• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Orthogonal projection based subspace identification against colored noise

    2017-12-21 08:33:54JieHOUTaoLIUFengweiCHEN
    Control Theory and Technology 2017年1期

    Jie HOU,Tao LIU,Fengwei CHEN

    School of Control Science and Engineering,Dalian University of Technology,Dalian Liaoning 116024,China

    Orthogonal projection based subspace identification against colored noise

    Jie HOU,Tao LIU?,Fengwei CHEN

    School of Control Science and Engineering,Dalian University of Technology,Dalian Liaoning 116024,China

    In this paper,a bias-eliminated subspace identification method is proposed for industrial applications subject to colored noise.Based on double orthogonal projections,an identification algorithm is developed to eliminate the influence of colored noise for consistent estimation of the extended observability matrix of the plant state-space model.A shift-invariant approach is then given to retrieve the system matrices from the estimated extended observability matrix.The persistent excitation condition for consistent estimation of the extended observability matrix is analyzed.Moreover,a numerical algorithm is given to compute the estimation error of the estimated extended observability matrix.Two illustrative examples are given to demonstrate the effectiveness and merit of the proposed method.

    Subspace identification,colored noise,orthogonal projection,extended observability matrix,consistent estimation

    1 Introduction

    Owing to the convenience of using a state space model to describe a multivariable system,increasing attentions[1,2]have been devoted to state space model identification.The state space identification methods(SIMs)have been increasingly explored in the past two decades owing to the robust properties and relatively low computational complexities[1,3,4].A few subspace identification methods have been widely recog recognized for engineering applications with white noise,e.g.,the canonical variate analysis(CVA)approach[5],the multiple-input-multiple-output error state space model identification(MOESP)method[6],the numerical subspace state space identification(N4SID)algorithm[7],and the instrumental variable method(IVM)[8].It was pointed out [9] that the aforementioned SIMs differ from each other by using different weighting matrices to construct the instrumental variables (IVs) for consistent estimation of the extended observability matrix of the plantstate-space model.The asymptotic properties of these identification algorithms were analyzed in[10,11].

    Since there are industrial systems likely subject to colored noise,e.g.,harmonic signals are usually involved with industrial electric circuits and mechanical systems,identification of these systems with colored noise have therefore received increasing attentions[12–14]in the recent years.Although the existing SIMs can guarantee consistent estimation in the presence of white noise,biased estimation may be obtained when these SIMs are applied to these systems due to the autocorrelation between sampled output data arising from colored noise.A feasible approach to eliminate the estimation bias is the use of the IV technique.By taking the past input sequence as the IV to eliminate the influence of noise to the system output,an extended SIM named PIMOESP was proposed in[15]to guarantee consistent estimation.By projecting the observed data onto the past input sequence,an orthogonal subspace identification method named ORT-CN was developed in[16]to eliminate the influence of colored noise.However,this method requires the input excitation to be a zero-mean uncorrelated stationary sequence to ensure identification accuracy.

    In this paper,a subspace identification method based on double orthogonal projections is proposed to realize consistent estimation of the extended observability matrix in the presence of colored noise,by projecting the observed data onto the orthogonal complement of the future input sequence to eliminate the influence from the future input,and then projecting the data onto the past input sequence to eliminate the noise effect.Compared to the existing SIMs, e.g., PI-MOESP and ORT-CN, an important merit of the proposed method is that there is no limit on the input correlation as long as the persistent excitation condition is satisfied. Consistency analysis of the proposed algorithm is given with a proof.Moreover,an explicit formula of the estimation error of the extended observability matrix is derived,which can be easily used to evaluate the estimation errors of the system matrices.Two illustrative examples are given to demonstrate the effectiveness of the proposed method.The paper is organized as follows.The identification problem is introduced in Section 2.Section 3 gives a brief review of the IV-4SID algorithm and then presents the proposed method.Furthermore,the asymptotic properties of the proposed method are analyzed in Section 4.Two illustrative examples are given in Section 5.Finally,some conclusions are drawn in Section 6.

    2 Problem description

    Consider the following linear discrete-time invariant state-space model:

    wherex(t)∈Rnx,u(t)∈Rnu,andy(t)∈Rnydenote the system state,input,and output vectors,respectively.The process noisew(t)∈Rnuand measurement noisev(t)∈Rnuare assumed to be colored noise with unknown variance.The system matrices are denoted by(A,B,C,D)with appropriate dimensions.The following assumptions are considered in the paper.

    A1)The system is asymptotically stable,i.e.,all the eigenvalues ofAlie inside the unit circle.

    A2)The pair(A,C)is observable and the pair(A,B)is reachable.

    A3)The noisesw(t),v(t)and system input are statistically independent of each other,i.e.,

    whereE(·)is the expectation operator,and where

    denotes the autocorrelation matrix.

