]Armand M,Tarascon J M.Nature,2008,451:652-657

    [2]JI Wen-Xu(紀(jì)文旭),WU Di(吳迪),YANG Rong(楊蓉),et al.Chinese J.Inorg.Chem.(無機化學(xué)學(xué)報),2015,31(4):659-665

    [3]Cui J L,Cui Y F,Li S H,et al.ACS Appl.Mater.Interfaces,2016,8:30239-30247

    [4]PENG Peng(彭鵬),WEN Zhao-Yin(溫兆銀),LIU Yu(劉宇),et al.Chinese J.Inorg.Chem.(無機化學(xué)學(xué)報),2014,30(6):1293-1298

    [5]Alias N,Mohamad A A.J.Power Sources,2015,274:237-251

    [6]Du Z J,Zhang S C,Xing Y L,et al.J.Power Sources,2011,196:9780-9785

    [7]Cheng Y Y,Huang J F,Li J Y,et al.J.Power Sources,2016,324:447-454

    [8]Liu R P,Su W M,He P,et al.J.Alloys Compd.,2016,688:908-913

    [9]Guo C,Yang Q Q,Liang J W,et al.Mater.Lett.,2016,184:332-335

    [10]Wang F,Jiao H X,He E K,et al.J.Power Sources,2016,326:78-83

    [11]Shu H B,Li F,Hu C L,et al.Nanoscale,2016,8:2918-2926

    [12]Wang Q H,Jiao L F,Han Y,et al.J.Phys.Chem.C,2011,115:8300-8304

    [13]Han Y,Wang Y P,Gao W H,et al.Powder Technol.,2011,212:64-68

    [14]Chen Q N,Chen W X,Ye J B,et al.J.Power Sources,2015,294:51-58

    [15]Guan D S,Li J Y,Gao X F,et al.J.Alloys Compd.,2016,658:190-197

    [16]Zai J T,Wang K X,Su Y Z,et al.J.Power Sources,2011,196:3650-3654

    [17]Zhu W B,Yang Y W,Ma D M,et al.Ionics,2015,21:19-26

    [18]Duan B C,Wang W K,Zhao H L,et al.Rare Metal Mater.Eng.,2012,41(3):93-100

    [19]Wang L Y,Zhuo L H,Yu Y C,et al.Electrochim.Acta,2013,112:439-447

    [20]Seo J W,Jang J T,Park S W,et al.Adv.Mater.,2008,20:4269-4273

    [21]Kim T J,Kim C,Son D,et al.J.Power Sources,2007,167:529-535

    [22]Xia J,Li G C,Mao Y C,et al.CrystEngComm,2012,14:4279-4283

    [23]Ara M,Wadumesthrige K,Meng T J,et al.RSC Adv.,2014,4:20540-20547

    [24]Du Y P,Yin Z Y,Rui X H,et al.Nanoscale,2012,5:1456-1459

    [25]Kim H S,Chung Y H,Kang S H,et al.Electrochim.Acta,2009,54:3606-3610

    [26]Zhang Q Q,Li R,Zhang M M,et al.Electrochim.Acta,2014,115:425-433

    [27]Jiang X,Yang X L,Zhu Y H,et al.J.Power Sources,2013,237:178-186

    [28]Tang H L,Qi X,Han W J,et al.Appl.Surf.Sci.,2015,355:7-13

    [29]Chang K,Wang Z,Huang G C,et al.J.Power Sources,2012,201:259-266

    [30]Ren Y D,Lv W M,Wen F S,et al.Mater.Lett.,2016,174:24-27

    [31]Sun H Y,Ahmad M,Luo J,et al.Mater.Res.Bull.,2014,49:319-324

    [32]Wei W,Jia F F,Wang K F,et al.Chin.Chem.Lett.,2017,28:324-328

    [33]Geim A K.Science,2009,324:1530-1534

    [34]Wu Z S,Zhou G M,Yin L C,et al.Nano Energy,2012,1:107-131

    [35]Du N,Wu X L,Zhai C X,et al.J.Alloys Compd.,2013,580:457-464

    [36]http://www.reagent.com.cn:666/ScrcBackGroup/reagent/cpzx/cpss.jsp

