李建偉 雷姣姣 白峰 辛欣
變壓精餾分離碳酸二甲酯-甲醇共沸物的穩(wěn)態(tài)模擬
李建偉 雷姣姣 白峰 辛欣
西安科技大學(xué)化學(xué)與化工學(xué)院
碳酸二甲酯與甲醇形成的共沸物是一種難以分離的物系,采用Wilson熱力學(xué)模型,通過Aspen Plus流程模擬軟件對變壓精餾分離碳酸二甲酯-甲醇共沸物的工藝進(jìn)行穩(wěn)態(tài)模擬優(yōu)化,優(yōu)化后的結(jié)果為:常壓塔(0.1 MPa)實(shí)際塔板數(shù)為25,進(jìn)料板位置為5,回流比為1.4;加壓塔(1 MPa)實(shí)際塔板數(shù)為34,進(jìn)料板位置為27,回流比為1.2。優(yōu)化后碳酸二甲酯與甲醇的回收率均為99.99%。
碳酸二甲酯 甲醇 共沸物 Aspen Plus 回收率 變壓精餾
碳酸二甲酯(DMC)是一種重要的有機(jī)合成中間體,在多種行業(yè)中均有廣泛應(yīng)用[1],具有很大的發(fā)展開發(fā)潛能。DMC分子結(jié)構(gòu)中含有羰基、甲基、醛基等多種官能團(tuán),可進(jìn)行多種化學(xué)反應(yīng),且在生產(chǎn)過程中具有安全方便、操作簡單、環(huán)保等特點(diǎn),因此被譽(yù)為當(dāng)今有機(jī)合成的“新基石”[2]。
當(dāng)前,工業(yè)上有各種合成DMC的方法,其主要為光氣甲醇法、甲醇氧化羰基化法、酯交換法、二氧化碳與甲醇直接合成法等[3],但由于甲醇始終很難實(shí)現(xiàn)完全轉(zhuǎn)化,因此最終得到的都是DMC與甲醇的混合物,該混合物是一種較難分離的共沸物。目前,全球所采用的分離共沸物的方法有膜分離法、低溫結(jié)晶法、共沸精餾法、萃取精餾法、變壓精餾法等多種方法[4]。其中,變壓精餾和萃取精餾被認(rèn)為是當(dāng)前最有效的分離共沸物的方法,而變壓精餾法與萃取精餾法相比,其避免了分離過程中相關(guān)的外加溶劑的選擇及回收過程;此外,還具有操作費(fèi)用低、工藝流程短、易控、操作方便等多種優(yōu)勢[5-6]。
本文采用變壓精餾分離方法,通過Aspen Plus模擬軟件對分離工藝進(jìn)行穩(wěn)態(tài)模擬,進(jìn)而通過優(yōu)化獲得最優(yōu)操作參數(shù),從而降低操作費(fèi)用,并提高DMC和甲醇產(chǎn)品的回收率。
DMC-甲醇共沸物體系具有很強(qiáng)的非理想性,通常采用熱力學(xué)模型 NRTL、UNIQUAC、Wilson、UNIFAC等活度系數(shù)模型進(jìn)行模擬計(jì)算。經(jīng)比較發(fā)現(xiàn),Wilson模型是最理想的活度系數(shù)模型,該模型參數(shù)的壓力范圍是0.1~1.5 MPa,溫度范圍是337~328 K[7-8]。
將Wilson模型參數(shù)進(jìn)行氣液平衡計(jì)算,圖1是分別在0.1 MPa和1 MPa壓力下繪制出的DMC-甲醇物系的氣液平衡相圖。由圖1可得,DMC-甲醇共沸物中甲醇的含量隨著壓力的增加而增加,而DMC-甲醇二組分的共沸物可以在高壓塔塔頂?shù)玫?達(dá)到分離純度的DMC產(chǎn)品則可以在塔底獲得。所以,理論上DMC-甲醇二組分的共沸物可以通過變壓精餾法進(jìn)行分離。
在常壓下,DMC與甲醇形成二元恒沸物,恒沸溫度64℃,共沸物質(zhì)量分?jǐn)?shù)組成為甲醇70%、碳酸二甲酯30%[9]。本研究中DMC-甲醇共沸物來自煤制乙二醇流程,采用一個常壓精餾塔和一個加壓精餾塔串聯(lián)的方式分離DMC-甲醇共沸物,模擬過程中采用Wilson熱力學(xué)模型,其物流條件如下:進(jìn)料溫度64℃,壓力0.12 MPa,摩爾流率365.54 kmol/h。經(jīng)模擬后,在常壓塔塔釜中得到質(zhì)量分?jǐn)?shù)不少于99.9%的工業(yè)甲醇,該產(chǎn)品可以在合成氣制乙二醇的系統(tǒng)中循環(huán)利用,而常壓塔塔頂混合物將進(jìn)入壓力為1 MPa的高壓塔中進(jìn)一步分離,在高壓塔塔釜中得到質(zhì)量分?jǐn)?shù)不少于99.9%的DMC產(chǎn)品,而高壓塔塔頂混合物將進(jìn)入常壓塔繼續(xù)進(jìn)行分離[10-12]。穩(wěn)態(tài)模擬的流程模型如圖2所示。