    The objective of this paper is to propose a new SIM method to estimate the system matrices based on the measured input and output data.

    Denote bypandfthe past and future horizons,respectively.For convenience,we assumep=f(p>nx).Denote the stacked future and past output vectors byyp(t)=[y(t?p)T···y(t? 2)Ty(t? 1)T]Tandyf(t)=[y(t)T···y(t+f? 2)Ty(t+f? 1)T]T,respectively.Similar definitions are given forwp(t),wf(t),vp(t),vf(t),up(t)anduf(t).By iterating the state-space model in(1),we have

    where Γ =[CT···(CAf?1)T]Tis the extended observability matrix.L1=[Af?1B···ABB],L2=[Af?1···A I]are the extended controllability matrices.The lower triangular Toeplitz matrices are,respectively,

    Suppose that there areN+p+f?1 sampled data and introduce the output block Hankel matricesYp=[yp(t) ···yp(N)]andYf=[yf(t) ···yf(N)].Similar definitions are given forWp,Wf,Vp,Vf,UpandUf.DenoteXp=[x(t?p) ···x(t?p+N? 1)]andXf=[x(t) ···x(t+N? 1)].It follows from(4)and(5)that

    3 Orthogonal projection based identification method

    First,a brief review of the well recognized IV-4SID method is presented to explain why most of existing SIMs are biased in the presence of colored noise.Then the proposed identification method is given accordingly.

    3.1 Brief review of the IV-4SID algorithm

    The key idea of IV-4SID is to estimate the range space of Γ.For this purpose,it eliminates both effects of the future input and future noise fromYf.The first step is to annihilate the input term in(7)by projecting the data onto the orthogonal complement ofUf,i.e.,

    Then,the following IV is used to annihilate the noise term in(8),

    It follows that

    The noise part in (10) can be asymptotically expressed as

    If the input is a persistent excitation of orderf,which means thatRufis positive definite[10],we have

    Substituting(2)into(4)yields

    Then,substituting(13)into(12)yields

    3.2 Proposed method

    The noise effect can be removed from(10)to obtain consistent estimation by projectingYfΠ⊥Ufonto the column space ofUp,i.e.,

    where ΠUp=UTp(UpUTp)?1Updenotes an orthogonal projection matrix ofUp.

    Correspondingly,the noise part in(15)can be asymptotically expressed as

    Performing an SVD for the left-hand side of(17),we obtain

    where is the firstnxeigenvalues of(18).

    The range space of extended observability matrix Γ is therefore obtained as

    With the estimated?Γ,the estimations of?Aand?Ccan be extracted as

    The last step is to estimateBandD.By postmultiplying (Uf)?and pre-multiplying ?Γ⊥to both sides of(7)and using?Γ⊥Γ=0,we have

    For abbreviation,denote

    The estimation ofBandDcan be extracted by

    Hence,the proposed double orthogonal projections based subspace identification method,named as 2ORTSIM,can be summarized as follows:

    1)Eliminate the influence of the future input and colored noise to the future output by using(15).

    2)Calculate the SVD of the projection matrix in(18).

    4 Asymptotic properties

    The asymptotic properties including consistency and asymptotic error for estimating the extended observability matrix are studied below.

    4.1 Consistent estimation

    The following theorem is given for consistent estimation of the extended observability matrix by using the proposed method.

    ProofIt can be seen from(17)and(18)that a consistent estimate of?Γ can be obtained if

    It can be derived from(3)that

    Ifpis sufficiently large and the input is a persistent excitation of order max(p,f),it follows

    Therefore,we have

    According to the assumptions of A1)and A2),we are sure thatL1is a full row rank matrix.Hence,the rank condition in(26)is equivalent to

    Note that

    which is equivalent to

    In fact,it holds that

    If the input is a persistent excitation of orderp+f,the condition in(30)can surely be satisfied.This completes the proof. □

    4.2 Estimation error

    The true estimation of Γ can be computed from an SVD as following,

    Obviously,it can be simply taken as

    It follows from(38)–(40)that

    After the asymptotic error of the estimated extended observability matrix is computed,the asymptotic errors of the system matrices can be computed using the numerical methods given in the references[20,21].Then the asymptotic error of the plant transfer function matrix can be easily computed[22].

    5 Illustration

    Two examples are used to demonstrate the effectiveness and merit of the proposed method.One is a benchmark example studied in the reference[23],and the other is an injection molding process in the reference[24].

    Example 1Consider a benchmark example studied in[23],

    wherew(t)andv(t)are colored noises,which are independently generated by(1 ? 0.75q?1? 2.5q?2)/(1 ?1.5q?1+0.8q?2)e1(t),wheree1(t)is a white noise with variance of 0.05.For illustration,the input excitation is taken asu(t)=((1 ? 0.8q?1+0.6q?2)e2(t))wheree2(t)is a white noise with variance of 5.