    [37]Wang C R,Tang K B,Yang Q,et al.Chem.Phys.Lett.,2002,357:371-375

    [38]Julien C,Mavi H S,Jain K P,et al.Mater.Sci.Eng.B,1994,23(2):98-104

    [39]Li N,Jin S X,Liao Q Y,et al.Nano Energy,2014,5:105-115

    [40]Lv P P,Zhao H L,Gao C H,et al.J.Power Sources,2015,274:542-550

    [41]Ferrari A C,Meyer J C,Scardaci V,et al.Phys.Rev.Lett.,2006,97:187401

    [42]Luo B,Fang Y,Wang B,et al.Energy Environ.Sci.,2012,5:5226-5230

    [43]Huang Y G,Lin X L,Pan Q C,et al.Electrochim.Acta,2016,193:253-260

    [44]Tao H C,Huang M,Fan L Z,et al.Solid State Ionics,2012,220:1-6

    [45]Li M Q,Zeng Y,Ren Y R,et al.J.Power Sources,2015,288:53-61

    [46]Lin J,Cui J L,Cheng F P,et al.J.Alloys Compd.,2017,695:2173-2179

    [47]Cui J L,Cheng F P,Lin J,et al.Powder Technol.,2017,311:1-8

    [48]Wang Y K,Ding J,Liu Y H,et al.Ceram.Int.,2015,41:15145-15152

    [49]GENG Kai-Ming(耿凱明),WU Jun-Jie(吳俊杰),GENG Hong-Bo(耿洪波),et al.Chinese J.Inorg.Chem.(無機化學(xué)學(xué)報),2016,32(9):1495-1502

    [50]Hu Y S,Demir-Cakan R,Titirici M M,et al.Angew.Chem.Int.Ed.,2008,47:1645-1649

    [51]Tao H C,Yang X L,Zhang L L,et al.Ionics,2014,20:1547-1552

    [52]YANG Rong(楊蓉),LIU Xu-Wang(劉緒望),PENG Lu-Ming(彭路明).Chinese J.Inorg.Chem.(無機化學(xué)學(xué)報),2017,33(2):210-218

    Electrochemical Performance of SnS2/GCP(Graphene Composite Powder)Microcomposite as Anode Material for Lithium-Ion Battery

    LIN Jian CUI Yong-Fu CUI Jin-Long*WEN Zhong-Sheng SUN Jun-Cai*
    (Institute of Materials and Technology,Dalian Maritime University,Dalian,Liaoning 116026,China)

    SnS2/GCP(graphene composite powder)microcomposite was synthesized through a facile one-pot hydrothermal method.Graphene composite powder was used as an additive in the SnS2synthesis process.In the resulting SnS2/GCP microcomposites,the sphere-like SnS2particles were made of several intertwining SnS2nanosheets accompanied by the formation of many pores on the surface of it and GCP was homogeneously anchored on SnS2particles.When tested as anode material for lithium-ion batteries,the SnS2/GCP microcomposites showed a larger specific capacity (795.6 mAh·g-1at a current density of 0.1 A·g-1)and remarkable cycling stability (less than 1%capacity loss after 100 cycles)compared with pure SnS2.This superb energy storage performance could be mainly attributed to the existence of GCP that could not only prevent SnS2particles from aggregating,but also mitigate the volume changes of SnS2particles during charge/discharge cycle.Otherwise,the GCP could also ameliorate the electric conductivity of the SnS2particles.

