• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    表面化學(xué)侵蝕改性富鋰層狀正極材料Li[Li0.2Mn0.54Ni0.13Co0.13]O2

    2018-01-04 21:18:12胡國榮王偉剛彭忠東曹雁冰
    無機(jī)化學(xué)學(xué)報 2018年1期
    關(guān)鍵詞:富鋰中南大學(xué)層狀

    胡國榮 王偉剛 杜 柯 彭忠東 曹雁冰

    (中南大學(xué)冶金與環(huán)境學(xué)院,長沙 410083)

    表面化學(xué)侵蝕改性富鋰層狀正極材料Li[Li0.2Mn0.54Ni0.13Co0.13]O2

    胡國榮 王偉剛 杜 柯*彭忠東 曹雁冰

    (中南大學(xué)冶金與環(huán)境學(xué)院,長沙 410083)

    采用3種不同pH值的去離子水,NH4NO3和H2C2O4溶液對富鋰層狀正極材料Li[Li0.2Mn0.54Ni0.13Co0.13]O2進(jìn)行表面化學(xué)侵蝕改性,旨在改善其整體電化學(xué)性能。ICP結(jié)果表明pH值對材料中Li的析出具有顯著影響。X射線衍射(XRD)表明表面化學(xué)侵蝕對材料的結(jié)構(gòu)有影響。拉曼光譜(Raman spectroscopy)表明材料表面結(jié)構(gòu)發(fā)生了變化。H2C2O4溶液侵蝕過的樣品的首次效率有了極大提高,但同時中值電壓和循環(huán)性能顯著惡化。NH4NO3溶液侵蝕過的樣品的首次效率從63%提高到了85%,1C倍率下的放電比容量從149 mAh·g-1提高到194 mAh·g-1,同時保持了溫和的中值電壓變化曲線。通過高分辨透射電鏡(HRTEM),X射線光電子能譜(XPS)和電化學(xué)阻抗譜(EIS)對改性機(jī)理進(jìn)行了研究。

    正極材料;富鋰層狀;鋰離子電池;表面改性

    0 Introduction

    Lithium ion battery has been considered as the most promising candidate for the EVs and rechargeable power station.As the key component in lithium ion battery,cathode material has been widely researched and greatly developed[1].The explosive growth of electric vehicles calls for a suitable cathode material with high enough energy density[2].Among the cathode materials used at present,over-lithiuated cathode material with a general formula of Li[M1-xLi]O2(M=Mn,Ni,Co)has evoked great interest due to its high capacity and good thermal stability.It can reach a practical capacity of 250 mAh·g-1or more when charged above 4.5 V.Moreover,due to the high content of Mn,it possesses the advantages of costeffectiveness,environment benignity,and operation safety[3-8].When initially charged above 4.3 V,cells with over-lithiuated cathodematerialexhibitaunique voltage profile.This profile can be generally divided into two regions:a sloping region to 4.4 V and a plateau between 4.4 and 4.7 V.When charged to 4.4 V,lithium is extracted from the LiMO2component.The Li2MnO3domains are electro-chemically inactive under 4.4 V;at higher potentials lithium is removed from the structure with concomitant oxidation of the oxygen ions,while the manganese ions maintain their tetravalent oxidation state.Simplistically,this process can be represented by the electrochemical removal of lithium and oxygen from the Li2MnO3structure,the net loss being “Li2O”,which results in a significant first-cycle capacity loss.As a result,the following bottlenecks are urgently required to be settled before put into large-scale application:(1)low initial coulombic efficiency and large irreversible capacity(CIr)[5,8];(2)poor rate capability and its capacity is far less than 200 mAh·g-1at 1C[9-12];(3)poor cyclability due to decomposition ofelectrolyteunderthehighcut-off voltage[8-9];(4)voltage decaying arising from the structure transformation and hence resulting decrease of energy density[13-15].

    Doping into structure and surface modification are the main improving methods for all kinds of cathode materials.In view of its specific composition,surface treatment is proved to be an effective way to improvethecomprehensiveperformanceofoverlithiuated cathode materials.Thackery et al.[16]stated acid treatment could improve the initial coulombic efficiency.Simultaneously,a more stable spinel-like structure formed on the surface after the reaction between the acid and surface material and supplies additional channel for the intercalation and deintercalation of Li+ions.Kang et al.[17]treated 0.3Li[Li1/3Mn2/3]O2·0.7Li[Ni1/2Mn1/2]O2with HNO3and the initial coulombic efficiency was enhanced to 82%.But the high acidity damaged the surface structure,which led to the deterioration of cyclability and rate capability.Denis et al.[18]treated Li[Li0.2Mn0.54Ni0.13Co0.13]O2with(NH4)2SO4solution and confirmed the existence of a lithium-poor spinel structure on the surface.

    To take a systematic study on the effect of surface modification on initial coulombic efficiency,rate and cycle capability and voltage decaying,obtain the optimal improving method and further understand its mechanism,we adopted three solutions with specific pH values.Li[Li0.2Mn0.54Ni0.13Co0.13]O2was fabricated by conventional co-precipitation method as pristine sample and treated with deionized water,NH4NO3and H2C2O4solution,whose pH value is about 6.8,3.9 and 1.3,respectively.The four samples are characterized by Inductively coupled plasma(ICP),X-ray diffraction(XRD),Scanning electron microscope (SEM),highresolution transmission electron microscopy(HRTEM),Raman spectroscopy,X-ray photoelectron spectroscopy(XPS),charge-discharge measurements and electrochemical impedance spectroscopy (EIS)to develop a comprehensive and in-depth understanding of the functions of the treatment solutions.

    1 Experimental

    The precursors of the pristine Li[Li0.2Mn0.54Ni0.13Co0.13]O2material was synthesized via a carbonate co-precipitation method using NiSO4·6H2O(AR,≥98.5%),CoSO4·7H2O(AR,≥98.5%),Na2CO3(AR,≥99.8%)and MnSO4·H2O (AR,≥99%)as raw materials.The particle size was controlled by the dropping speed and reaction time.Dropping speed was 0.8~1 mL·min-1and reaction time was 10 h under continuous stirring.The pH value was maintained was at 8~8.5 by controlling the dropping speed of Na2CO3and NH3·H2O.After filtration,rinsing and drying,precursors can be obtained.A mixture of precursor and Li2CO3with nLi∶nM=1.5 is calcined to produce Li[Li0.2Mn0.54N i0.13Co0.13]O2cathode material at 900℃for 10 h.