    Fig.1 Magnitude plot of the identified transfer function matrix for Example1.

    Fig.2 Plot of the standard deviation of model error for Example1.

    It is seen that both the proposed 2ORT-SIM and PIMOESP give consistent estimations,while the proposed method gives an improved accuracy compared to PIMOESP.Note that the N4SID and ORT-SIM give biased estimation.Note that the ORT-SIM can only be used to obtain consistent estimation when the input excitation is a zero-mean uncorrelated stationary sequence.

    Furthermore,to assess the accuracy of proposed method for estimating the asymptotic error of the extended observability matrix,the estimated errors of(δA,δC)are computed directly from δΓ through a linear operation as[25],

    Tables 1 shows the mean values along with the Std of(δA,δC)by using the proposed asymptotic error estimation method.The true values obtained by using the true plant model to compute the estimation errors are also listed in Table 1,which demonstrates the effectiveness of the proposed estimation of asymptotic error.

    Example 2Consider an injection molding process studied in the reference[24],

    Using the same input excitation as Example1,one thousand MC tests are carried out for model identification.The above four methods are used again for comparison.The averaged TFM magnitude plots are shown in Fig. 3. It is seen that both the proposed 2ORT-SIM and PI-MOESP give consistent estimations,while the proposed method gives an improved accuracy compared to PI-MOESP.In contrast,the N4SID and ORT-SIM give biased estimation.Fig.4 shows the Stds of model errors by using the proposed 2ORT-SIM and PI-MOESP.The mean values along with the Stds of(δA,δC)are listed in Table 2,well demonstrating the effectiveness of the proposed estimation of asymptotic error.

    Fig.3 Magnitude plot of the identified transfer function matrix for Example2.

    Fig.4 Plot of the standard deviation of model error for Example2.

    Table 1 Estimation error of δA and δC by using the proposed 2ORT-SIM for Example 1.

    Table 2 Estimation error of δA and δC by using the proposed 2ORT-SIM for Example 2.

    6 Conclusions

    A bias-eliminated subspace identification method has been proposed for industrial applications subject to colored noise,to overcome the deficiency of existing SIMs that could not provide consistent estimation.An identification algorithm based on double orthogonal projections is developed by using the past input sequence rather than the output sequence to eliminate the influence of colored noise,such that consistent estimation of the extended observability matrix can be obtained.The persistent excitation condition for consistent estimation of the extended observability matrix is analyzed with a strict proof.Moreover,a numerical algorithm is given to compute the asymptotic error of the estimated extended observability matrix,which can be easily applied to compute the estimation errors of the system matrices.The applications to two illustrative examples have well demonstrated the effectiveness and good accuracy of the proposed identification method.

    [1]S.Qin.An overview of subspace identification.Computers&Chemical Engineering,2006,30(10/12):1502–1513.

    [2]F.Ding,X.Liu,X.Ma.Kalman state filtering based least squares iterative parameter estimation for observer canonical state space systems using decomposition.Journal of Computational and Applied Mathematics,2016,301:135–143.

    [3]F.Ding,D.Xiao.Hierarchical identification of state space models for multivariable systems.Control and Decision,2005,20(8):848–853.

    [4]G.V.der Veen,J.W.van Wingerden,M.Bergamasco,et al.Closed-loop subspace identification methods:an overview.IET Control Theory and Applications,2013,7(10):1339–1358.

    [5]W.E.Larimore.Canonical variate analysis in identification,filtering,and adaptive control.Proceedings of the 29th IEEE Conference on Decision and Control,Honolulu,Hawaii:IEEE,1990:596–604.

    [6]M.Verhaegen,P.Dewilde.Subspace model identification–Part 1:the output-error state-space model identification class of algorithms.International Journal of Control,1992,56(5):1187–1210.

    [7]P.V.Overschee,B.D.Moor.N4SID:Subspace algorithms for the identification of combined deterministic-stochastic systems.Automatica,1994,30(1):75–93.

    [8]M.Viberg.Subspace-based methods for the identification of linear time-invariant systems.Automatica,1998,34(12):1507–1519.

    [9]M.Viberg,B.Wahlberg,B.Ottersten.Analysis of state space system identification methods based on instrumental variables and subspace fitting.Automatica,1997,33(9):1603–1616.

    [10]M.Jansson,B.Wahlberg.On consistency of subspace methods for system identification.Automatica,1998,34(12):1507–1519.

    [11]D.Bauer.Asymptotic properties of subspace estimators.Automatica,2005,41(3):359–376.

    [12]S.Dong,T.Liu,M.Li,et al.Iterative identification of output error model for industrial processes with time delay subject to colored noise.Chinese Journal of Chemical Engineering,2015,23(12):2005–2012.