    lithium-ion battery;SnS2;anode material;graphene composite powder

    O614.43+2

    A

    1001-4861(2018)01-0033-10

    10.11862/CJIC.2018.019

    2017-02-17。收修改稿日期:2017-08-28。

    國家自然科學(xué)基金(No.51479019,21476035);中央高?;究蒲袠I(yè)務(wù)費(No.3132016341)資助項目。

    *通信聯(lián)系人。 E-mail:sunjc@dlmu.edu.cn;jinlong_cuiyuan@hotmail.com

    猜你喜歡
    負(fù)極鋰離子粉末
    小小觀察家
    小小觀察家
    小讀者(2023年18期)2023-09-27 04:38:38
    ZrC粉末制備技術(shù)的研究進展
    山東陶瓷(2021年5期)2022-01-17 02:35:46
    氮化鋁粉末制備與應(yīng)用研究進展
    高能鋰離子電池的“前世”與“今生”
    科學(xué)(2020年1期)2020-08-24 08:07:56
    負(fù)極材料LTO/G和LTO/Ag-G的合成及其電化學(xué)性能
    白及粉末入藥歷史沿革概述
    中成藥(2018年1期)2018-02-02 07:20:14
    韓國三星開發(fā)出新型鋰離子電池負(fù)極
    鋰離子動力電池的不同充電方式
    K+摻雜對YBO3∶Eu3+粉末發(fā)光性能的影響
    新久久久久国产一级毛片| 久9热在线精品视频| 国产精品.久久久| 搡老岳熟女国产| 精品人妻一区二区三区麻豆| 精品人妻1区二区| 妹子高潮喷水视频| 亚洲国产精品成人久久小说| 精品少妇久久久久久888优播| 丰满迷人的少妇在线观看| 可以免费在线观看a视频的电影网站| 亚洲色图 男人天堂 中文字幕| 视频在线观看一区二区三区| 亚洲精品中文字幕一二三四区 | 法律面前人人平等表现在哪些方面 | 日韩,欧美,国产一区二区三区| 国产又爽黄色视频| 午夜福利视频在线观看免费| 精品亚洲成国产av| 亚洲专区中文字幕在线| 久久国产精品影院| 日韩免费高清中文字幕av| 国产在视频线精品| 精品少妇内射三级| 久久 成人 亚洲| 9色porny在线观看| 国产日韩一区二区三区精品不卡| 亚洲国产av影院在线观看| 午夜精品久久久久久毛片777| 18在线观看网站| 久久久久国内视频| 亚洲黑人精品在线| 性色av乱码一区二区三区2| 91精品三级在线观看| 亚洲精品一二三| 丁香六月天网| 亚洲国产毛片av蜜桃av| 亚洲少妇的诱惑av| 国产成人系列免费观看| 美女午夜性视频免费| 午夜福利乱码中文字幕| 国产日韩欧美在线精品| 日韩视频在线欧美| 啦啦啦免费观看视频1| 久久久欧美国产精品| 在线永久观看黄色视频| 国产主播在线观看一区二区| 精品一品国产午夜福利视频| 国产精品久久久人人做人人爽| 久久精品aⅴ一区二区三区四区| av在线老鸭窝| 男女午夜视频在线观看| 美女午夜性视频免费| 考比视频在线观看| 国产精品影院久久| 午夜精品国产一区二区电影| 丁香六月天网| 久久精品aⅴ一区二区三区四区| 亚洲精品美女久久久久99蜜臀| 老司机影院毛片| 国产伦人伦偷精品视频| 免费高清在线观看日韩| 男人操女人黄网站| 亚洲色图 男人天堂 中文字幕| 91国产中文字幕| 男女边摸边吃奶| 亚洲欧美精品自产自拍| 亚洲欧美一区二区三区黑人| 日本a在线网址| 满18在线观看网站| 一级,二级,三级黄色视频| 亚洲一码二码三码区别大吗| 久久免费观看电影| 最近最新免费中文字幕在线| 汤姆久久久久久久影院中文字幕| 成人手机av| 久9热在线精品视频| 国产av又大| 午夜老司机福利片| 