    Three pieces of 2 g pristine sample were added into 200 mL treatment solutions including deionized water,NH4NO3and H2C2O4,whose pH values were maintained around 6.8,3.9 and 1.3 respectively.The mixed solutions were treated in 50℃supersonic water bath for 10 min then washed and filtered for several times.Then the samples were dried in an 120℃oven and calcined under 500℃for 3 h.For the sake of simplicity,the pristine sample and samples treated with deionized water,NH4NO3and H2C2O4solution were named as Sample A,B,C and D respectively.

    Inductive coupled plasma technique(ICP-AES spectrometer Ultima-2 from Jobin Yvon Horiba)was used for the elemental analysis of samples.The crystal structure of all samples were characterized by using X-ray diffraction(Riguku θ/θ diffractometer with Cu Kα radiation,λ=0.154 05 nm).XRD data were obtained in 2θ range of 10°~80°,with a scan speed of 2°·min-1.The morphological features and particle sizes were observed by scanning electron microscope equipped with EDXS energy disperse X-ray spectrometer (SEM,HitachiX-650)and highresolution transmission electron microscopy(HRTEM,FEI TecnaiF20).Raman spectroscopy was carried out on a micro-Raman spectrometer from Renishaw(UK)equipped with a 514 nm laser,a CCD camera,and an optical Leica microscope.A 50x objective lens was used to focus the incident beam and an 1 800 lines per mm grating was used.For each sample,the spectra were recorded from three to five locations.XPS data were collected at room temperature with a Kratos Analytical Spectrometer and monochromatic Al Kα (1 486.6 eV)X-ray source to assess the chemical state of elements on the treated surface layers.

    The charge-discharge tests were carried out by assembling 2025-type coin cells with a lithium metal anode,working cathode and Celgard 2400 microporous membrane.The working cathode was fabricated by blending active material,acetylene black and PVDF binder(8∶1∶1).A LiPF6solution of 1 mol·L-1,dissolved in ethylene carbonate(EC)/dimethyl carbonate(DMC)(1∶1,V/V),was employed as the electrolyte.The charge-discharge tests were carried out on a Land electrochemical test instrument.The cells were charged and discharged at various rates and their initial coulombic efficiency,mean voltage,rate capability and capacity retention were recorded.Electrochemical impedance spectroscopy (EIS)of the cells was conducted on an electrochemical workstation (CH Instrument).EIS experiment was carried out after the cells were assembled and rested forseveralminutes.The frequency range was 0.001 Hz~100 kHz at alternating current signal amplitude of 10 mV.

    2 Results and discussion

    2.1 Material characterization

    The contents of Li,Mn,Ni and Co elements in the filtrate from washing the treated samples are listed in Table 1.It can be seen that the filtrate from Sample B contains 3.26%(w/w)Li and a trace of transition metal elements.The elements in the filtrate from Sample C are mainly composed of Li which reaches up to 10.45%(w/w).The Li content in the filtrate from Sample D is as high as 15.28%(w/w)as a result of the high acidity of H2C2O4.It can be also concluded from the tablethattheextraction of transition metal elements increases with the increasing of the acidity of treatment solutions.According to the loss of elements,the formula of the treated samples can be rewritten as Li1.1471[Mn0.54Ni0.13Co0.13]O2(Sample B),Li1.062[Mn0.54Ni0.13Co0.13]O2(Sample C)and Li1.0045[Mn0.5025Ni0.1211Co0.1271]O2(Sample D).

    Fig.1 displays the XRD patterns of all the samples.By comparing the patterns of the treated sample with the pristine one,it can be confirmed that all the XRD patterns show a clear split between the(006)/(102)and(108)/(110)peaks and no other impurity peaks,which means that treatment haven′t changed the structure of the pristine sample significantly and all the samples have a well hexagonal structure[6,11,19].The low intensity peaks around 21°~25°correspond to the superlattice peaks(PDF No.000-73-0152)caused by ordered arrangement of the ions when lithium enters the transition metal layer[8-9,20].From partial enlargement of Fig.1 it can be found that this peak is weakened slightly after treatment.It can be assumed that the lithium amount in transition metal layer decreases after surface treatment,which evidences that the leached lithium element originates from the transition metal layer partially.

    Table1 Weight percentage of elements dissolved out during treatment process

    Table2 Lattice parameters of Li[Li0.2Mn0.54Ni0.13Co0.13]O2samples

    Fig.1 XRD patterns of Li[Li0.2Mn0.54Ni0.13Co0.13]O2samples

    Unit cell parameters and intensity ratio of I(003)/I(104)of all the four samples are obtained through Jade software and summarized in Table 2.Compared with Sample A,the lattice constant a of Sample B,C and D decreases,and c increases,which leads to the increasing of c/a value.It proves the solution treatment affects the bulk structure of the pristine material[19].Lattice constant c could also characterize the interlayer spacing of MO2layer.The greater c value is,the greater is the interlayer spacing and also the diffusion channel for Li+ions in the layer structure.The c/a values of all the four samples are greater than 4.899,which indicates they have an ideal cubic close packed and well layered structure.For the layered structure materials such as LiCoO2,c value increases with the deintercalation of Li+ions[1].Hence,the increasing of c value of the treated samples proves that the leached Li element originates from the Li layer partially[21].Noteworthy,the intensity ratio of I(003)/I(104)also increases after solution treatment.Chung-Hsin et al.[22]stated that intensity ratio of I(003)/I(104)can be used to determine the cation distribution in the lattice and a value lower than 1.2 indicated a high degree of cation mixing,primarily due to the occupancy of other ions in the lithium region,and the higher the ratio was,the lower the level of cation mixing was and the more beneficial to the lithium-ion transfer.As shown in Table 2,the intensity ratio of I(003)/I(104)of all samples are greater than 1.5,which indicates a low level of cation mixing and a well layered structure of the materials[21].The high intensity ratio of I(003)/I(104)of the pristine sample is mainly determined by its composition and synthesis route.The intensity ratio of I(003)/I(104)is generarlly inversely proportional to the nickel content in the material.Unlike the commercialized layered ternary materials,over-lithiuated oxide is rich in manganese and much lower in nickel,so it has a low degree of cation mixing and possesses a high intensity ratio of I(003)/I(104).

    SEM images of four samples are shown in Fig.2.It is obvious that the particles of pristine sample agglomerate and the particle size is estimated to be about 0.5 μm.Deionized water almost has no effect on itsmorphology.However,compared with the pristine sample,Sample C and D have more even distribution of grain size and the particles become smaller.This may be caused by the reaction between the surface and the treatment solutions.