    [13]Q.Jin,Z.Wang,R.Yang,et al.An effective direct closed loop identification method for linear multivariable systems with colored noise.Journal of Process Control,2014,24(5):485–492.

    [14]F.Ding,Y.Wang,J.Ding.Recursive least squares parameter identification algorithms for systems with colored noise using the filtering technique and the auxilary model.Digital Signal Processing,2015,37:100–108.

    [15]M.Verhaegen.Subspace model identification–Part 3:analysis of the ordinary output-error state-space model identification algorithm.International Journal of Control,1993,58(3):555–586.

    [16]J.Zhao,X.Li,L.Tian.Orthogonal subspace identification in the presence of colored noise.Control Theory&Applications,2015,32(1):43–49(in Chinese).

    [17]T.Gustafsson.Subspace identification using instrumental variable techniques.Automatica,2001,37(12):2005–2010.

    [18]T.Gustafsson.Subspace-based system identification:weighting and pre-filtering of instruments.Automatica,2002,38(3):433–443.

    [19]J.Wang,S.Qin.Closed-loop subspace identification using the parity space.Automatica,2006,42(2):315–320.

    [20]A.Chiuso,G.Picci.The asymptotic variance of subspace estimates.Journal of Econometrics,2004,118(1/2):257–291.

    [21]D.Bauer.Estimating ARMAX systems for multivariate time series using the state approach to subspace algorithms.Journal of Multivariate Analysis,2009,100(3):397–421.

    [22]M.Jansson.Subspace identification and modeling.IFAC Symp on System Identification,Rotterdam,Netherlands:IFAC,2003:2173–2178.

    [23]D.Bauera,L.Ljung.Some facts about the choice of the weighting matrices in Larimore type of subspace algorithms.Automatica,2002,38(5):763–773.

    [24]T.Liu,B.Huang,S.Qin.Bias-eliminated subspace model identification undertime-varying deterministic type load disturbance.Journal of Process Control,2015,25:41–49.

    [25]M.D?hler,L.Mevel.Efficient multi-order uncertainty computation for stochastic subspace identification.Mechanical Systems and Signal Processing,2013,38(2):346–366.

    4 Janurary 2016;revised 22 July 2016;accepted 25 July 2016

    DOI10.1007/s11768-017-6003-7

    ?Corresponding author.

    E-mail:liurouter@ieee.org.Tel.:+86-411-84706465.

    This work was supported by the National Thousand Talents Program of China, the National Natural Science Foundation of China (Nos.61473054,61633006),and the Fundamental Research Funds for the Central Universities of China(No.DUT15ZD108).

    ?2017 South China University of Technology,Academy of Mathematics and Systems Science,CAS,and Springer-Verlag Berlin Heidelberg

    Jie HOUreceived the B.Eng.degree in Automation from Beifang University of Nationalities,Yinchuan,China,in 2010,the M.Sc.degree in Control Science and Engineering from Chongqing University,Chongqing,China,in 2013.He is currently a Ph.D.candidate in the School of Control Science and Engineering,Dalian University of Technology.His research interest covers system identification.E-mail:jiehou.phd@hotmail.com.

    Tao LIUreceived his Ph.D.degree in Control Science and Engineering from Shanghai Jiaotong University,Shanghai,China,in 2006.He is a professor in the Institute of Advanced Control Technology at Dalian University of Technology.His research interests include chemical and industrial process identification& modeling,robust process control,iterative learning control, batch process optimization.He is a member of the Technical Committee on Chemical Process Control of IFAC,Technical Committee on System Identification and Adaptive Control of the IEEE Control System Society,and Chinese Process Control Committee.E-mail:liurouter@ieee.org.

    Fengwei CHENreceived the B.Eng.and M.Eng.degrees from Wuhan University,Wuhan,China,in 2009 and 2011,respectively,and the Ph.D.degree from Université de Lorraine,Nancy,France,in 2014.He is currently working with Dalian University of Technology,Dalian,China.His research interests include system identification and signal processing.E-mail:fengwei.chen@dlut.edu.cn.

