李瑋+宋國琦+陳明麗+高潔+張淑娟+李玉蓮+張榮志+王姣+韓小東+李根英+宋華東
摘要:為了有效利用已經(jīng)開發(fā)的小麥分子標記,加強分子標記載體材料及檢測數(shù)據(jù)的交流利用,掌握育種親本的基因型組成,本研究通過收集整理已發(fā)表的分子標記及其載體材料、分子標記檢測結(jié)果和開展育種親本分子標記檢測,建立起小麥分子標記數(shù)據(jù)庫。共收錄分子標記信息311條,分子標記載體材料27個,分子標記檢查數(shù)據(jù)19 006條,檢測育種親本1 784份。本數(shù)據(jù)庫的建立可助推小麥分子育種共享平臺建設(shè)。
關(guān)鍵詞:小麥;分子標記;載體材料;數(shù)據(jù)庫
中圖分類號:S512.103文獻標識號:A文章編號:1001-4942(2017)11-0001-12
Construction of Wheat Molecular Marker Database
Li Wei1,2, Song Guoqi1,2, Chen Mingli1,2, Gao Jie1,2, Zhang Shujuan1,2, Li Yulian1,2,
Zhang Rongzhi1,2, Wang Jiao1,2, Han Xiaodong1,2, Li Genying1,2, Song Huadong2,3
(1. Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China;
2. Key Laboratory of Wheat Biology and Genetic Improvement in the North Yellow & Huai River Valley,
Ministry of Agriculture/National Engineering Laboratory for Wheat & Maize, Jinan 250100, China;
3. Shandong Cotton Research Center, Jinan 250100, China)
AbstractIn order to effectively utilize published wheat molecular markers, enhance exchange and application of marker-donor materials and data, and understand the genotype of breeding parents, the wheat molecular marker database was established through collection and systematization of published molecular marker information, marker-donor materials, and marker detection results. Three hundred and eleven molecular markers, 27 marker-donor materials, 19 006 detection records and 1 784 breeding parents were included. The establishment of the database will promote the development of wheat molecular breeding platform.
KeywordsWheat; Molecular marker; Marker-donor material; Database
隨著檢測、測序等技術(shù)的發(fā)展,分子標記技術(shù)已被廣泛應(yīng)用于基因定位與克隆、數(shù)量性狀位點(QTL)分析、關(guān)聯(lián)分析、比較基因組學(xué)、遺傳多樣性評估、系統(tǒng)發(fā)生學(xué)和全基因組選擇等生命科學(xué)領(lǐng)域。分子育種以分子標記輔助選擇和轉(zhuǎn)基因為主要內(nèi)容。由于對轉(zhuǎn)基因產(chǎn)品的安全性存在爭議,將分子標記輔助選擇和傳統(tǒng)育種相結(jié)合成為在一定時期內(nèi)分子育種應(yīng)用的主要形式[1]。傳統(tǒng)育種通過對性狀的選擇實現(xiàn)遺傳改良,存在周期長、效率低等缺點。分子標記輔助選擇通過對分子標記進行選擇實現(xiàn)對目標基因型的選擇,包括前景選擇和背景選擇。前景選擇即對與目標基因緊密連鎖的分子標記進行選擇,可以實現(xiàn)早期選擇,減小選擇群體;背景選擇即對遺傳背景的選擇,可加快遺傳背景的恢復(fù)速度,縮短育種年限,減輕連鎖累贅[2,3],從而提高育種效率。