    Fig.3 shows HRTEM images of Sample A and C.Sample A has clear lattice fringes which prove a high degree of crystallinity of the pristine sample.It can be clearly detected that an amorphous layer which can be attributed to the reaction between the pristine sample surface and pretreatment solution spreads over the bulk structure of Sample C.

    Fig.2 SEM images of Li[Li0.2Mn0.54Ni0.13Co0.13]O2samples

    Fig.3 HRTEM images of Sample A(a)and C(b)

    Raman spectroscopy is valuable to study the surface evolution of materials.Fig.4 compares the Raman spectra of all the four samples.All the three characteristic Raman bands of over-lithiuated are found in the spectra of Sample A and B.The Raman band at 422 cm-1,which disappears in Sample C and D,is assigned to the monoclinic Li2MnO3phase[18,23].This proves the NH4NO3and H2C2O4solutions can react with the Li2MnO3component in Li[Li0.2Mn0.54Ni0.13Co0.13]O2.The other two significant Raman peaks near 475 and 595 cm-1in the spectra of Sample A and B belong to the bending Egand stretching A1gmodes,respectively,which are blue shifted to higher values as to Sample C and D.It is reported that a pronounced blue shift of Raman bands is always observed upon cycling of these Li and Mn-rich cathode materials[23-25].

    Fig.4 Raman spectra of Li[Li0.2Mn0.54Ni0.13Co0.13]O2samples

    Fig.5 XPS spectra of Sample A and C:(a)full spectra,(b)Mn2p,(c)Ni2p and(d)Co2p

    The oxidation states of the metal ions in the samples were determined by XPS.Fig.5 indicates the full spectrum and 2p spectrum of each transition metal split into two spin-orbit coupling components,2p3/2and 2p1/2.The energy separation between the two peaks is related to the mean oxidation state[26].The full spectra in Fig.5(a)evidence Sample A and C contain Ni,Co,Mn,O and C elements.As shown in Fig.5(b),the Co2p spectra of both samples have two sharp peaks at 780.1 and 795.1 eV,which corresponds to Co2p3/2and Co2p1/2respectively.The binding energy gap is about 15 eV,confirming the existence of Co3+[26-28].Fig.5(c)displays the Ni2p spectra of the tested samples,in which two sharp peaks at 854.7 and 872.4 eV corresponding to Ni2p3/2and Ni2p1/2respectively can be seen.The binding energy gap is about 17.7 eV,confirming the existence of Ni2+[28-29].In Fig.5(d)the Mn2p spectra show two sharp peaks at 642.5 and 654.1 eV,corresponding to Mn2p3/2and Mn2p1/2.The binding energy gap is about 11.5 eV,confirming the existence of Mn4+[30-31].The results prove that the Co,Ni and Mn elements on the surface exist in the form of Co3+,Ni2+and Mn4+respectively and solution treatment has no effect on their valences.

    Fig.6 Initial charge-discharge curves of Li[Li0.2Mn0.54Co0.13Ni0.13]O2samples(0.1C)

    Table3 Charge capacity of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 samples in each section

    2.2 Electrochemical properties

    Fig.6 shows the initial charge-discharge curves of four samples between 2.0 and 4.8 V at 0.1C.As shown in Fig.6,the initial irreversible capacity(CIr)of the treated samplesdecreases compared to the pristine sample,among which the CIrof Sample B decreases slightly from 140 to 127 mAh·g-1and the CIrof Sample C and D decrease prominently to 44.5 and 37.7 mAh·g-1,respectively.Correspondingly,the efficiency was also enhanced from 63%to 65%,85%and 86%respectively.Regarding the initial charge process of lithium-manganese-rich layered oxides,it is generally accepted that the whole process can be divided into two steps:Firstly,from the initial voltage to around 4.4 V,Li+ions deintercalate from the LiMO2component,which isthe same asthatofthe conventional layered oxides,then it is followed that Li+and O2-deintercalate from the LiM2O3component above 4.4 V in the form of Li2O[5,15-18].Dividing the initial charge curve into two sections according to the forementioned mechanism and comparing the capacity of each section of all the samples,it can be found the treatment of solutions has effect on the capacities of both sections and this proves that Li leached from the pristine sample originate from both the Li layer and transition metal layer,which is in well accordance with the XRD analysis results.Meanwhile,from Table 3 it is evident that the effect on the Li2MnO3section is more significant,which is the key factor of the effect on initial efficiency.Denis et al.[18]proved that(NH4)2SO4solution could affect the Li2MnO3component notably.Interestingly,the discharge capacity of all the samples almost show no difference,but the discharge curves of Sample C and D both show an additional curve marked by arrow in Fig.3,which can be detected in most Mn compounds[3,5-10].This also proves that acid solution can react with the pristine material and form a new structure related to Mn elements.Based on the XPS analysis results,Denis et al.[18]confirmed this new structure is not spinel structure such as LiMn2O4.Kang et al.[17]confirmed the existence of H+-ion exchanged and Li2O/H2O-deficient Li2MO3product after reaction between the pristine material and HNO3,which provides evidence for the argument on the composition of over-lithiuated oxide.The analysis on the capacity variation during the initial cycle of all the samples as shown in Fig.6 is also in accordance with the statement of Kang et al.

    Fig.7 depicts the rate performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2samples.It can be intuitively concluded that compared with Sample A,the capacity of Sample B at all rates increases little and the rate performance of Sample D at 0.1C,0.2C and 0.5C improve greatly,but deteriorates at 1C with a capacity of 127 mAh·g-1,which may be due to the structure transformation after highaciditytreatment.Kangetal.[17]statedwhenLi2MnO3component was overactivated,too much Li2O was removed from the parent structure,hence deteriorating the rate performance and cyclability.Sample C shows the optimal rate performance especially at high rate(1C)and the capacity at 1C reaches 194 mAh·g-1which is much better than 149 mAh·g-1of the pristine sample.

    Fig.7 Rate capability of Li[Li0.2Mn0.54Ni0.13Co0.13]O2samples

    Fig.8 Mean voltage of Li[Li0.2Mn0.54Ni0.13Co0.13]O2samples corresponding to the charge-discharge cycles in Fig.6

    From the discharge data of 20 cycles at 0.1C,it can be stated that Sample A reaches its peak at the 7th cycle and fades gradually,Sample B shows a similar tendency as Sample A,and Sample D shows the highest capacity at the initial cycle and fades in the subsequent cycles.Sample C shows an excellent cycle performance and has no decay after 20 cycles,which provesthe NH4NO3solution treatmentis beneficial to the cycle performance of the pristine material.After 50 cycles at various rates,when back to 0.1C rate,all the samples except Sample D show a good capacity retention rate,which proves the layer structure are not damaged after the cycles even at high rate (1C),but over high acidity may damage the layer structure.