在對常壓-加壓精餾分離工藝流程進(jìn)行模擬的過程中,精餾塔精餾模塊采用Rad Frac,精餾塔塔頂設(shè)置為全凝氣泡點(diǎn)出料,再沸器的形式默認(rèn)為釜式再沸器,收斂方法選擇共沸物系[13-14],精餾塔的主要參數(shù)如表1所示。
表1 精餾塔主要參數(shù)Table 1 Main parameters of fractionator
模擬后工藝物流的結(jié)果如表2所示。模擬結(jié)果表明所建立的模型可靠。
表2 常壓-加壓精餾工藝中部分物流結(jié)果Table 2 Part feeds of the atmospheric pressure distillation process
在Aspen模擬過程中,為了能夠在達(dá)到所需產(chǎn)品純度要求的情況下將其操作費(fèi)用降到最低,采用Aspen Plus過程模擬軟件中的靈敏度分析模塊對各種工藝參數(shù)進(jìn)行靈敏度分析,從而獲得最優(yōu)操作參數(shù)[15-17]。
常壓塔實(shí)際塔板數(shù)的變化對產(chǎn)品甲醇的質(zhì)量分?jǐn)?shù)和再沸器熱負(fù)荷的影響如圖3所示。由圖3可知:隨著常壓塔實(shí)際塔板數(shù)的不斷增加,產(chǎn)品甲醇的質(zhì)量分?jǐn)?shù)開始時明顯增加,當(dāng)理論塔板數(shù)增至25塊再繼續(xù)增加時,其質(zhì)量分?jǐn)?shù)基本不再明顯增加;而隨著常壓塔實(shí)際塔板數(shù)的不斷增加,常壓塔再沸器的熱負(fù)荷開始時明顯減少,當(dāng)實(shí)際塔板數(shù)增至25塊再繼續(xù)增加時,再沸器熱負(fù)荷基本不再明顯減少直至平衡不變。由此可見,將常壓塔最佳塔板數(shù)定為25時,再沸器總能耗最小,產(chǎn)品純度最好。因此,從操作費(fèi)用以及產(chǎn)品要求的角度出發(fā),將常壓塔的最佳實(shí)際塔板數(shù)定為25。
同上,對加壓塔的實(shí)際塔板數(shù)進(jìn)行優(yōu)化。同樣,保持其他操作條件不變,將加壓塔的實(shí)際塔板數(shù)從26塊增加到40塊時,所得分離流程的模擬結(jié)果如圖4所示。通過與常壓塔相似的分析對比,將加壓塔最佳實(shí)際塔板數(shù)定為34。
常壓塔進(jìn)料位置的變化對產(chǎn)品甲醇質(zhì)量分?jǐn)?shù)和再沸器熱負(fù)荷的影響如圖5所示。由圖5可知:隨著進(jìn)料位置的不斷增加,產(chǎn)品質(zhì)量分?jǐn)?shù)開始時變化趨勢并不明顯,當(dāng)進(jìn)料位置增至第5塊后再繼續(xù)增加時,產(chǎn)品甲醇的質(zhì)量分?jǐn)?shù)明顯減少;而隨著進(jìn)料位置的不斷增加,常壓塔再沸器的熱負(fù)荷開始時變化趨勢并不明顯,當(dāng)進(jìn)料位置增至5塊再繼續(xù)增加時,再沸器的熱負(fù)荷變化趨勢明顯增加。因此,從操作費(fèi)用以及產(chǎn)品要求的角度出發(fā),經(jīng)以上分析對比,將常壓塔的最佳進(jìn)料位置定為第5塊。
同上,對加壓塔的實(shí)際塔板數(shù)進(jìn)行優(yōu)化。同樣,保持其他操作條件不變,將加壓塔的進(jìn)料位置從20塊增加到30塊時,所得分離流程的模擬結(jié)果如圖6所示。通過與常壓塔相似的分析對比,將加壓塔的最佳進(jìn)料位置定為第27塊。