小麥是世界上種植范圍最廣、最重要的糧食作物之一,以小麥(面粉)作為主食的人口占世界人口的35%[4]。在小麥中,分子標記最早被用于連鎖分析[5],為后續(xù)的分子標記輔助選擇奠定了基礎(chǔ)。目前,小麥中開發(fā)的分子標記所針對基因的共同特點是遺傳力低、一般為隱性基因、對應(yīng)的表型鑒定困難或昂貴、需要多基因聚合,主要包括抗病、農(nóng)藝和品質(zhì)性狀等[6]。從19世紀80年代后期開始,分子標記技術(shù)被廣泛用于小麥實踐[7]。澳大利亞、美國、加拿大、墨西哥(國際玉米小麥改良中心)、阿根廷、英國、法國、土耳其和印度等國家都開展了相關(guān)研究項目,主要使用的分子標記為STS、SSR、SNP、SCAR、CAPS等。利用分子標記輔助基因確認的報道有抗赤霉病、抗穗發(fā)芽、抗白粉病、抗葉銹病、抗葉斑病、染色體代換、抗稈銹病、高分子量谷蛋白亞基等;利用分子標記輔助回交的報道有高分子量谷蛋白亞基改良,同時導(dǎo)入抗小麥吸漿蟲、抗赤霉病和葉銹病基因,多個白粉病基因?qū)?,籽粒蛋白質(zhì)含量改良,面團特性、持久銹病抗性和矮稈改良,抗條銹基因?qū)耄顾氚l(fā)芽QTL導(dǎo)入等;進行聚合基因或QTL的報道有抗白粉病、抗葉銹病、抗赤霉病、抗禾谷孢囊線蟲、抗穗發(fā)芽和籽粒蛋白質(zhì)含量等[6]。與小麥籽粒重量相關(guān)的基礎(chǔ)性研究也已經(jīng)開展,目前開發(fā)了粒重、粒寬、細胞分裂素氧化酶、細胞壁轉(zhuǎn)化酶、果聚糖合成酶、蔗糖合成酶等的分子標記,可用于進一步改良粒重,提高產(chǎn)量潛力[8]。何中虎等[9]通過對國內(nèi)外發(fā)表的連鎖標記進行驗證優(yōu)化,將這些標記用于親本鑒定和高世代材料的基因確認,還用于分離世代抗病性和品質(zhì)性狀的選擇。隨著分子標記輔助改良品系在育種中的應(yīng)用,2005年首個利用分子標記輔助選擇育成的商業(yè)化小麥品種“Patwin”在美國上市。隨后加拿大的“Lillian”和“Goodeve”、阿根廷的“BIOINTA 2004”也相繼上市,這些分子育種最終產(chǎn)品的上市標志著分子育種在實踐中取得了成功。endprint
早期開發(fā)的分子標記多與目標性狀連鎖,由于連鎖標記并非控制性狀的基因本身,會因為基因重組而喪失連鎖關(guān)系,降低選擇效率,甚至選擇無效,限制了它們的應(yīng)用。2003年Andersen和Lübberstedt[10]提出功能標記(functional markers, FMs)概念,指根據(jù)基因內(nèi)能引起表型變異的多態(tài)性位點開發(fā)的分子標記,即功能標記所檢測位點的等位變異是導(dǎo)致表型變異的原因。小麥是異源六倍體植物,有A、B、D三個關(guān)系較近的亞基因組,基因組大小17 Gb[11,12]。到目前為止,研究清楚的多為由單基因控制的簡單性狀,對多基因控制的復(fù)雜性狀沒有突破性進展。功能標記開發(fā)受功能已知、序列明確、與表型關(guān)聯(lián)的基因數(shù)量限制,因而進展緩慢。2012年Liu等[13]對已經(jīng)公布的小麥功能標記進行了系統(tǒng)總結(jié),包括小麥加工品質(zhì)、農(nóng)藝性狀和抗病性相關(guān)的97個小麥功能標記,涉及30多個遺傳位點。2016年Rasheed等[14]為了實現(xiàn)大量功能標記的高通量低成本檢測,開發(fā)出70個通過KASP技術(shù)檢測的SNP標記,并對這些標記的可靠性進行了驗證。這些SNP標記約有一半是由STS等非SNP標記轉(zhuǎn)化而來,另一半是新開發(fā)的,檢測基因位點數(shù)增加有限。
目前,我國的農(nóng)作物育種還是以常規(guī)育種為主,基于基因水平的選擇剛剛起步。品種選育主要依靠育種家的經(jīng)驗,育種過程中存在“周期長、效率低、預(yù)見性差”等問題。其中,以下幾個方面的因素限制了分子育種技術(shù)的普及性應(yīng)用。一是親本材料的基因型組成不清晰。親本材料是優(yōu)良基因的載體,是進行分子標記輔助選擇的基礎(chǔ),只有明確了親本材料含有哪些優(yōu)異基因,才能利用分子標記輔助選擇技術(shù)將其中的優(yōu)異基因快速轉(zhuǎn)育到新品種(系)中。二是獲取含有優(yōu)異基因載體材料的信息渠道不暢。在小麥上已經(jīng)開發(fā)出不少與抗病、優(yōu)質(zhì)、高產(chǎn)等重要農(nóng)藝性狀緊密連鎖的分子標記,但是分子標記的載體材料被保存在標記的研發(fā)單位,需要這些材料的育種單位不能及時獲得這些資源。三是各個研究機構(gòu)之間分子標記檢測數(shù)據(jù)共享性不夠,隨著分子標記技術(shù)的普及,分子標記被廣泛用于親本材料檢測評價,但是由于缺乏一個數(shù)據(jù)共享平臺,不同的科研單位之間存在重復(fù)性工作,造成了人力、物力和時間的大量浪費。針對上述三個問題,本研究開展了以下工作:收集小麥上已經(jīng)發(fā)表的分子標記并進行驗證,甄別可用于分子育種的可靠標記;從骨干親本入手,通過分子標記檢測逐步積累親本材料的基因型信息,并將分散在不同科研機構(gòu)的檢測數(shù)據(jù)整合到數(shù)據(jù)庫中,最終建成便于育種家查詢和使用的專業(yè)化分子標記數(shù)據(jù)庫;征集含有抗病、優(yōu)質(zhì)、高產(chǎn)等優(yōu)異基因的載體材料,通過分子標記數(shù)據(jù)庫,打開獲取這些載體材料的信息渠道;結(jié)合本單位的分子診斷技術(shù)平臺,為小麥育種工作者提供全方位的服務(wù)。