    Moreover,it is worth noting that the capacity of the pristine sample keeps increasing for the first seven cycles.This activation process is considered to be related to the rearrangement of cations and orderly arrangement of transition metal ions in the stacking of materials[32]. In our previous study we treated Li[Li0.2Ni0.2Mn0.6]O2with acids and decreased the activation cycle number from 17 to 5[33].As seen from Fig.5,Sample C and D almost need no activation cycle,which indicates the material has been activated and the cations has been rearranged in advance during the treatment process.

    Fig.8 shows the tendency of mean voltage of all the four samples.Due to the structure transformation during the charge-discharge cycles,lithium-manganese-rich layered oxide suffers from voltage decay,which could affect the energy density in turn.In accordance with the results of Thackery et al.[5],the mean voltage of Sample D decreases sharply during the cycles,especially at high rate.The mean voltages of Sample B and C decay gradually,which is similar to that of Sample A.It is generally accepted that this phenomenon results from the new Mn-containing structure which generally has low voltage plateau than the pristine material[5,16].Here it is worth noting that when back to 0.1C rate,the mean voltage cannot return to the previous value,which confirms the transformation of structure is irreversible.

    EIS is conducted to investigate the electrochemical behaviors during the charge/discharge process.Fig.9 presents the EIS spectra for Sample A,B,C and D in half Li-cells.All cells were fresh and with an open circuit voltage (OCV)of~2.9 V.The curves of samples exhibit a semicircle in the high-to-medium frequency region and a beeline in the low-frequency range,which represent charge-transfer resistance at the electrode/electrolyte interface and the diffusion resistance of lithium ions in the bulk electrode materials,respectively[11].According to the Nyquist plots of the four samples,the apparent shrinkage of the semicircle in the sequence from Sample A to B till C unambiguously indicates the lowest charge transfer and surface film resistance of Sample C.The corresponding equivalent circuit model(Fig.9,inset)is composed of a system resistance(Rs),a constant phase element(CPE),a charge-transfer resistance(Rct),and a Warburg impedance(Zw)[34-35].The calculated system resistances(Rs)are 2.57,2.95,2.66 and 2.48 Ω for Sample A,B,C and D,while the surface charge transfer resistance(Rct)are 248,130.6,113 and 212.4 Ω,respectively.The result shows that Sample C has a much lower Rctthan the other three samples.This may result from the amorphous layer generated on the pristine sample surface after reaction with NH4NO3.The layer replaces the original interface and supplies a better electron diffusion channel through which the electron diffuses acceleratedly.The results are in well accordance with the rate capability of all the four samples.

    Fig.9 Nyquist plots of Li[Li0.2Mn0.54Ni0.13Co0.13]O2samples

    3 Conclusions

    Deionzied water,NH4NO3and H2C2O4solutions were adopted to treat the surface of Li[Li0.2Mn0.54Ni0.13Co0.13]O2.Surface treatment can affect the bulk structure of the pristine sample.The particle size became smaller after surface treatment as shown in SEM images.TEM confirms the formation of a new crystalline phase.XPS analysis proves no valence state change of the transition meal ions on the surface.The sample treated with NH4NO3possesses the optimal comprehensive electrochemical performance.Its initial coulombic efficiency is enhanced to 85%and discharge capacity at 1C reaches 184 mAh·g-1,comparing to 63%and 149 mAh·g-1of pristine sample.EIS resultsshow thatsurfacetreatment decreases the charge-transfer resistance and enhances the reaction kinetics,which is considered to be the major factor for better rate performance.The decaying of mean voltage during cycles needs to be further studied.

    [1]Honkura K,Horibab T.J.Power Sources,2014,264:140-146

    [2]Xu K,Jie Z F,Li R H,et al.Electrochim.Acta,2012,60:130-133

    [3]Gnanaraj J S,Pol V G,Gedanken A,et al.Electrochem.Commun.,2003,5(11):940-945

    [4]Konarova M,Taniguchi I.J.Power Sources,2010,195(11):3661-3667

    [5]Thackeray M M,Kang S H,Johnson C S,et al.J.Mater.Chem.,2007,17:3112-3125

    [6]Chen H,He Z J,Huang Z M,et al.Ceram.Int.,2017,43(12):8616-8624

    [7]Yu C,Li G,Guan X,et al.Chem.Phys.,2012,14:12368-12377

    [8]Ohzuku T,Nagayama M,Tsuji K,et al.J.Mater.Chem.,2011,21:10179-10188

    [9]Yu H J,Wang Y R,Asakura D,et al.RSC Adv.,2012,2:8797-8807

    [10]Yu H J,Zhou H S.J.Phys.Chem.Lett.,2013,4:1268-1280

    [11]Wang M,Luo M,Chen Y B,et al.J.Alloys Compd.,2017,696:891-899

    [12]Zhang H Z,Qiao Q Q,Li G R,et al.J.Mater.Chem.,2012,22:13104-13109

    [13]Gu M,Belharouak I,Zheng J M,et al.ACS Nano,2013,7:760-767

    [14]Yu S H,Yoon T,Mun J Y,et al.J.Mater.Chem.A,2013,1:2833-2839

    [15]Croy J R,Kim D H,Balasubramanian M,et al.J.Electrochem.Soc.,2012,159(6):A781-A790

    [16]Johnson C S,Kim J S,Lefief C,et al.Electrochem.Commun.,2004,6:1085-1091

    [17]Kang S H,Johnson C S,Vaughey J T.J.Electrochem.Soc.,2006,153(6):A1186-A1192

    [18]Yu Denis Y W,Katsunori Y,Hiroshi N.J.Electrochem.Soc.,2010,157(11):A1177-A1182

    [19]Gao Y,Yakovleva M V,Ebner W B.Electrochem.Solid-State Lett.,1998,1(3):117-119

    [20]Park Y J,Hong Y S,Wu X,et al.J.Power Sources,2004,129:288-295

    [21]Li J B,Xu Y L,Li X F,et al.Appl.Surf.Sci.,2013,285(11):235-240

    [22]Lu C H,Wang H C.J.Electrochem.Soc.,2005,152(6):C341-C347

    [23]Nayak P K,Grinblat J,Levi M,et al.Electrochim.Acta,2014,137:546-556

    [24]Amalraj F,Talianker M,Markovsky B,et al.J.Electrochem.Soc.,2013,160(2):A324-A337