国产精品亚洲av一区麻豆| 自拍欧美九色日韩亚洲蝌蚪91| 爱豆传媒免费全集在线观看| 国产97色在线日韩免费| 婷婷丁香在线五月| 丰满迷人的少妇在线观看| 啦啦啦视频在线资源免费观看| 99久久综合免费| 一区二区三区乱码不卡18| 超碰成人久久| 手机成人av网站| 国产亚洲一区二区精品| 老司机靠b影院| 老熟女久久久| 精品一区二区三卡| 午夜福利一区二区在线看| 一本一本久久a久久精品综合妖精| 日韩熟女老妇一区二区性免费视频| 大香蕉久久网| 国产在线免费精品| 女性生殖器流出的白浆| 香蕉丝袜av| 色精品久久人妻99蜜桃| 亚洲美女黄色视频免费看| 在线观看免费午夜福利视频| 精品国产一区二区久久| 大码成人一级视频| 爱豆传媒免费全集在线观看| 欧美国产精品一级二级三级| 国产99久久九九免费精品| 一本久久精品| 欧美日韩av久久| 久久九九热精品免费| 久久精品国产a三级三级三级| 无遮挡黄片免费观看| 日本精品一区二区三区蜜桃| 免费日韩欧美在线观看| 精品高清国产在线一区| 亚洲专区字幕在线| 午夜激情av网站| 欧美日韩av久久| 另类精品久久| 超碰97精品在线观看| 国产在线一区二区三区精| 免费少妇av软件| 国产精品久久久人人做人人爽| 宅男免费午夜| 久久女婷五月综合色啪小说| 亚洲成av片中文字幕在线观看| 91成年电影在线观看| 国产精品国产av在线观看| 男女无遮挡免费网站观看| 亚洲精品久久成人aⅴ小说| 国产伦理片在线播放av一区| 亚洲av美国av| 人人妻人人澡人人爽人人夜夜| 久久天躁狠狠躁夜夜2o2o| 桃红色精品国产亚洲av| 久久九九热精品免费| av片东京热男人的天堂| 亚洲欧洲精品一区二区精品久久久| 久久99热这里只频精品6学生| 夜夜骑夜夜射夜夜干| 亚洲中文字幕日韩| 好男人电影高清在线观看| 午夜影院在线不卡| 人妻一区二区av| 亚洲人成77777在线视频| 大型av网站在线播放| 91国产中文字幕| 一本—道久久a久久精品蜜桃钙片| 夫妻午夜视频| 天堂8中文在线网| 久久热在线av| 国产成人免费无遮挡视频| 欧美激情久久久久久爽电影 | 亚洲精品日韩在线中文字幕| 69精品国产乱码久久久| 久久久久国产一级毛片高清牌| 在线 av 中文字幕| 不卡av一区二区三区| 亚洲国产精品成人久久小说| 久久国产精品影院| 伊人久久大香线蕉亚洲五| 男女午夜视频在线观看| 久久久精品免费免费高清| videosex国产| 欧美精品一区二区大全| 成年人黄色毛片网站| 国产男人的电影天堂91| 欧美久久黑人一区二区| 国产成+人综合+亚洲专区| 少妇 在线观看| 亚洲全国av大片| 少妇被粗大的猛进出69影院| 在线天堂中文资源库| 久久人妻熟女aⅴ| 国产av又大| 91麻豆av在线| 91精品国产国语对白视频| 精品少妇一区二区三区视频日本电影| 午夜精品国产一区二区电影| 考比视频在线观看| 久久中文字幕一级| 青草久久国产| 一本—道久久a久久精品蜜桃钙片| www.熟女人妻精品国产| 亚洲 欧美一区二区三区| 黄色视频在线播放观看不卡| 午夜精品国产一区二区电影| 欧美午夜高清在线| 日韩三级视频一区二区三区| 亚洲国产精品一区二区三区在线| bbb黄色大片| 中文精品一卡2卡3卡4更新| 亚洲欧美日韩高清在线视频 | 亚洲精品av麻豆狂野| 黄色视频在线播放观看不卡| 97在线人人人人妻| 久久中文看片网| 黄频高清免费视频| 国产一区二区在线观看av| 国产一区二区在线观看av| 久久久久久久精品精品| 久久人人爽人人片av| 亚洲av成人不卡在线观看播放网 | 18禁裸乳无遮挡动漫免费视频| 国产精品一区二区在线不卡| 热99国产精品久久久久久7| 亚洲国产成人一精品久久久| 国产免费av片在线观看野外av| 黑丝袜美女国产一区| 久9热在线精品视频| 亚洲欧洲精品一区二区精品久久久| 9191精品国产免费久久| 国产精品1区2区在线观看. | 久久av网站| 