1材料與方法
1.1分子標記收集與整理
本數(shù)據(jù)庫收集的分子標記均與小麥性狀緊密連鎖或位于控制該性狀的基因內(nèi)部,主要包括2012年Liu等[13]和2016年Rasheed等[14]發(fā)表的文章,均來自公共資源。
將每一個小麥分子標記按照標記名稱、性狀種類、性狀名稱、基因位點名稱、上下游引物序列、退火溫度、等位基因名稱、預(yù)期片段大?。⊿NP標記為等位基因堿基類型)、染色體臂位置、載體材料和陰性對照材料、標記類型、參考文獻和備注等信息條目進行整理,輸入Excel表格。對于原始文獻中有名稱的分子標記,錄入原始名稱,沒有名稱的,以上下游引物名稱的組合錄入。備注中注明等位基因?qū)?yīng)的表型、連鎖標記與目的基因的遺傳距離(是否功能標記)、CAPS標記對應(yīng)的限制性內(nèi)切酶名稱等其他信息。
1.2分子標記載體材料征集與共享
小麥分子標記在報道時均有對應(yīng)的載體材料,包括開發(fā)該標記時攜帶優(yōu)異等位基因的某一小麥品種或品系(原始載體材料)和被報道含有該等位基因的其他材料(檢出載體材料)。征集主要通過向文獻報道的作者、育種家、種質(zhì)資源庫等單位和個人索取、交換或購買獲得。已征集到的載體材料及時對外公布,任何組織或個人均可與本單位聯(lián)系索取。
1.3分子標記檢測和數(shù)據(jù)收集整理
分子標記檢測一方面是為了驗證分子標記的可靠性和實用性;另一方面是對育種親本進行系統(tǒng)全面的檢測,形成基因型數(shù)據(jù)存入數(shù)據(jù)庫共享和利用。檢測方法均參照原始文獻報道進行,基于PCR的SSR、STS等標記采用艾本德MasterCycler96 PCR儀擴增,瓊脂糖凝膠電泳分離,GelRed染色,伯樂GelDocXR凝膠成像儀觀察記錄?;贙ASP的SNP或Indel標記采用ABI7500熒光定量PCR儀檢測。
小麥分子標記檢測結(jié)果主要有兩個來源:一是自行檢測的結(jié)果,二是公開發(fā)表的檢測結(jié)果。將收集的小麥分子標記檢測結(jié)果按照材料名稱、標記名稱、檢測結(jié)果、參考文獻等進行整理,輸入Excel表格。
1.4小麥分子標記數(shù)據(jù)庫建立
為了方便后續(xù)增加分子標記檢測結(jié)果數(shù)據(jù),將分子標記檢測結(jié)果表拆分為育種親本表和檢測記錄表。將分子標記信息表、育種親本表和檢測記錄表導(dǎo)入微軟的Access2010數(shù)據(jù)庫管理軟件。分子標記信息和育種親本表分別以名稱作為主鍵,以育種親本表的主鍵作為檢測記錄表的外鍵,將分子標記信息表和檢測記錄表以分子標記名稱建立關(guān)系。用Access2010進行數(shù)據(jù)庫管理。
2結(jié)果與分析
小麥分子標記信息表收錄169個STS標記,74個SNP標記,44個SSR標記,17個CAPS標記和7個SCAR標記,共計311個。其中與1R易位相關(guān)的分子標記有7個;與非生物脅迫相關(guān)的抗穗發(fā)芽分子標記9個,抗旱分子標記3個,抗鹽分子標記2個;與農(nóng)藝性狀相關(guān)的籽粒重量分子標記19個,低分蘗分子標記1個,光周期分子標記13個,矮稈分子標記9個,春化分子標記23個;與抗病相關(guān)的黃矮病分子標記5個,赤霉病分子標記12個,葉銹病分子標記37個,白粉病分子標記23個,斑枯病分子標記2個,稈銹病分子標記29個,條銹病分子標記9個,褐斑病分子標記1個,黃花葉病分子標記2個,線條花葉病分子標記3個;與加工品質(zhì)相關(guān)的高低分子量谷蛋白亞基分子標記49個,籽粒硬度分子標記10個,蛋白質(zhì)含量分子標記3個,脂肪氧化酶分子標記4個,過氧化物酶分子標記3個,多酚氧化酶分子標記8個,蠟質(zhì)分子標記8個,黃色素含量分子標記17個。由于引物位置和分子標記類型不同,部分基因位點有多個分子標記,311個標記共涉及基因位點將近130個(表1)。endprint
檢測記錄表收錄自行檢測的數(shù)據(jù)共涉及21個分子標記,包括1R易位、高分子量谷蛋白亞基、籽粒硬度、多酚氧化酶、脂肪氧化酶、黃色素含量、春化和光周期基因位點。收錄的公開發(fā)表檢測結(jié)果主要有矮稈[153]、抗病[154-157]、品質(zhì)[158]、春化和光周期[159]。檢測記錄共計19 006條。育種親本表收錄被檢測親本共計1 784份,主要為當前和歷史主要栽培品種、高代品系等。
3討論與結(jié)論