    [25]Nayak P K,Grinblat J,Levi M,et al.J.Electrochem.Soc.,2014,161:A1534-A1547

    [26]Min J W,Gim J,Song J,et al.Electrochim.Acta,2013,100:10-17

    [27]Daheron L,Dedryvere R,Martinez H,et al.Chem.Mater.,2008,20:583-590

    [28]Chang Z R,Chen Z J,Wu F,et al.Electrochim.Acta,2008,53:5927-5933

    [29]Zhao Y,E Y F,Fan L Z,et al.Electrochim.Acta,2007,52:5873-5878

    [30]Jafta C J,Ozoemena K I,Mathe M K,et al.Electrochim.Acta,2012,85:411-422

    [31]Park J S,Roh K C,Lee J W,et al.J.Power Sources,2013,230:138-142

    [32]Armstrong A R,Holzapfel M,Novák P,et al.J.Am.Chem.Soc.,2006,128(26):8694

    [33]DU Ke(杜柯),HUANG Xia(黃霞),YANG Fei(楊菲),et al.Chinese J.Inorg.Chem.(無機(jī)化學(xué)學(xué)報),2012,28(5):983-988

    [34]Chen H,Hu Q,Peng W,et al.Ceram.Int.,2017,43(14):10919-10926

    [35]Li N,He Y,Wang X,et al.Electrochim.Acta,2017,231:363-370

    Surface Modification by Chemical Leaching of Over-Lithiuated Cathode Material Li[Li0.2Mn0.54Ni0.13Co0.13]O2

    HU Guo-RongWANG Wei-Gang DU Ke*PENG Zhong-Dong CAO Yan-Bing
    (School of Metallurgy and Environment,Central South University,Changsha 410083,China)

    With a purpose to improve the comprehensive electrochemical performance of over-lithiuated cathode material,surface modification was adopted using three solutions with specific pH value,including deionized water,NH4NO3and H2C2O4.The structure,morphology and electrochemical performance of the samples were extensively studied.ICP results show pH value has significant effect on the extraction of Li element in the materials.XRD demonstrates that the structure of the pretreated samples changed compared with the pristine sample.Raman Spectroscopy detects structural changes on the sample surface.The initial efficiency of H2C2O4treated sample is improved greatly but its mean voltage and cyclability is deteriorated simultaneously.The NH4NO3treated sample shows the optimal comprehensive performance.Compared to the pristine sample,its initial coulombic efficiency is improved from 63%to 85%and capacity at 1C is enhanced from 149 to 194 mAh·g-1while maintaining a mild mean voltage decay rate.The improvement mechanism has been investigated by high resolution transmission electron microscopy(HRTEM),X-ray Photoelectron Spectroscopy(XPS)and electrochemical impedancespectroscopy(EIS).