日韩视频一区二区在线观看| 制服诱惑二区| 一级毛片电影观看| 老司机深夜福利视频在线观看 | 后天国语完整版免费观看| 首页视频小说图片口味搜索| 窝窝影院91人妻| 动漫黄色视频在线观看| 日韩 欧美 亚洲 中文字幕| 19禁男女啪啪无遮挡网站| 嫁个100分男人电影在线观看| 最黄视频免费看| 国产精品欧美亚洲77777| 夜夜骑夜夜射夜夜干| 久久人人97超碰香蕉20202| 国产91精品成人一区二区三区 | 久久中文字幕一级| 久久精品成人免费网站| 久9热在线精品视频| 自拍欧美九色日韩亚洲蝌蚪91| 国产99久久九九免费精品| 一二三四在线观看免费中文在| 国产一区有黄有色的免费视频| 亚洲男人天堂网一区| 精品免费久久久久久久清纯 | 中文字幕高清在线视频| 亚洲中文字幕日韩| 男人添女人高潮全过程视频| 欧美激情极品国产一区二区三区| 人成视频在线观看免费观看| 99香蕉大伊视频| 黄色a级毛片大全视频| 九色亚洲精品在线播放| 久久国产精品男人的天堂亚洲| 欧美日韩中文字幕国产精品一区二区三区 | 在线天堂中文资源库| 丝袜人妻中文字幕| 午夜激情久久久久久久| 丝袜美足系列| 国产精品久久久久久精品古装| 国产欧美日韩一区二区三区在线| 午夜福利乱码中文字幕| 性高湖久久久久久久久免费观看| cao死你这个sao货| 亚洲国产欧美在线一区| 精品高清国产在线一区| 老熟妇仑乱视频hdxx| 日本91视频免费播放| 色94色欧美一区二区| 久久精品久久久久久噜噜老黄| 高潮久久久久久久久久久不卡| 国产精品一区二区精品视频观看| 搡老岳熟女国产| 99精国产麻豆久久婷婷| 日本一区二区免费在线视频| 日本猛色少妇xxxxx猛交久久| 精品高清国产在线一区| 精品国产超薄肉色丝袜足j| 精品人妻一区二区三区麻豆| 精品乱码久久久久久99久播| 麻豆av在线久日| 午夜激情久久久久久久| 中文字幕色久视频| 桃花免费在线播放| 久久综合国产亚洲精品| 亚洲成人免费电影在线观看| 波多野结衣av一区二区av| 精品人妻熟女毛片av久久网站| 天堂中文最新版在线下载| 亚洲精品粉嫩美女一区| 精品亚洲成a人片在线观看| 十八禁网站免费在线| 十八禁人妻一区二区| 亚洲精品国产色婷婷电影| 无限看片的www在线观看| 女人高潮潮喷娇喘18禁视频| 免费观看人在逋| 一区在线观看完整版| 黑人欧美特级aaaaaa片| 一级黄色大片毛片| 欧美午夜高清在线| 最近最新免费中文字幕在线| 久久久久视频综合| 久久国产亚洲av麻豆专区| 侵犯人妻中文字幕一二三四区| 国产精品影院久久| 亚洲人成77777在线视频| 国产精品亚洲av一区麻豆| 高潮久久久久久久久久久不卡| 国产精品国产三级国产专区5o| 久久久精品免费免费高清| 狠狠狠狠99中文字幕| 少妇的丰满在线观看| 亚洲精品国产av成人精品| 嫩草影视91久久| 久久中文字幕一级| 午夜激情久久久久久久| 老熟妇乱子伦视频在线观看 | 宅男免费午夜| 叶爱在线成人免费视频播放| e午夜精品久久久久久久| 9191精品国产免费久久| 亚洲伊人色综图| 狠狠婷婷综合久久久久久88av| 亚洲国产中文字幕在线视频| 精品少妇一区二区三区视频日本电影| 日韩欧美一区视频在线观看| 亚洲av国产av综合av卡| 制服人妻中文乱码| 欧美成人午夜精品| 男人添女人高潮全过程视频| 久久中文字幕一级| 午夜激情久久久久久久| 99九九在线精品视频| 每晚都被弄得嗷嗷叫到高潮| 男女床上黄色一级片免费看| 欧美成狂野欧美在线观看| 国产一区二区 视频在线| 亚洲精品国产av蜜桃| 午夜福利免费观看在线| 少妇人妻久久综合中文| 99久久综合免费| 精品一区二区三卡| a在线观看视频网站| 国产精品一区二区免费欧美 | 国产福利在线免费观看视频| 可以免费在线观看a视频的电影网站| 亚洲一区中文字幕在线| 两个人免费观看高清视频| 欧美精品一区二区免费开放| 两个人看的免费小视频| 国产精品一二三区在线看| 亚洲成av片中文字幕在线观看| 后天国语完整版免费观看| 亚洲 欧美一区二区三区| www.