小麥分子標記數(shù)據(jù)庫建立之后,首先要對收集的非功能分子標記在育種親本中的適用性進行試驗驗證。因為這些分子標記多是在目標性狀差異極大的雙親群體中開發(fā)而來,而育種親本多為親緣關(guān)系近、遺傳基礎(chǔ)狹窄的育成品種或高代品系[160],分子標記的多態(tài)性較低,再加上小麥三個亞基因組間相似度較高,PCR擴增經(jīng)常相互干擾,所以已開發(fā)的分子標記有可能喪失多態(tài)性。通過與育種者和分子標記開發(fā)單位結(jié)合,通過檢測育種親本和載體材料,對已報道分子標記的有效性進行驗證,可以確定分子標記是否適用于某育種親本或育種群體。對于存在假陽性結(jié)果的分子標記,在沒有更好的分子標記之前,仍可作為選擇參考。對于功能標記,由于其位于基因內(nèi)部,檢測的位點是引起表型變異的原因,在開發(fā)時對基因功能已有完整解析,對等位基因變異進行了大量檢測[7,14],因此可以在不同材料、不同群體間通用,不需要再驗證,是今后分子標記開發(fā)的方向。其次,要系統(tǒng)開展育種親本的大規(guī)模分子標記檢測,以摸清育種親本的基因型組成,為親本組配提供參考。育種親本是優(yōu)良基因的載體,只有明確了育種親本含有的等位基因類型,才能利用分子標記輔助選擇技術(shù)將其中的優(yōu)異等位基因快速回交轉(zhuǎn)育到新的品種(系)中。因此,充分了解親本的基因型組成,是進行分子育種的關(guān)鍵。早期開發(fā)的SSR等分子標記需要在PCR反應(yīng)后進行電泳分離、染色和帶型統(tǒng)計,步驟較多,不利于大規(guī)模應(yīng)用和降低檢測成本。SNP標記被稱為第三代分子標記,其在基因組中數(shù)量多、分布廣、可實現(xiàn)大規(guī)模自動化檢測,是最具發(fā)展?jié)摿Φ姆肿訕擞沎161]。SNP檢測平臺已開發(fā)較多,英國LGC公司開發(fā)的KASP平臺因其精度高、硬件要求低、成本低廉、檢測通量靈活[162],近年來被廣泛使用。開發(fā)新的基于KASP平臺的SNP標記和轉(zhuǎn)換已有的非SNP標記,有利于分子標記的規(guī)?;瘧?yīng)用。再次,隨著SNP芯片和測序技術(shù)的開發(fā)利用,在基因型數(shù)據(jù)獲取容易的今天,表型數(shù)據(jù)的獲得成為基因功能研究的瓶頸。利用現(xiàn)有的研究資源,在不同的生態(tài)區(qū)建立抗旱、抗病、抗蟲等不同的表型鑒定試驗站,建立表型鑒定網(wǎng)絡(luò)平臺以獲取大量的表型數(shù)據(jù)將成為今后的建設(shè)重點。
小麥上已開發(fā)的分子標記常被用于檢測品種或高代品系的等位基因分布情況,真正用于育種的報道很少[6]。一方面,作為基因供體的分子標記原始載體材料分別被保存在標記的研發(fā)單位,真正需要這些優(yōu)異材料作為育種親本的育種家不能及時獲得這些資源。另一方面育種家往往沒有合適的分子標記載體材料的獲取渠道,因為科研人員一般不愿共享載體材料[163],這也是本研究收集原始載體材料較少的原因之一。類似的情況還有不同的科研機構(gòu)都在利用公布的分子標記對育種親本進行檢測評價,而相關(guān)文獻報道卻沒有公布檢測數(shù)據(jù),使得不同單位之間存在大量的重復(fù)性工作,造成了人力、物力和時間的大量浪費,因此小麥分子標記數(shù)據(jù)庫建立后,需要逐步將分散在不同科研機構(gòu)的骨干親本的基因型、表型數(shù)據(jù)整合到數(shù)據(jù)庫中,參考國家水稻數(shù)據(jù)中心網(wǎng)站,開發(fā)小麥分子育種網(wǎng)站。本研究廣泛征集含有抗病、優(yōu)質(zhì)、高產(chǎn)等優(yōu)異基因的小麥供體育種親本及其分子信息構(gòu)建綜合性數(shù)據(jù)庫,為小麥分子育種共享平臺提供基礎(chǔ)數(shù)據(jù)。早在2001年Sanford等[164]提出成立美國基因型鑒定中心,現(xiàn)在隸屬于美國農(nóng)業(yè)部分散在四個區(qū)域的基因型鑒定中心每年都為全美國的育種家提供100多個分子標記的檢測服務(wù),極大地促進了美國分子育種的發(fā)展。小麥分子數(shù)據(jù)庫的建立應(yīng)以育種應(yīng)用為目標,從資源基因型組成、優(yōu)異基因獲取、分子標記跟蹤檢測服務(wù)幾個方面,為育種者提供全方位的服務(wù)。上游研發(fā)工作主要進行新基因的克隆和新標記的開發(fā),研發(fā)出來的基因和標記將無償提供給中游的分子診斷中心,為下游的育種單位提供基因型診斷服務(wù),加速高產(chǎn)、優(yōu)質(zhì)、抗逆小麥新種質(zhì)和新品種的選育進程。促使育種工作盡快完成從常規(guī)到因水平的提升與突破,對于推動我國小麥商業(yè)化育種的快速發(fā)展、增強種業(yè)發(fā)展后勁和國際競爭力具有非常重要的意義。參考文獻:
[1]Gupta P K, Kumar J, Mir R R, et al. Marker-assisted selection as a component of conventional plant breeding [M]. Hoboken, N J, USA: John Wiley & Sons, Inc., 2010:145-217.