    91精品伊人久久大香线蕉| 男女无遮挡免费网站观看| 国产无遮挡羞羞视频在线观看| 777久久人妻少妇嫩草av网站| 精品少妇内射三级| 亚洲av福利一区| 日本av免费视频播放| 亚洲av国产av综合av卡| 亚洲男人天堂网一区| 男人舔女人的私密视频| 欧美精品亚洲一区二区| 啦啦啦视频在线资源免费观看| 多毛熟女@视频| av福利片在线| 日本午夜av视频| 欧美精品一区二区大全| 国产欧美亚洲国产| 国产成人午夜福利电影在线观看| 老女人水多毛片| 妹子高潮喷水视频| 久久久久国产精品人妻一区二区| 免费在线观看视频国产中文字幕亚洲 | 亚洲成色77777| 秋霞伦理黄片| 天天躁狠狠躁夜夜躁狠狠躁| 妹子高潮喷水视频| 欧美成人午夜精品| 高清欧美精品videossex| 啦啦啦视频在线资源免费观看| 男女国产视频网站| av又黄又爽大尺度在线免费看| 亚洲精品,欧美精品| 午夜福利网站1000一区二区三区| 伦理电影大哥的女人| 午夜福利视频在线观看免费| 各种免费的搞黄视频| 亚洲中文av在线| 国产精品免费视频内射| 高清av免费在线| 国产精品.久久久| 丰满饥渴人妻一区二区三| 2018国产大陆天天弄谢| 国产高清不卡午夜福利| 1024香蕉在线观看| av视频免费观看在线观看| 久久久a久久爽久久v久久| 女人被躁到高潮嗷嗷叫费观| 青春草国产在线视频| 美女国产高潮福利片在线看| 春色校园在线视频观看| 咕卡用的链子| 国产成人免费无遮挡视频| 久久人人爽av亚洲精品天堂| 男女国产视频网站| 久久久久人妻精品一区果冻| 精品第一国产精品| 多毛熟女@视频| 亚洲综合色网址| 搡女人真爽免费视频火全软件| 免费播放大片免费观看视频在线观看| 免费观看a级毛片全部| freevideosex欧美| 一级片免费观看大全| 日本免费在线观看一区| www.av在线官网国产| 国产毛片在线视频| 宅男免费午夜| 亚洲国产精品999| 亚洲,欧美精品.| 日韩在线高清观看一区二区三区| 80岁老熟妇乱子伦牲交| 少妇的逼水好多| kizo精华| 人妻一区二区av| 日本黄色日本黄色录像| 在线精品无人区一区二区三| 亚洲成av片中文字幕在线观看 | 最近中文字幕2019免费版| 波野结衣二区三区在线| 亚洲第一区二区三区不卡| 欧美日韩一区二区视频在线观看视频在线| 国产精品av久久久久免费| 亚洲人成77777在线视频| 香蕉丝袜av| 香蕉丝袜av| 亚洲一码二码三码区别大吗| 久久久亚洲精品成人影院| freevideosex欧美| 制服诱惑二区| 又大又黄又爽视频免费| 久久久精品国产亚洲av高清涩受| 一区二区av电影网| av片东京热男人的天堂| 中文精品一卡2卡3卡4更新| 又粗又硬又长又爽又黄的视频| 国产激情久久老熟女| 搡老乐熟女国产| 黄片播放在线免费| 久久国产亚洲av麻豆专区| 一二三四中文在线观看免费高清| 热re99久久国产66热| 亚洲欧美一区二区三区久久| 老司机亚洲免费影院| 97人妻天天添夜夜摸| 丰满饥渴人妻一区二区三| 亚洲国产成人一精品久久久| av在线app专区| 巨乳人妻的诱惑在线观看| 久久这里有精品视频免费| 亚洲视频免费观看视频| 人妻一区二区av| 尾随美女入室| 日韩欧美一区视频在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 久久久久久免费高清国产稀缺| 国产精品国产三级国产专区5o| 精品国产国语对白av| 久久久久视频综合| 亚洲一区二区三区欧美精品| 电影成人av| 高清视频免费观看一区二区| 日日啪夜夜爽| 婷婷色av中文字幕| 久久久久久久大尺度免费视频| 国产免费一区二区三区四区乱码| 两个人看的免费小视频| 久久久久视频综合| 女人精品久久久久毛片| 亚洲内射少妇av| 色94色欧美一区二区| 女人久久www免费人成看片| 国产精品久久久av美女十八| 亚洲国产看品久久| 一个人免费看片子| 成年动漫av网址| 97在线人人人人妻| 飞空精品影院首页| 欧美成人午夜精品| 香蕉精品网在线| 国产日韩欧美视频二区| 久久国内精品自在自线图片| 亚洲 欧美一区二区三区| 卡戴珊不雅视频在线播放| 搡老乐熟女国产| 