回流比的變化對產(chǎn)品甲醇質(zhì)量分?jǐn)?shù)和再沸器熱負(fù)荷的影響如圖7所示。由圖7可知:隨著回流比的不斷增加,產(chǎn)品質(zhì)量分?jǐn)?shù)開始時變化趨勢是不斷增加的,當(dāng)回流比增至1.4后再繼續(xù)增加時,產(chǎn)品甲醇的質(zhì)量分?jǐn)?shù)變化趨勢并不明顯;而隨著回流比的不斷增加,常壓塔再沸器的熱負(fù)荷也隨之不斷增加。所以,從操作費(fèi)用及產(chǎn)品要求的角度出發(fā),經(jīng)以上對比分析,將常壓塔的回流比定為1.4。
同上,對加壓塔的回流比進(jìn)行優(yōu)化。同樣,保持其他操作條件不變,將加壓塔的回流比從1增加到10,所得分離流程的模擬結(jié)果如圖8所示。通過與常壓塔
相似的分析對比,將加壓塔的回流比定為1.2。
綜上所述,對變壓精餾工藝中的操作參數(shù)以及工藝流程的優(yōu)化所得到的兩塔主要參數(shù)如表3所示,工藝流程中物流的結(jié)果如表4所示。
表3 精餾塔參數(shù)Table 3 Parameters of distillation column
表4 常壓-加壓精餾工藝流程結(jié)果Table 4 Parameters of atmospheric pressure distillation process
將表3與表4中的熱負(fù)荷及產(chǎn)品純度進(jìn)行比較可知,熱負(fù)荷在不同程度上均有所減少,產(chǎn)品純度在不同程度上均有所提高。因此,該工藝達(dá)到了優(yōu)化的目的。
為了明確塔內(nèi)氣液相分布情況,優(yōu)化后對各精餾塔進(jìn)行靜態(tài)特性分析。圖9和圖10是常壓塔和加壓塔塔內(nèi)氣液相質(zhì)量分?jǐn)?shù)分布圖。
由圖9可得,分離DMC-甲醇共沸物,在常壓塔中甲醇為重組分,DMC為輕組分,所以越靠近塔頂DMC的質(zhì)量分?jǐn)?shù)越大,在塔頂時達(dá)到最大,越靠近塔釜甲醇質(zhì)量分?jǐn)?shù)越大,在塔釜時達(dá)到最大。在加壓塔中,由于是高壓環(huán)境,從而改變了各組分的沸點(diǎn)。由圖10可知,在高壓塔中分離DMC-甲醇共沸物,甲醇為輕組分,DMC為重組分,所以越靠近塔頂甲醇的質(zhì)量分?jǐn)?shù)越大,在塔頂時達(dá)到最大,越靠近塔釜DMC的質(zhì)量分?jǐn)?shù)越大,在塔釜時達(dá)到最大。
常壓塔與加壓塔的塔內(nèi)氣液相流率分布如圖11與圖12所示。
由圖11與圖12可知:①塔頂采用全冷凝器,氣相混合物經(jīng)冷凝器回流到塔內(nèi),氣相流率幾乎為零,液相流率幾乎沒有變化;②由于常壓塔與加壓塔的進(jìn)料位置分別在第5塊塔板和第27塊塔板,以液相進(jìn)料,所以塔內(nèi)液相流率在該位置突然增加,同時,由于塔內(nèi)有液相回流,所以液相流率一直大于氣相流率,塔釜不斷提供熱量導(dǎo)致氣相流率增加,而塔內(nèi)需要保持恒定的溫度,所以氣相流率基本穩(wěn)定;③塔釜由于要采出釜液,所以導(dǎo)致液相流率驟降,而氣相流率基本不變。
通過Aspen Plus流程模擬軟件對變壓精餾分離碳酸二甲酯-甲醇共沸物的工藝進(jìn)行穩(wěn)態(tài)模擬,并對其影響參數(shù)及工藝參數(shù)進(jìn)行了相應(yīng)的分析優(yōu)化,優(yōu)化后工藝的熱負(fù)荷減少,產(chǎn)品回收率提高,達(dá)到了預(yù)期目的;同時,通過靜態(tài)分析了解到塔內(nèi)的分布情況正常,模擬過程達(dá)到了工業(yè)生產(chǎn)要求,對化工實(shí)際生產(chǎn)過程具有指導(dǎo)意義。
[1]薛建榮,鐘宏,符劍剛.碳酸二甲酯的用途及合成研究進(jìn)展[J].化工技術(shù)與開發(fā),2006,35(3):8-13.