[2]劉志文, 傅廷棟, 劉雪平, 等. 作物分子標記輔助選擇的研究進展、影響因素及其發(fā)展策略[J]. 植物學(xué)通報, 2005, 22(Z1):82-90.
[3]Staub J E, Serquen F C, Gupta M. Genetic markers, map construction, and their application in plant breeding [J]. HortScience, 1996, 31(5):729-741.
[4]Paux E, Sourdille P, Salse J, et al. A physical map of the 1-gigabase bread wheat chromosome 3B [J]. Science, 2008, 322(5898):101-104.
[5]Chao S, Sharp P J, Worland A J, et al. RFLP-based genetic maps of wheat homoeologous group 7 chromosomes [J]. Theoretical and Applied Genetics, 1989, 78(4):495-504.endprint
[6]Gupta P K, Langridge P, Mir R R. Marker-assisted wheat breeding: present status and future possibilities [J]. Molecular Breeding, 2010, 26(2):145-161.
[7]Bagge M, Xia X, Lubberstedt T. Functional markers in wheat [J]. Current Opinion in Plant Biology, 2007, 10(2):211-216.
[8]Ma L, Li T, Hao C, et al. TaGS5-3A, a grain size gene selected during wheat improvement for larger kernel and yield [J]. Plant Biotechnology Journal, 2016, 14(5):1269-1280.
[9]何中虎, 夏先春, 陳新民, 等. 中國小麥育種進展與展望[J]. 作物學(xué)報, 2011, 37(2):202-215.
[10]Andersen J R, Lübberstedt T. Functional markers in plants [J]. Trends in Plant Science, 2003, 8(11):554-560.
[11]Marcussen T, Sandve S R, Heier L, et al. Ancient hybridizations among the ancestral genomes of bread wheat [J]. Science, 2014, 345(6194):1250092.
[12]Consortium I W G S. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome [J]. Science, 2014, 345(6194):1251788.
[13]Liu Y, He Z, Appels R, et al. Functional markers in wheat: current status and future prospects [J]. Theoretical and Applied Genetics, 2012, 125(1):1-10.
[14]Rasheed A, Wen W, Gao F, et al. Development and validation of KASP assays for genes underpinning key economic traits in bread wheat [J]. Theoretical and Applied Genetics, 2016, 129(10):1843-1860.
[15]Chai J F, Zhou R H, Jia J Z, et al. Development and application of a new codominant PCR marker for detecting 1BL·1RS wheat-rye chromosome translocations [J]. Plant Breeding, 2006, 125:302-304.
[16]De Froidmont D. A co-dominant marker for the 1BL/1RS wheat-rye translocation via multiplex PCR [J]. Journal of Cereal Science, 1998, 27:229-232.
[17]Liu C, Yang Z J, Li G R, et al. Isolation of a new repetitive DNA sequence from Secale africanum enables targeting of Secale chromatin in wheat background [J]. Euphytica, 2008, 159:249-258.
[18]Kofler R, Bartos J, Gong L, et al. Development of microsatellite markers specific for the short arm of rye (Secale cereale L.) chromosome 1 [J]. Theoretical and Applied Genetics, 2008, 117(6):915-926.
[19]Nakamura S, Abe F, Kawahigashi H, et al. A wheat homolog of MOTHER OF FT AND TFL1 acts in the regulation of germination [J]. Plant Cell, 2011, 23(9):3215-3229.