自拍欧美九色日韩亚洲蝌蚪91| 五月伊人婷婷丁香| 欧美精品一区二区大全| 精品国产乱码久久久久久男人| 美女高潮到喷水免费观看| 秋霞伦理黄片| 午夜福利视频在线观看免费| 欧美日韩亚洲高清精品| 国产亚洲av片在线观看秒播厂| 国产成人欧美| 国产黄色视频一区二区在线观看| 我要看黄色一级片免费的| 一级,二级,三级黄色视频| 最近最新中文字幕大全免费视频 | 久久av网站| 欧美 日韩 精品 国产| 自线自在国产av| 熟妇人妻不卡中文字幕| 在线亚洲精品国产二区图片欧美| 九色亚洲精品在线播放| av电影中文网址| 9热在线视频观看99| 日韩欧美精品免费久久| xxxhd国产人妻xxx| 久久ye,这里只有精品| 亚洲综合色网址| 久久99热这里只频精品6学生| 国产片内射在线| 免费久久久久久久精品成人欧美视频| av免费观看日本| 成人亚洲精品一区在线观看| 国产毛片在线视频| a级片在线免费高清观看视频| 一区二区三区激情视频| 高清欧美精品videossex| 国产高清国产精品国产三级| 高清av免费在线| 可以免费在线观看a视频的电影网站 | 一区二区av电影网| 欧美精品一区二区免费开放| 日本vs欧美在线观看视频| 男人操女人黄网站| 国产黄频视频在线观看| av在线观看视频网站免费| 永久网站在线| 在线天堂最新版资源| 成人免费观看视频高清| 大话2 男鬼变身卡| 夫妻性生交免费视频一级片| 成人亚洲精品一区在线观看| 免费大片黄手机在线观看| 亚洲国产毛片av蜜桃av| 久久久欧美国产精品| 午夜免费观看性视频| 欧美在线黄色| av在线老鸭窝| 老女人水多毛片| 深夜精品福利| 精品人妻在线不人妻| 国产av一区二区精品久久| 少妇精品久久久久久久| 欧美精品高潮呻吟av久久| 一个人免费看片子| 十八禁网站网址无遮挡| 91精品三级在线观看| 国产探花极品一区二区| 中文字幕亚洲精品专区| 晚上一个人看的免费电影| 婷婷色av中文字幕| 九九爱精品视频在线观看| 亚洲国产成人一精品久久久| 韩国高清视频一区二区三区| 午夜激情av网站| 少妇人妻久久综合中文| 日韩不卡一区二区三区视频在线| 美女主播在线视频| 日日撸夜夜添| 啦啦啦在线观看免费高清www| 激情五月婷婷亚洲| 国产精品欧美亚洲77777| 少妇猛男粗大的猛烈进出视频| 色播在线永久视频| 777米奇影视久久| 久久精品国产自在天天线| 91国产中文字幕| 一级毛片黄色毛片免费观看视频| 久久av网站| 如何舔出高潮| 日韩中文字幕欧美一区二区 | 亚洲欧美日韩另类电影网站| 国产成人aa在线观看| av女优亚洲男人天堂| 中文字幕精品免费在线观看视频| 在线观看免费高清a一片| 精品国产国语对白av| av卡一久久| 啦啦啦中文免费视频观看日本| 久久99热这里只频精品6学生| 天美传媒精品一区二区| xxxhd国产人妻xxx| 高清不卡的av网站| 久久ye,这里只有精品| 久久综合国产亚洲精品| 我要看黄色一级片免费的| 9热在线视频观看99| 秋霞在线观看毛片| 日本91视频免费播放| 欧美在线黄色| 久热这里只有精品99| 久久亚洲国产成人精品v| 人人妻人人爽人人添夜夜欢视频| 亚洲欧美精品自产自拍| 欧美精品一区二区大全| 一级片免费观看大全| 亚洲精品日韩在线中文字幕| 如日韩欧美国产精品一区二区三区| 中国三级夫妇交换| 在线观看三级黄色| 97在线视频观看| 青青草视频在线视频观看| 国产1区2区3区精品| 男男h啪啪无遮挡| 丰满饥渴人妻一区二区三| 超碰97精品在线观看| 丝袜在线中文字幕| 九九爱精品视频在线观看| 三上悠亚av全集在线观看| 日日啪夜夜爽| 亚洲第一av免费看| 成年女人在线观看亚洲视频| 亚洲美女搞黄在线观看| 不卡视频在线观看欧美| 亚洲经典国产精华液单| 在线天堂最新版资源| 一级片免费观看大全| 一级毛片 在线播放| 亚洲国产欧美在线一区| 黑人猛操日本美女一级片| 青青草视频在线视频观看| av卡一久久| 999精品在线视频| 在线亚洲精品国产二区图片欧美| 久久精品国产鲁丝片午夜精品| 久久久久久久亚洲中文字幕| 欧美97在线视频| 波野结衣二区三区在线| 亚洲av日韩在线播放| 制服诱惑二区| 欧美日韩精品成人综合77777| 