    cathode material;over-lithiuated;lithium ion battery;surface modification

    O646

    A

    1001-4861(2018)01-0063-10

    10.11862/CJIC.2018.018

    2017-07-11。收修改稿日期:2017-10-23。

    國家自然科學(xué)基金(No.51602352)資助項目。

    *通信聯(lián)系人。 E-mail:duke22@csu.edu.cn

    猜你喜歡
    富鋰中南大學(xué)層狀
    中南大學(xué)建筑與藝術(shù)學(xué)院作品選登
    中南大學(xué)教授、博士生導(dǎo)師
    安全(2021年4期)2021-05-19 07:56:52
    中南大學(xué)校慶文創(chuàng)產(chǎn)品設(shè)計
    湖南包裝(2020年6期)2021-01-20 02:02:10
    軋制復(fù)合制備TA1/AZ31B/TA1層狀復(fù)合材料組織與性能研究
    富鋰錳基正極材料zMnOx·(1-z)Li[Ni0.2Li0.2Mn0.6]O2的電化學(xué)性能
    汽車電器(2018年1期)2018-06-05 01:23:04
    兩級結(jié)構(gòu)層狀Ti-TiBw/Ti復(fù)合材料擴(kuò)散焊及其拉伸行為
    焊接(2016年9期)2016-02-27 13:05:22
    改進(jìn)共沉淀法合成富鋰正極材料Li1.2Mn0.6Ni0.2O2及性能表征
    艾米莉·狄金森的自然:生態(tài)批評的解讀
    高韌性抗層狀撕裂Q345FTE-Z35鋼板開發(fā)
    新疆鋼鐵(2015年2期)2015-11-07 03:27:52
    富鋰錳基正極材料性能改性的研究進(jìn)展
    全区人妻精品视频| 一区福利在线观看| 免费观看人在逋| 国内精品宾馆在线| 别揉我奶头 嗯啊视频| 国产激情偷乱视频一区二区| 精品福利观看| 日本色播在线视频| 欧美性感艳星| 非洲黑人性xxxx精品又粗又长| 国产久久久一区二区三区| 人人妻人人看人人澡| 寂寞人妻少妇视频99o| 国产伦精品一区二区三区视频9| 少妇的逼好多水| 激情 狠狠 欧美| 成年女人永久免费观看视频| 国产一区二区激情短视频| 亚洲精品色激情综合| 人人妻人人澡欧美一区二区| 我的老师免费观看完整版| 成年女人看的毛片在线观看| 九九在线视频观看精品| 国产高清不卡午夜福利| 色哟哟哟哟哟哟| 在线观看66精品国产| 日韩精品中文字幕看吧| 99视频精品全部免费 在线| 国产熟女欧美一区二区| 国产高清不卡午夜福利| 人妻制服诱惑在线中文字幕| 少妇熟女aⅴ在线视频| 老师上课跳d突然被开到最大视频| 日本黄色片子视频| 非洲黑人性xxxx精品又粗又长| 美女高潮的动态| 欧美成人精品欧美一级黄| 亚洲人成网站在线播| 国产精品一区二区三区四区久久| 91久久精品电影网| 国产精品亚洲美女久久久| 欧美日韩综合久久久久久| 中文亚洲av片在线观看爽| 国产成人精品久久久久久| 日韩人妻高清精品专区| 亚洲美女黄片视频| 欧美日韩精品成人综合77777| 草草在线视频免费看| 99久久中文字幕三级久久日本| 天堂动漫精品| 国产黄a三级三级三级人| 国产一区二区激情短视频| 最近视频中文字幕2019在线8| 观看美女的网站| av卡一久久| 最近手机中文字幕大全| 国产人妻一区二区三区在| 欧美丝袜亚洲另类| 午夜福利成人在线免费观看| 国产精品美女特级片免费视频播放器| 亚洲精品国产av成人精品 | 老师上课跳d突然被开到最大视频| 别揉我奶头 嗯啊视频| 99久久成人亚洲精品观看| 国内久久婷婷六月综合欲色啪| 亚洲欧美精品综合久久99| 麻豆成人午夜福利视频| 亚洲av熟女| 菩萨蛮人人尽说江南好唐韦庄 | 国产黄a三级三级三级人| 变态另类丝袜制服| 日本色播在线视频| 男女下面进入的视频免费午夜| 色在线成人网| 免费看a级黄色片| 美女免费视频网站| 我的老师免费观看完整版| 1000部很黄的大片| 婷婷六月久久综合丁香| 少妇人妻一区二区三区视频| 男人舔奶头视频| 一级黄色大片毛片| 亚洲专区国产一区二区| 熟女电影av网| 天天躁夜夜躁狠狠久久av| 成人国产麻豆网| 九色成人免费人妻av| 变态另类丝袜制服| 听说在线观看完整版免费高清| 久久综合国产亚洲精品| 午夜亚洲福利在线播放| 亚洲自偷自拍三级| 国产91av在线免费观看| 亚洲成人久久性| 波多野结衣巨乳人妻| 午夜精品国产一区二区电影 | 天天躁夜夜躁狠狠久久av| 可以在线观看毛片的网站| 亚洲va在线va天堂va国产| 久久亚洲精品不卡| 婷婷亚洲欧美| 特大巨黑吊av在线直播| 欧美成人a在线观看| 成人国产麻豆网| 日韩av不卡免费在线播放| 国产精品一区二区三区四区免费观看 | 国产亚洲精品久久久久久毛片| 人妻久久中文字幕网| 国产在视频线在精品| 日韩欧美国产在线观看| 人妻丰满熟妇av一区二区三区| 中国美白少妇内射xxxbb| 亚洲经典国产精华液单| .国产精品久久| 久久国内精品自在自线图片| 午夜老司机福利剧场| av卡一久久| 亚洲av第一区精品v没综合| 成人特级黄色片久久久久久久| 欧美色视频一区免费| 五月玫瑰六月丁香| 色噜噜av男人的天堂激情| av中文乱码字幕在线| 97人妻精品一区二区三区麻豆| 久久欧美精品欧美久久欧美| 婷婷精品国产亚洲av在线| 搡老岳熟女国产| 内射极品少妇av片p| 不卡视频在线观看欧美| 成人特级黄色片久久久久久久| 亚洲av二区三区四区| 免费一级毛片在线播放高清视频| 日本黄色片子视频| 亚洲aⅴ乱码一区二区在线播放| eeuss影院久久| 日本黄色视频三级网站网址| 国产aⅴ精品一区二区三区波| 极品教师在线视频| 午夜精品国产一区二区电影 | 男人舔女人下体高潮全视频| 97碰自拍视频| 51国产日韩欧美| 搡老妇女老女人老熟妇| 国内精品宾馆在线| 99热6这里只有精品| 国产欧美日韩一区二区精品| 亚洲欧美中文字幕日韩二区| 国产亚洲av嫩草精品影院| av女优亚洲男人天堂| 在线观看午夜福利视频| 国产成人aa在线观看| 亚洲四区av| 国产精品久久久久久久久免| 亚洲一区高清亚洲精品| 久久久国产成人精品二区| 久久99热6这里只有精品| 简卡轻食公司| 熟女人妻精品中文字幕| 