[20]Yang Y, Zhao X L, Xia L Q, et al. Development and validation of a Viviparous-1 STS marker for pre-harvest sprouting tolerance in Chinese wheats [J]. Theoretical and Applied Genetics, 2007, 115(7):971-980.endprint
[21]Zhang Y, Miao X, Xia X, et al. Cloning of seed dormancy genes (TaSdr) associated with tolerance to pre-harvest sprouting in common wheat and development of a functional marker [J]. Theoretical and Applied Genetics, 2014, 127(4):855-866.
[22]Wei B, Jing R, Wang C, et al. Dreb1 genes in wheat (Triticum aestivum L.): development of functional markers and gene mapping based on SNPs [J]. Molecular Breeding, 2009, 23(1):13-22.
[23]Zhang J, Xu Y, Chen W, et al. A wheat 1-FEH w3 variant underlies enzyme activity for stem WSC remobilization to grain under drought [J]. New Phytologist, 2015, 205(1):293-305.
[24]Byrt C S, Platten J D, Spielmeyer W, et al. HKT1;5-like cation transporters linked to Na+ exclusion loci in wheat, Nax2 and Kna1 [J]. Plant Physiology, 2007,143(4):1918-1928.
[25]Huang S, Spielmeyer W, Lagudah E S, et al. A sodium transporter (HKT7) is a candidate for Nax1, a gene for salt tolerance in durum wheat [J]. Plant Physiology, 2006, 142(4):1718-1727.
[26]James R A, Blake C, Byrt C S, et al. Major genes for Na+ exclusion, Nax1 and Nax2 (wheat HKT1;4 and HKT1;5), decrease Na+ accumulation in bread wheat leaves under saline and waterlogged conditions [J]. Journal of Experimental Botany, 2011, 62(8):2939-2947.
[27]Jaiswal V, Gahlaut V, Mathur S, et al. Identification of novel SNP in promoter sequence of TaGW2-6A associated with grain weight and other agronomic traits in wheat (Triticum aestivum L.) [J]. PLoS One, 2015, 10(6):e0129400.
[28]Jiang Q, Hou J, Hao C, et al. The wheat (T. aestivum) sucrose synthase 2 gene (TaSus2) active in endosperm development is associated with yield traits [J]. Functional & Integrative Genomics, 2011, 11(1):49-61.
[29]Jiang Y, Jiang Q, Hao C, et al. A yield-associated gene TaCWI, in wheat: its function, selection and evolution in global breeding revealed by haplotype analysis [J]. Theoretical and Applied Genetics, 2015, 128(1):131-143.
[30]Lu J, Chang C, Zhang H P, et al. Identification of a novel allele of TaCKX6a02 associated with grain size, filling rate and weight of common wheat [J]. PLoS One, 2015, 10(12):e0144765.
[31]Ma D, Yan J, He Z, et al. Characterization of a cell wall invertase gene TaCwi-A1 on common wheat chromosome 2A and development of functional markers [J]. Molecular Breeding, 2012, 29(1):43-52.
[32]Su Z, Hao C, Wang L, et al. Identification and development of a functional marker of TaGW2 associated with grain weight in bread wheat (Triticum aestivum L.) [J]. Theoretical and Applied Genetics, 2011, 122(1):211-223.endprint
[33]Yue A, Li A, Mao X, et al. Identification and development of a functional marker from 6-SFT-A2 associated with grain weight in wheat [J]. Molecular Breeding, 2015, 35(2):1-10.
[34]Zhang Y, Liu J, Xia X, et al. TaGS - D1, an ortholog of rice OsGS3, is associated with grain weight and grain length in common wheat [J]. Molecular Breeding, 2014, 34(3):1097-1107.
[35]Hanif M, Gao F, Liu J, et al. TaTGW6 - A1, an ortholog of rice TGW6, is associated with grain weight and yield in bread wheat [J]. Molecular Breeding, 2016, 36(1):1-8.
[36]Spielmeyer W, Richards R A. Comparative mapping of wheat chromosome 1AS which contains the tiller inhibition gene (tin) with rice chromosome 5S [J]. Theoretical and Applied Genetics, 2004, 109(6):1303-1310.
[37]Beales J, Turner A, Griffiths S, et al. A pseudo-response regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.) [J]. Theoretical and Applied Genetics, 2007, 115(5):721-733.
[38]Nishida H, Yoshida T, Kawakami K, et al. Structural variation in the 5′ upstream region of photoperiod-insensitive alleles Ppd-A1a and Ppd-B1a identified in hexaploid wheat (Triticum aestivum L.), and their effect on heading time [J]. Molecular Breeding, 2013, 31(1):27-37.
[39]Wilhelm E P, Turner A S, Laurie D A. Photoperiod insensitive Ppd-A1a mutations in tetraploid wheat (Triticum durum Desf.) [J]. Theoretical and Applied Genetics, 2009, 118(2):285-294.
[40]Ellis H, Spielmeyer W, Gale R, et al. “Perfect” markers for the Rht-B1b and Rht-B1b dwarfing genes in wheat [J]. Theoretical and Applied Genetics, 2002, 105(6/7):1038-1042.