自偷自拍.com| 叶爱在线成人免费视频播放| 女性被躁到高潮视频| 国产亚洲av高清不卡| 中文字幕人妻丝袜一区二区| 在线观看免费午夜福利视频| 国产成+人综合+亚洲专区| 亚洲成人国产一区在线观看| 久久精品成人免费网站| 91大片在线观看| 久热爱精品视频在线9| 久久精品亚洲熟妇少妇任你| 国产一区有黄有色的免费视频| 亚洲精华国产精华精| 国产人伦9x9x在线观看| 一级a爱视频在线免费观看| 亚洲国产精品999| 热99re8久久精品国产| 欧美人与性动交α欧美软件| h视频一区二区三区| 最近中文字幕2019免费版| 一级毛片电影观看| 亚洲欧美激情在线| 一个人免费看片子| 香蕉丝袜av| 国产高清videossex| 亚洲欧美精品综合一区二区三区| 国产精品二区激情视频| 亚洲精品乱久久久久久| 国产精品一区二区精品视频观看| 成年人免费黄色播放视频| 日本撒尿小便嘘嘘汇集6| 欧美精品啪啪一区二区三区 | 亚洲七黄色美女视频| 亚洲国产精品一区三区| 自线自在国产av| 少妇裸体淫交视频免费看高清 | 成年动漫av网址| 后天国语完整版免费观看| 在线十欧美十亚洲十日本专区| 在线永久观看黄色视频| 久久久国产成人免费| 黑人操中国人逼视频| 日韩欧美一区视频在线观看| 男人操女人黄网站| 热99国产精品久久久久久7| 他把我摸到了高潮在线观看 | 汤姆久久久久久久影院中文字幕| 国产成人av激情在线播放| 99国产极品粉嫩在线观看| 亚洲av国产av综合av卡| 亚洲色图综合在线观看| 日韩视频在线欧美| 午夜精品久久久久久毛片777| 久久国产亚洲av麻豆专区| 日韩欧美一区视频在线观看| 精品国产乱码久久久久久小说| 一边摸一边抽搐一进一出视频| 亚洲成av片中文字幕在线观看| 日本撒尿小便嘘嘘汇集6| 中文字幕精品免费在线观看视频| 考比视频在线观看| 午夜老司机福利片| 99热全是精品| 久久人妻福利社区极品人妻图片| 国产一区二区 视频在线| 一个人免费看片子| 国产成人精品久久二区二区91| 日日爽夜夜爽网站| 午夜福利一区二区在线看| 欧美日韩一级在线毛片| 手机成人av网站| 人人妻人人澡人人爽人人夜夜| 首页视频小说图片口味搜索| 欧美日韩黄片免| 欧美在线一区亚洲| 国精品久久久久久国模美| 国产主播在线观看一区二区| 精品久久久久久电影网| 国产日韩欧美视频二区| 一个人免费在线观看的高清视频 | 黑人巨大精品欧美一区二区mp4| 国产精品九九99| 99国产精品免费福利视频| 精品福利永久在线观看| 日本av手机在线免费观看| 国产精品久久久av美女十八| 大香蕉久久成人网| 热99国产精品久久久久久7| 欧美激情极品国产一区二区三区| 成人三级做爰电影| 91字幕亚洲| 免费高清在线观看视频在线观看| 色播在线永久视频| 久久亚洲国产成人精品v| 国产成人欧美在线观看 | 欧美日韩视频精品一区| 午夜福利影视在线免费观看| 午夜福利,免费看| 国产97色在线日韩免费| 成人av一区二区三区在线看 | 曰老女人黄片| 国产在线一区二区三区精| 在线看a的网站| 丝袜美足系列| 欧美黄色片欧美黄色片| 中文精品一卡2卡3卡4更新| 悠悠久久av| 免费高清在线观看视频在线观看| 欧美精品啪啪一区二区三区 | 69精品国产乱码久久久| 国产精品1区2区在线观看. | 十分钟在线观看高清视频www| 亚洲av电影在线进入| 18禁裸乳无遮挡动漫免费视频| 97精品久久久久久久久久精品| 少妇裸体淫交视频免费看高清 | 精品人妻在线不人妻| 国产一区二区在线观看av| 国产无遮挡羞羞视频在线观看| 精品福利永久在线观看| 美女福利国产在线| 欧美黄色片欧美黄色片| 美女扒开内裤让男人捅视频| 91成人精品电影| 日本一区二区免费在线视频| 99热全是精品| 最近最新中文字幕大全免费视频| 黄色毛片三级朝国网站| 黄片小视频在线播放| 国产精品免费大片| 久久久久久久国产电影| 大香蕉久久成人网| av免费在线观看网站| 51午夜福利影视在线观看| 美女福利国产在线| 国产伦理片在线播放av一区| 熟女少妇亚洲综合色aaa.