国产片内射在线| 男男h啪啪无遮挡| 一二三四中文在线观看免费高清| 一区二区三区乱码不卡18| 色婷婷久久久亚洲欧美| 水蜜桃什么品种好| 国产乱来视频区| 女人被躁到高潮嗷嗷叫费观| 欧美激情 高清一区二区三区| 人体艺术视频欧美日本| 一级,二级,三级黄色视频| 欧美日韩亚洲国产一区二区在线观看 | 一区二区三区乱码不卡18| 午夜老司机福利剧场| 99久久人妻综合| 免费少妇av软件| 亚洲男人天堂网一区| 日韩熟女老妇一区二区性免费视频| 免费女性裸体啪啪无遮挡网站| 日本午夜av视频| 一本色道久久久久久精品综合| 久久久久国产网址| 精品国产露脸久久av麻豆| 人成视频在线观看免费观看| 亚洲国产日韩一区二区| 在线看a的网站| 各种免费的搞黄视频| 中文精品一卡2卡3卡4更新| 在线观看国产h片| 91精品伊人久久大香线蕉| 9热在线视频观看99| 欧美av亚洲av综合av国产av | 久久久久网色| 精品少妇一区二区三区视频日本电影 | 久久久国产一区二区| 国产一区亚洲一区在线观看| 亚洲四区av| 妹子高潮喷水视频| 日韩 亚洲 欧美在线| 国产精品久久久久久精品古装| 人人妻人人爽人人添夜夜欢视频| 宅男免费午夜| 亚洲经典国产精华液单| 精品福利永久在线观看| av免费在线看不卡| 色哟哟·www| av国产精品久久久久影院| a 毛片基地| 国产精品久久久久久久久免| av在线老鸭窝| 尾随美女入室| 中文欧美无线码| 国产一区亚洲一区在线观看| 777米奇影视久久| 黑人猛操日本美女一级片| 9191精品国产免费久久| 国产亚洲一区二区精品| 考比视频在线观看| 亚洲成人av在线免费| 亚洲精品日韩在线中文字幕| 18禁裸乳无遮挡动漫免费视频| 伦理电影免费视频| 少妇猛男粗大的猛烈进出视频| 男人舔女人的私密视频| 日韩精品免费视频一区二区三区| 五月开心婷婷网| 亚洲av欧美aⅴ国产| 午夜日本视频在线| 国产片内射在线| 精品久久久精品久久久| 韩国高清视频一区二区三区| av在线老鸭窝| 成人毛片60女人毛片免费| 亚洲熟女精品中文字幕| 欧美少妇被猛烈插入视频| 亚洲欧洲精品一区二区精品久久久 | 精品第一国产精品| 国产精品久久久久久av不卡| videossex国产| 午夜激情av网站| 侵犯人妻中文字幕一二三四区| 男人添女人高潮全过程视频| 这个男人来自地球电影免费观看 | 欧美激情高清一区二区三区 | 国产在视频线精品| 亚洲国产精品成人久久小说| 欧美成人午夜免费资源| 午夜影院在线不卡| 一区福利在线观看| 国产一区二区激情短视频 | 亚洲,一卡二卡三卡| 五月天丁香电影| 久久久久久久国产电影| 久久国内精品自在自线图片| 啦啦啦视频在线资源免费观看| 精品第一国产精品| www日本在线高清视频| 亚洲国产欧美日韩在线播放| 国产精品香港三级国产av潘金莲 | 蜜桃国产av成人99| 国产白丝娇喘喷水9色精品| 美女大奶头黄色视频| 国产97色在线日韩免费| 午夜免费鲁丝| 丝袜脚勾引网站| 午夜福利,免费看| 电影成人av| 桃花免费在线播放| 在线观看免费高清a一片| 97在线人人人人妻| 国产高清不卡午夜福利| 日韩中字成人| 色视频在线一区二区三区| 秋霞在线观看毛片| 女性生殖器流出的白浆| 日本色播在线视频| 中国国产av一级| 一二三四在线观看免费中文在| 国产xxxxx性猛交| 超色免费av| 欧美少妇被猛烈插入视频| videossex国产| 中文字幕亚洲精品专区| 亚洲国产精品999| 精品国产一区二区久久| 黄片播放在线免费| 国产 精品1| 老女人水多毛片| 国产高清不卡午夜福利| 中文精品一卡2卡3卡4更新| 丰满少妇做爰视频| 久久久久久久大尺度免费视频| 亚洲精品一二三| 天天躁夜夜躁狠狠久久av| 国产97色在线日韩免费| 亚洲欧美中文字幕日韩二区| 一级爰片在线观看| 成年人免费黄色播放视频| 男女边摸边吃奶| 亚洲国产欧美在线一区| 少妇熟女欧美另类| 日本欧美视频一区| 免费高清在线观看日韩| 少妇被粗大猛烈的视频| 亚洲国产精品一区三区| 婷婷色综合www| 三上悠亚av全集在线观看| 亚洲精品美女久久av网站| 91国产中文字幕| 国产片内射在线| 久久人人97超碰香蕉20202| 捣出白浆h1v1| 国产精品成人在线| 一区二区三区乱码不卡18| 午夜精品国产一区二区电影| 久久av网站| 久久99一区二区三区| 亚洲,一卡二卡三卡| 丰满饥渴人妻一区二区三| 亚洲,欧美精品.