[41]Korzun V, Rder M S, Ganal M W, et al. Genetic analysis of the dwarfing gene (Rht8) in wheat. Part Ⅰ. Molecular mapping of Rht8 on the short arm of chromosome 2D of bread wheat (Triticum aestivum L.) [J]. Theoretical & Applied Genetics, 1998, 96(8):1104-1109.
[42]Chen Y, Carver B F, Wang S, et al. Genetic regulation of developmental phases in winter wheat [J]. Molecular Breeding, 2010, 26(4):573-582.
[43]Chen Y, Carver B F, Wang S, et al. Genetic loci associated with stem elongation and winter dormancy release in wheat [J]. Theoretical and Applied Genetics, 2009, 118(5):881-889.
[44]Chu C G, Tan C T, Yu G T, et al. A novel retrotransposon inserted in the dominant Vrn-B1 allele confers spring growth habit in tetraploid wheat (Triticum turgidum L.) [J]. G3: Genes, Genomes, Genetics, 2011, 1(7):637-645.endprint
[45]Díaz A, Zikhali M, Turner A S, et al. Copy number variation affecting the Photoperiod-B1 and Vernalization-A1 genes is associated with altered flowering time in wheat (Triticum aestivum) [J]. PLoS One, 2012, 7(3):e33234.
[46]Fu D, Szucs P, Yan L, et al. Large deletions within the first intron in VRN-1 are associated with spring growth habit in barley and wheat [J]. Molecular Genetics and Genomics, 2005, 273(1):54-65.
[47]Milec Z, Tomková L, Sumíková T, et al. A new multiplex PCR test for the determination of Vrn-B1 alleles in bread wheat (Triticum aestivum L.) [J]. Molecular Breeding, 2012, 30(1):1-7.
[48]Yan L, Fu D, Li C, et al. The wheat and barley vernalization gene VRN3 is an orthologue of FT [J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(51):19581-19586.
[49]Yan L, Helguera M, Kato K, et al. Allelic variation at the VRN-1 promoter region in polyploid wheat [J]. Theoretical and Applied Genetics, 2004, 109(8):1677-1686.
[50]Kausar S, Hameed S, Haque I U, et al. Molecular confirmation of Bdv2 gene in wheat germplasm and its field based assessment for resistance against barely yellow dwarf viruses [J]. Supervision Test & Cost of Construction, 2015, 3(1):16-22.
[51]Kong L, Anderson J M, Ohm H W. Segregation distortion in common wheat of a segment of Thinopyrum intermedium chromosome 7E carrying Bdv3 and development of a Bdv3 marker [J]. Plant Breeding, 2009, 128(6):591-597.
[52]Stoutjesdijk P, Kammholz S J, Kleven S, et al. PCR-based molecular marker for the Bdv2 Thinopyrum intermedium source of Barley yellow dwarf virus resistance in wheat [J]. Crop & Pasture Science, 2001, 52(12):1383-1388.
[53]Zhang Z, Xu J, Xu Q, et al. Development of novel PCR markers linked to the BYDV resistance gene Bdv2 useful in wheat for marker-assisted selection [J]. Theoretical and Applied Genetics, 2004, 109(2):433-439.
[54]Anderson J A, Stack R W, Liu S, et al. DNA markers for Fusarium head blight resistance QTLs in two wheat populations [J]. Theoretical and Applied Genetics, 2001, 102:1164-1168.
[55]Bernardo A N, Ma H, Zhang D, et al. Single nucleotide polymorphism in wheat chromosome region harboring Fhb1 for Fusarium head blight resistance [J]. Molecular Breeding, 2012, 29(2):477-488.
[56]Cuthbert P A, Somers D J, Brule-Babel A. Mapping of Fhb2 on chromosome 6BS: a gene controlling Fusarium head blight field resistance in bread wheat (Triticum aestivum L.) [J]. Theoretical and Applied Genetics, 2007, 114(3):429-437.endprint
[57]Liu S, Pumphrey M O, Gill B S, et al. Toward positional cloning of Fhb1, a major QTL for Fusarium head blight resistance in wheat[J]. Cereal Research Communications, 2008, 36:195-201.
[58]Qi L L, Pumphrey M O, Friebe B, et al. Molecular cytogenetic characterization of alien introgressions with gene Fhb3 for resistance to Fusarium head blight disease of wheat [J]. Theoretical and Applied Genetics, 2008, 117(7):1155-1166.
[59]Xue S, Li G, Jia H, et al. Fine mapping Fhb4 , a major QTL conditioning resistance to Fusarium infection in bread wheat (Triticum aestivum L.) [J]. Theoretical and Applied Genetics, 2010, 121(1):147-156.
[60]Xue S, Xu F, Tang M, et al. Precise mapping Fhb5 , a major QTL conditioning resistance to Fusarium infection in bread wheat (Triticum aestivum L.) [J]. Theoretical and Applied Genetics, 2011, 123(6):1055-1063.