给我免费播放毛片高清在线观看| 久久韩国三级中文字幕| 亚洲自偷自拍三级| 国产精品无大码| 午夜视频国产福利| 免费看日本二区| 久久午夜亚洲精品久久| 99久久精品国产国产毛片| 精品一区二区三区视频在线| 我要搜黄色片| 国产一区二区在线观看日韩| 天天躁夜夜躁狠狠久久av| 黄色一级大片看看| 99久久精品一区二区三区| 免费黄网站久久成人精品| 男人和女人高潮做爰伦理| 欧美性猛交╳xxx乱大交人| 亚洲av成人av| 男女下面进入的视频免费午夜| 蜜臀久久99精品久久宅男| 精品国内亚洲2022精品成人| 99热全是精品| 久久精品国产99精品国产亚洲性色| 国产精品一区www在线观看| 69av精品久久久久久| 免费电影在线观看免费观看| 久久精品国产自在天天线| 97超碰精品成人国产| 最近2019中文字幕mv第一页| 深爱激情五月婷婷| 精品午夜福利在线看| av国产免费在线观看| 2021天堂中文幕一二区在线观| 欧美三级亚洲精品| 亚洲人成网站在线播放欧美日韩| 成人永久免费在线观看视频| 久久久久精品国产欧美久久久| 在线看三级毛片| 干丝袜人妻中文字幕| 亚洲欧美中文字幕日韩二区| 综合色av麻豆| 一进一出好大好爽视频| 最好的美女福利视频网| 婷婷亚洲欧美| 国产探花在线观看一区二区| 日韩欧美国产在线观看| 如何舔出高潮| 人妻少妇偷人精品九色| 女人十人毛片免费观看3o分钟| 18禁黄网站禁片免费观看直播| 嫩草影视91久久| 看免费成人av毛片| 欧美日韩国产亚洲二区| 观看免费一级毛片| 国产69精品久久久久777片| 最近2019中文字幕mv第一页| 99在线视频只有这里精品首页| 久久久久性生活片| 最近的中文字幕免费完整| 久久午夜亚洲精品久久| 国产精品日韩av在线免费观看| 婷婷色综合大香蕉| 欧美日韩在线观看h| 91午夜精品亚洲一区二区三区| 久久久午夜欧美精品| 亚洲人成网站在线播放欧美日韩| 啦啦啦观看免费观看视频高清| 国产精品美女特级片免费视频播放器| 久久韩国三级中文字幕| 成人特级av手机在线观看| 日韩大尺度精品在线看网址| 男女视频在线观看网站免费| 一夜夜www| 国内精品宾馆在线| 国产精品嫩草影院av在线观看| 成人二区视频| 日本三级黄在线观看| 好男人在线观看高清免费视频| 人妻久久中文字幕网| 欧美一级a爱片免费观看看| 久久久久久久久久成人| 欧美日韩一区二区视频在线观看视频在线 | 在线免费十八禁| 国产视频内射| 女的被弄到高潮叫床怎么办| 欧美极品一区二区三区四区| 在线播放国产精品三级| 欧美一级a爱片免费观看看| 国产探花在线观看一区二区| 欧美最黄视频在线播放免费| 亚洲国产精品久久男人天堂| 欧美最黄视频在线播放免费| 12—13女人毛片做爰片一| 国国产精品蜜臀av免费| 久久精品影院6| 嫩草影院入口| 国产麻豆成人av免费视频| 欧美高清性xxxxhd video| 亚洲一区高清亚洲精品| 久久精品夜色国产| 欧洲精品卡2卡3卡4卡5卡区| 亚洲在线自拍视频| 人人妻人人看人人澡| 免费无遮挡裸体视频| 精品人妻偷拍中文字幕| 蜜臀久久99精品久久宅男| 91麻豆精品激情在线观看国产| 午夜影院日韩av| 菩萨蛮人人尽说江南好唐韦庄 | 一级毛片aaaaaa免费看小| 欧美人与善性xxx| 久久久久久九九精品二区国产| 少妇丰满av| www日本黄色视频网| 淫秽高清视频在线观看| av在线播放精品| 在线免费十八禁| 国产久久久一区二区三区| 18+在线观看网站| 婷婷亚洲欧美| .国产精品久久| 亚洲国产精品sss在线观看| 亚州av有码| 听说在线观看完整版免费高清| 少妇的逼好多水| 久久精品影院6| 日产精品乱码卡一卡2卡三| ponron亚洲| 高清日韩中文字幕在线| 国产伦精品一区二区三区视频9| 国产亚洲91精品色在线| 国产成人福利小说| 毛片一级片免费看久久久久| 一本久久中文字幕| 国产精品美女特级片免费视频播放器| 成人二区视频| 国产91av在线免费观看| 一进一出抽搐动态| 国产麻豆成人av免费视频| 女的被弄到高潮叫床怎么办| 亚洲三级黄色毛片| 国产精品亚洲美女久久久| 久久久久久久久中文| 精品不卡国产一区二区三区| 婷婷精品国产亚洲av在线| 亚洲av成人av| 欧美成人一区二区免费高清观看| 99热6这里只有精品| a级毛片免费高清观看在线播放| 日日干狠狠操夜夜爽| 男人的好看免费观看在线视频| 成人亚洲精品av一区二区| 国产精品一区二区免费欧美| 99视频精品全部免费 在线| 神马国产精品三级电影在线观看| 深夜精品福利| 国产精品一二三区在线看| 日韩,欧美,国产一区二区三区 | 成人鲁丝片一二三区免费| 婷婷亚洲欧美| 亚洲最大成人av| 午夜精品国产一区二区电影 | 少妇猛男粗大的猛烈进出视频 | 久久精品国产亚洲av天美| 国产成人freesex在线 | 国产伦在线观看视频一区| 国产精品无大码| 亚洲国产色片| 免费看光身美女| 久久中文看片网| 九九爱精品视频在线观看| 久久欧美精品欧美久久欧美| 午夜老司机福利剧场| 日韩大尺度精品在线看网址| 日韩三级伦理在线观看| 老司机福利观看| 国产精品一区二区性色av| 97在线视频观看| 久久久精品大字幕| 男人舔女人下体高潮全视频| 麻豆精品久久久久久蜜桃| 亚洲中文字幕日韩| 免费大片18禁| 老女人水多毛片| 国产高清视频在线播放一区| 国产黄a三级三级三级人| 成年av动漫网址| 日韩人妻高清精品专区| 成人无遮挡网站| 在线播放无遮挡| 亚洲一级一片aⅴ在线观看| 一级av片app| 日韩欧美精品v在线| 18禁裸乳无遮挡免费网站照片| 变态另类成人亚洲欧美熟女| 国产一区二区三区在线臀色熟女| 搡老熟女国产l中国老女人| 国产精品久久久久久精品电影| 午夜爱爱视频在线播放| 国内精品美女久久久久久| 免费观看人在逋| 老女人水多毛片| 免费在线观看影片大全网站| 亚洲欧美清纯卡通| 日日摸夜夜添夜夜添av毛片| 亚洲无线在线观看| 午夜久久久久精精品| 高清日韩中文字幕在线| 蜜桃久久精品国产亚洲av| 寂寞人妻少妇视频99o| 六月丁香七月| 久久精品国产亚洲av涩爱 | 婷婷色综合大香蕉| 国产精品久久久久久久久免| 国产爱豆传媒在线观看| 午夜激情欧美在线| 精品人妻偷拍中文字幕| 久久久久国内视频| 国产激情偷乱视频一区二区| 国产av不卡久久| 国产乱人偷精品视频| 香蕉av资源在线| 桃色一区二区三区在线观看| 国产高潮美女av| 久99久视频精品免费| 国产高清不卡午夜福利| 我要搜黄色片| 国产精品乱码一区二三区的特点| 