| 乱人伦中国视频| 69精品国产乱码久久久| 一边摸一边做爽爽视频免费| 精品福利观看| 欧美日韩亚洲综合一区二区三区_| 亚洲精品av麻豆狂野| 亚洲第一青青草原| 午夜成年电影在线免费观看| 精品人妻1区二区| bbb黄色大片| 悠悠久久av| 免费人妻精品一区二区三区视频| 97人妻天天添夜夜摸| 高清黄色对白视频在线免费看| 高清欧美精品videossex| 五月开心婷婷网| 亚洲av电影在线观看一区二区三区| 国产在线观看jvid| 亚洲伊人久久精品综合| 日韩欧美国产一区二区入口| 欧美日韩一级在线毛片| 国产成人欧美| 波多野结衣一区麻豆| 国产精品99久久99久久久不卡| 肉色欧美久久久久久久蜜桃| 丰满少妇做爰视频| 久久女婷五月综合色啪小说| 免费在线观看日本一区| 美女高潮喷水抽搐中文字幕| 黄片播放在线免费| 久久毛片免费看一区二区三区| 婷婷丁香在线五月| 无遮挡黄片免费观看| 少妇人妻久久综合中文| 亚洲av成人不卡在线观看播放网 | 国产视频一区二区在线看| 精品福利永久在线观看| 99国产精品一区二区三区| 黄频高清免费视频| 一本大道久久a久久精品| 美女脱内裤让男人舔精品视频| 国产成人精品久久二区二区免费| 国产一区二区激情短视频 | 黄片小视频在线播放| 搡老乐熟女国产| a级片在线免费高清观看视频| 国产精品欧美亚洲77777| 国产又爽黄色视频| 精品欧美一区二区三区在线| 欧美av亚洲av综合av国产av| 在线av久久热| 午夜影院在线不卡| 大码成人一级视频| tube8黄色片| 久久久久国产一级毛片高清牌| 欧美av亚洲av综合av国产av| 日韩一卡2卡3卡4卡2021年| 十八禁高潮呻吟视频| 性少妇av在线| 国产亚洲av片在线观看秒播厂| 少妇人妻久久综合中文| 在线观看人妻少妇| 色婷婷av一区二区三区视频| 老熟妇仑乱视频hdxx| 久久久久国内视频| 天堂8中文在线网| 天天躁狠狠躁夜夜躁狠狠躁| 日韩欧美免费精品| 日本猛色少妇xxxxx猛交久久| 国产视频一区二区在线看| 十八禁网站网址无遮挡| 欧美精品一区二区免费开放| 亚洲中文日韩欧美视频| 久久精品国产a三级三级三级| 在线观看免费午夜福利视频| 秋霞在线观看毛片| 最新的欧美精品一区二区| 亚洲中文字幕日韩| 国产精品成人在线| 12—13女人毛片做爰片一| 99久久国产精品久久久| 人人妻,人人澡人人爽秒播| 两人在一起打扑克的视频| 新久久久久国产一级毛片| 国产成人av教育| 男女午夜视频在线观看| 国产精品亚洲av一区麻豆| 国产在线观看jvid| 大码成人一级视频| 精品一品国产午夜福利视频| 亚洲欧洲精品一区二区精品久久久| 蜜桃在线观看..| 成年美女黄网站色视频大全免费| 午夜成年电影在线免费观看| 久热这里只有精品99| 中文字幕最新亚洲高清| 黄片小视频在线播放| 久久99热这里只频精品6学生| 日韩,欧美,国产一区二区三区| 99久久综合免费| 性色av乱码一区二区三区2| www日本在线高清视频| 伊人亚洲综合成人网| 天堂俺去俺来也www色官网| 桃红色精品国产亚洲av| 国产成人欧美| 国产一区二区在线观看av| 欧美av亚洲av综合av国产av| 美女扒开内裤让男人捅视频| 国产欧美日韩一区二区三 | 一级a爱视频在线免费观看| 免费高清在线观看视频在线观看| 12—13女人毛片做爰片一| 久久久精品国产亚洲av高清涩受| 免费黄频网站在线观看国产| 午夜久久久在线观看| 精品人妻在线不人妻| 淫妇啪啪啪对白视频 | 国产国语露脸激情在线看| 一个人免费看片子| 国产成人啪精品午夜网站| 久久久欧美国产精品| 9色porny在线观看| 亚洲精品粉嫩美女一区| 黑人操中国人逼视频| 国产成人精品久久二区二区91|