[61]Zhu X, Zhong S, Chao S, et al. Toward a better understanding of the genomic region harboring Fusarium head blight resistance QTL Qfhs.ndsu-3AS in durum wheat [J]. Theoretical and Applied Genetics, 2016, 129(1):31-43.
[62]Helguera M, Khan I A, Dubcovsky J. Development of PCR markers for the wheat leaf rust resistance gene Lr47 [J]. Theoretical and Applied Genetics, 2000, 101(4):625-631.
[63]Huang L, Gill B S. An RGA-like marker detects all known Lr21 leaf rust resistance gene family members in Aegilops tauschii and wheat [J]. Theoretical and Applied Genetics, 2001, 103(6):1007-1013.
[64]Prins R, Groenewald J Z, Marais G F, et al. AFLP and STS tagging of Lr19, a gene conferring resistance to leaf rust in wheat [J]. Theoretical and Applied Genetics, 2001, 103(4):618-624.
[65]Helguera M, Khan I A, Kolmer J, et al. PCR assays for the Lr37-Yr17-Sr38 cluster of rust resistance genes and their use to develop isogenic hard red spring wheat lines [J]. Crop Science, 2003, 43(5):1839-1847.
[66]Somers D J, Isaac P, Edwards K. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.) [J]. Theoretical and Applied Genetics, 2004, 109(6):1105-1114.
[67]Helguera M, Vanzetti L, Soria M, et al. PCR markers for Triticum speltoides leaf rust resistance gene Lr51 and their use to develop isogenic hard red spring wheat lines [J]. Crop Science, 2005, 45(2):728-734.
[68]Lagudah E S, Mcfadden H, Singh R P, et al. Molecular genetic characterization of the Lr34/Yr18 slow rusting resistance gene region in wheat [J]. Theoretical and Applied Genetics, 2006, 114(1):21-30.endprint
[69]Rosewarne G M, Singh R P, Huerta-Espino J, et al. Leaf tip necrosis, molecular markers and β1-proteasome subunits associated with the slow rusting resistance genes Lr46/Yr29 [J]. Theoretical and Applied Genetics, 2006, 112(3):500-508.
[70]Gennaro A, Koebner R M, Ceoloni C. A candidate for Lr19, an exotic gene conditioning leaf rust resistance in wheat [J]. Functional & Integrative Genomics, 2009, 9(3):325-334.
[71]Kuraparthy V, Sood S, See D R, et al. Development of a PCR assay and marker-assisted transfer of leaf rust and stripe rust resistance genes Lr57 and Yr40 into hard red winter wheats[J]. Crop Science, 2009, 49(1):120-126.
[72]Lagudah E S, Krattinger S G, Herrera-Foessel S, et al. Gene-specific markers for the wheat gene Lr34/Yr18/Pm38 which confers resistance to multiple fungal pathogens [J]. Theoretical & Applied Genetics, 2009, 119(5):889-898.
[73]Sun X, Bai G, Carver B F. Molecular markers for wheat leaf rust resistance gene Lr41 [J]. Molecular Breeding, 2009, 23(2):311-321.
[74]Fu Y B, Peterson G W, Mccallum B D, et al. Population-based resequencing analysis of improved wheat germplasm at wheat leaf rust resistance locus Lr21 [J]. Theoretical and Applied Genetics, 2010, 121(2):271-281.
[75]Sun X C, Bai G H, Carver B F, et al. Molecular mapping of wheat leaf rust resistance gene Lr42 [J]. Crop Science, 2010, 50(1):59-66.
[76]Herrera-Foessel S A, Singh R P, Huerta-Espino J, et al. Lr68: a new gene conferring slow rusting resistance to leaf rust in wheat [J]. Theoretical and Applied Genetics, 2012, 124(8):1475-1486.
[77]Moore J W, Herrera-Foessel S, Lan C, et al. A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat [J]. Nature Genetics, 2015, 47(12):1494-1498.
[78]Pirseyedi S M, Somo M, Poudel R S, et al. Characterization of recombinants of the Aegilops peregrina-derived Lr59 translocation of common wheat [J]. Theoretical and Applied Genetics, 2015, 128(12):2403-2414.
[79]Cenci A, Tanzarella O, Ceoioni C E, et al. Identification of molecular markers linked to Pm13, an Aegilops longissima gene conferring resistance to powdery mildew in wheat [J]. Theoretical & Applied Genetics, 1999, 98(3/4):448-454.
[80]Liu Z, Sun Q, Ni Z, et al. Development of SCAR markers linked to the Pm21 gene conferring resistance to powdery mildew in common wheat [J]. Plant Breeding, 1999, 118(3):215-219.
[81]Ma Z Q, Wei J B, Cheng S H. PCR-based markers for the powdery mildew resistance gene Pm4a in wheat [J]. Theoretical and Applied Genetics, 2004, 109(1):140-145.endprint