99九九线精品视频在线观看视频| 天堂av国产一区二区熟女人妻| a级毛片免费高清观看在线播放| 久久精品国产亚洲av天美| 日韩精品青青久久久久久| 能在线免费观看的黄片| 我的老师免费观看完整版| 亚洲欧美日韩卡通动漫| 亚洲av五月六月丁香网| 成人午夜高清在线视频| 欧美激情国产日韩精品一区| 亚洲欧美日韩卡通动漫| 搞女人的毛片| 丰满乱子伦码专区| 伦精品一区二区三区| 久久久久久国产a免费观看| 日本三级黄在线观看| 97人妻精品一区二区三区麻豆| 热99re8久久精品国产| 大型黄色视频在线免费观看| 毛片女人毛片| 国产熟女欧美一区二区| 亚洲熟妇中文字幕五十中出| av在线老鸭窝| 久久久久久久久久黄片| 午夜精品国产一区二区电影 | 级片在线观看| 亚洲av美国av| 久久久a久久爽久久v久久| 欧美+亚洲+日韩+国产| 99久久精品国产国产毛片| 亚洲经典国产精华液单| 性色avwww在线观看| 波野结衣二区三区在线| 免费搜索国产男女视频| 亚洲人成网站在线播放欧美日韩| 亚洲欧美日韩卡通动漫| 免费av观看视频| 少妇被粗大猛烈的视频| 极品教师在线视频| 亚洲经典国产精华液单| 日本欧美国产在线视频| 久久精品国产亚洲av涩爱 | 久久人人爽人人爽人人片va| 别揉我奶头 嗯啊视频| 国产一区二区在线观看日韩| 欧美成人免费av一区二区三区| 全区人妻精品视频| 简卡轻食公司| 精品一区二区三区人妻视频| 嫩草影院入口| .国产精品久久| 日日摸夜夜添夜夜爱| 九九在线视频观看精品| 亚洲精品影视一区二区三区av| 特级一级黄色大片| 我要看日韩黄色一级片| 欧美潮喷喷水| 亚洲精品色激情综合| 直男gayav资源| 美女免费视频网站| 观看免费一级毛片| 我的女老师完整版在线观看| 在线播放国产精品三级| 国产成人91sexporn| 又爽又黄无遮挡网站| 亚洲中文字幕日韩| 插阴视频在线观看视频| 免费av不卡在线播放| 亚洲av熟女| 女的被弄到高潮叫床怎么办| 人人妻人人澡人人爽人人夜夜 | 精品一区二区免费观看| 午夜激情欧美在线| 男人舔奶头视频| 如何舔出高潮| 欧美bdsm另类| 热99re8久久精品国产| 亚洲成人精品中文字幕电影| 性欧美人与动物交配| 国产精品久久久久久久电影| 国产淫片久久久久久久久| 欧美区成人在线视频| 欧美成人一区二区免费高清观看| 国产女主播在线喷水免费视频网站 | 久久韩国三级中文字幕| 日本黄色视频三级网站网址| 给我免费播放毛片高清在线观看| 亚洲欧美精品自产自拍| 日本撒尿小便嘘嘘汇集6| 欧美一区二区精品小视频在线| 亚洲av免费高清在线观看| 嫩草影视91久久| a级毛色黄片| 亚洲精品一区av在线观看| 亚洲美女搞黄在线观看 | 最近2019中文字幕mv第一页| 亚洲成人精品中文字幕电影| 久久久久性生活片| 午夜福利在线在线| 内地一区二区视频在线| 久久久成人免费电影| 欧美3d第一页| 日韩欧美精品v在线| 女的被弄到高潮叫床怎么办| 婷婷六月久久综合丁香| 中文字幕人妻熟人妻熟丝袜美| 日韩精品有码人妻一区| 久久精品国产鲁丝片午夜精品| av国产免费在线观看| 日韩 亚洲 欧美在线| 蜜臀久久99精品久久宅男| 桃色一区二区三区在线观看| 亚洲乱码一区二区免费版| 99热6这里只有精品| 日本免费一区二区三区高清不卡| 亚洲aⅴ乱码一区二区在线播放| 小蜜桃在线观看免费完整版高清| 夜夜爽天天搞| 国产视频一区二区在线看| 亚洲精品久久国产高清桃花| 国产视频一区二区在线看| 午夜老司机福利剧场| 不卡一级毛片| 51国产日韩欧美| 日本与韩国留学比较| 少妇人妻精品综合一区二区 | 女的被弄到高潮叫床怎么办| 22中文网久久字幕| 欧美色欧美亚洲另类二区| 亚洲自拍偷在线| 国产单亲对白刺激| 搡老岳熟女国产| 精品99又大又爽又粗少妇毛片| 97碰自拍视频| 欧美高清性xxxxhd video| www.色视频.com| 亚洲天堂国产精品一区在线| 国产精品一区二区三区四区久久| 色尼玛亚洲综合影院| 色综合站精品国产| 在线播放无遮挡| 男女之事视频高清在线观看| 久久久久久久久久成人| 欧美一区二区亚洲| 一个人看视频在线观看www免费| 久久国内精品自在自线图片| 日本-黄色视频高清免费观看| 国产69精品久久久久777片| 男人舔奶头视频| 亚洲美女搞黄在线观看 | 乱码一卡2卡4卡精品| 亚洲国产欧洲综合997久久,| 看免费成人av毛片| 欧美成人一区二区免费高清观看| 99国产极品粉嫩在线观看| 日韩欧美国产在线观看| 久久综合国产亚洲精品| 国产一级毛片七仙女欲春2| 国产69精品久久久久777片| 亚州av有码| 天天一区二区日本电影三级| 别揉我奶头~嗯~啊~动态视频| 男人舔女人下体高潮全视频| 麻豆一二三区av精品| 六月丁香七月| 日本五十路高清| 亚洲天堂国产精品一区在线| 国产精品女同一区二区软件| 寂寞人妻少妇视频99o| 精品日产1卡2卡| 女生性感内裤真人,穿戴方法视频| 精品福利观看| 韩国av在线不卡| 亚洲一级一片aⅴ在线观看| 国产免费男女视频| 亚洲国产精品成人久久小说 | 丝袜美腿在线中文| 亚洲激情五月婷婷啪啪| 精品人妻一区二区三区麻豆 | 午夜视频国产福利| 欧美xxxx黑人xx丫x性爽| 波多野结衣高清无吗| 级片在线观看| 亚洲熟妇中文字幕五十中出| 成年版毛片免费区| 俺也久久电影网| 亚洲精品日韩av片在线观看| 免费黄网站久久成人精品| 精品一区二区免费观看| 伦精品一区二区三区| av卡一久久| 国产白丝娇喘喷水9色精品| 日韩亚洲欧美综合| 日产精品乱码卡一卡2卡三| 亚洲人成网站高清观看| 天堂√8在线中文| 日日摸夜夜添夜夜添av毛片| 久久久色成人| 波多野结衣高清无吗| 色av中文字幕| 色在线成人网| 一级毛片aaaaaa免费看小| 免费看美女性在线毛片视频| 人人妻人人澡人人爽人人夜夜 | 天天躁夜夜躁狠狠久久av| 韩国av在线不卡| 亚洲美女黄片视频| 一本精品99久久精品77| 亚洲熟妇熟女久久| 一个人看的www免费观看视频| 免费观看的影片在线观看| av在线蜜桃| 啦啦啦啦在线视频资源| 亚洲精品粉嫩美女一区| 久久久久久久久久成人| 久久人人爽人人爽人人片va| 搞女人的毛片| 国产精华一区二区三区| 国产视频一区二区在线看| 久久人人爽人人片av| 一级a爱片免费观看的视频| 久久久久久久亚洲中文字幕| 一级毛片电影观看 | 免费av毛片视频| 国产亚洲av嫩草精品影院| 精品人妻视频免费看| 免费观看精品视频网站| 男女边吃奶边做爰视频|