[2]韓德奇.有機(jī)合成的“新基石”——DMC[J].化工之友,2000(3):11.
[3]易華燕,尚書勇,梅麗,等.碳酸二甲酯生產(chǎn)工藝綜述[J].廣東化工,2010,37(9):63-65.
[4]韓萍芳,李揚(yáng),王延儒.碳酸二甲酯-甲醇共沸物的分離方法研究進(jìn)展[J].常州大學(xué)學(xué)報(自然科學(xué)版),2003,15(4):61-64.
[5]劉立新,李魯閩,劉桂麗,等.碳酸二甲酯-甲醇共沸體系分離的模擬與控制[J].化工進(jìn)展,2017,36(3):852-862.
[6]賈彥雷.碳酸二甲酯與甲醇分離的模擬研究[J].青島科技大學(xué)學(xué)報(自然科學(xué)版),2011,32(1):5-11.
[7]姚林祥,劉振鋒,宋懷俊,等.變壓精餾分離碳酸二甲酯與甲醇工藝流程的模擬[J].河南化工,2013,30(7):32-36.
[8]李光興,熊國璽.碳酸二甲酯-甲醇二元共沸物的分離方法[J].化學(xué)與生物工程,2000,21(5):4-6.
[9]王皓,陸康,彭璇.基于Wilson、UNIQUAC和NRTL活度系數(shù)模型的離子液體體系的相平衡比較[J].北京化工大學(xué)學(xué)報(自然科學(xué)版),2013,40(1):10-15.
[10]肖楊.甲醇-碳酸二甲酯二元共沸物的分離[J].浙江化工,2009,40(1):4-6.
[11]梅支舵,殷芳喜.加壓分離甲醇與碳酸二甲酯共沸物的新技術(shù)研究[J].安徽化工,2001,27(1):2-3.
[12]張鵬,王琨,張喻,等.UNIFAC基團(tuán)貢獻(xiàn)法估算甲醇-碳酸二甲酯的汽液相平衡[J].化工科技,2003,11(5):32-35.
[13]衛(wèi)紅梅,王峰,趙寧,等.加壓-常壓雙塔分離碳酸二甲酯-甲醇共沸物的動態(tài)模擬研究[J].石油化工,2014,43(2):169-175.
[14]殷芳喜.碳酸二甲酯的合成及其共沸物的分離[J].安徽化工,2003,29(2):17-20.
[15]CHUN-SHAN L I,ZHANG X P,ZHANG S J,et al.Vaporliquid equilibria and process simulation for separation of dimethyl carbonate and methanol azeotropic system[J].Chinese Journal of Process Engineering,2003,3(5):453-458.
[16]CHENG J.Vapor-liquid equilibrium of dimethyl carbonatemethanol and study on separation of the azeotrope system[J].Chemical Engineering of Oil&Gas,2010,39(1):18-17.
[17]HAN P F,YANG L I,WANG Y R.Development in separation of dimethyl carbonate-methanol azeotrope[J].Journal of Jiangsu Polytechnic University,2003(4):61-64.
Steady state simulation for separation of dimethyl carbonate-methanol azeotrope by variable pressure rectification
Li Jianwei,Lei Jiaojiao,Bai Feng,Xin Xin
College of Chemical Engineering,Xi′an University of Science and Technology,Xi′an,Shaanxi,China
The azeotropic of dimethyl carbonate and methanol is an inseparable material.In this paper,the steady state simulation optimization of dimethyl carbonate dimethyl carbonate-methanol azeotrope was simulated by the Aspen Plus process simulation software.The optimization result is that the actual stage number of the atmospheric tower(0.1 MPa)is 25,the feeding plate position is 5,and the reflux ratio is 1.4;the actual stage number of the pressure tower(1 MPa)is 34,the feeding plate position is 27,and the reflux ratio is 1.2.The recovery rate of both dimethyl carbonate and methanol was 99.99%.
dimethyl carbonate,methanol,azeotrope,Aspen Plus,recovery rate,variable pressure rectification
TQ202
A
10.3969/j.issn.1007-3426.2017.06.009
國土資源部煤炭資源勘查與綜合利用重點(diǎn)實(shí)驗(yàn)室科研課題“基于煤灰熔融粘溫特性的氣化操作工況調(diào)優(yōu)輔助系統(tǒng)開發(fā)”(KF2013-1)。
李建偉(1971-),男,河南靈寶人,副教授,碩士生導(dǎo)師。
雷姣姣。E-mail:914971810@qq.com
2017-09-18;編輯:康 莉