| 91午夜精品亚洲一区二区三区| 啦啦啦在线免费观看视频4| 一级毛片黄色毛片免费观看视频| 男女边摸边吃奶| 啦啦啦在线观看免费高清www| 美女福利国产在线| 纯流量卡能插随身wifi吗| 国产精品不卡视频一区二区| 大香蕉久久成人网| 好男人视频免费观看在线| 国产深夜福利视频在线观看| 美女高潮到喷水免费观看| 日本色播在线视频| 美女国产视频在线观看| 97人妻天天添夜夜摸| 久久久久久人人人人人| 两个人免费观看高清视频| 亚洲一码二码三码区别大吗| 中文精品一卡2卡3卡4更新| 亚洲国产欧美日韩在线播放| 久久av网站| 欧美日韩综合久久久久久| 国产精品秋霞免费鲁丝片| 国精品久久久久久国模美| 国产精品久久久久久久久免| 国产福利在线免费观看视频| 自拍欧美九色日韩亚洲蝌蚪91| 中文乱码字字幕精品一区二区三区| 捣出白浆h1v1| 看非洲黑人一级黄片| 日韩成人av中文字幕在线观看| 一边摸一边做爽爽视频免费| 性高湖久久久久久久久免费观看| 亚洲天堂av无毛| 高清不卡的av网站| 韩国精品一区二区三区| 久久久久久久久久久久大奶| 欧美另类一区| 亚洲五月色婷婷综合| 蜜桃在线观看..| 电影成人av| 性色avwww在线观看| 国产日韩欧美亚洲二区| 精品国产乱码久久久久久男人| av免费在线看不卡| 欧美成人精品欧美一级黄| 精品酒店卫生间| av免费在线看不卡| 亚洲欧美清纯卡通| 国产探花极品一区二区| 少妇被粗大猛烈的视频| 嫩草影院入口| 新久久久久国产一级毛片| 中文字幕人妻丝袜制服| 色视频在线一区二区三区| 黄色 视频免费看| 九草在线视频观看| 中文字幕人妻熟女乱码| xxxhd国产人妻xxx| 成年女人在线观看亚洲视频| 国产av精品麻豆| 女人精品久久久久毛片| 人妻少妇偷人精品九色| 免费高清在线观看日韩| 十分钟在线观看高清视频www| 超碰成人久久| 赤兔流量卡办理| 色吧在线观看| 老司机亚洲免费影院| 欧美变态另类bdsm刘玥| freevideosex欧美| 两个人看的免费小视频| 日本欧美视频一区| av网站免费在线观看视频| 国产精品免费大片| 777久久人妻少妇嫩草av网站| 国产成人精品在线电影| 啦啦啦在线观看免费高清www| 水蜜桃什么品种好| 美女中出高潮动态图| 久久久久久伊人网av| 在线 av 中文字幕| 赤兔流量卡办理| 777米奇影视久久| 亚洲精品成人av观看孕妇| 国产在线视频一区二区| 亚洲欧美成人综合另类久久久| 人妻人人澡人人爽人人| 欧美日本中文国产一区发布| 波多野结衣一区麻豆| 91精品国产国语对白视频| 日韩制服丝袜自拍偷拍| 中文字幕另类日韩欧美亚洲嫩草| av又黄又爽大尺度在线免费看| 精品99又大又爽又粗少妇毛片| 人人妻人人澡人人爽人人夜夜| 精品午夜福利在线看| 97人妻天天添夜夜摸| 亚洲第一区二区三区不卡| 亚洲欧洲精品一区二区精品久久久 | 人成视频在线观看免费观看| 国产片内射在线| 黄色 视频免费看| 在线天堂最新版资源| 丝袜美腿诱惑在线| 搡老乐熟女国产| 欧美变态另类bdsm刘玥| 在线观看三级黄色| 少妇熟女欧美另类| 岛国毛片在线播放| 黄色怎么调成土黄色| 亚洲少妇的诱惑av| 免费女性裸体啪啪无遮挡网站| 午夜久久久在线观看| 五月开心婷婷网| 看免费av毛片| 91精品三级在线观看| 丰满迷人的少妇在线观看| 亚洲伊人色综图| 日本午夜av视频| 久久97久久精品| 人妻一区二区av| 如日韩欧美国产精品一区二区三区| videossex国产| 久久久a久久爽久久v久久| 国产福利在线免费观看视频| 美女xxoo啪啪120秒动态图| 国产成人午夜福利电影在线观看| 视频区图区小说| 欧美 亚洲 国产 日韩一| 极品少妇高潮喷水抽搐| 精品一区二区三区四区五区乱码 | 国产97色在线日韩免费| 老司机亚洲免费影院| 91精品三级在线观看| 男人操女人黄网站| 妹子高潮喷水视频| 精品国产一区二区三区久久久樱花| 成人国语在线视频| 中文字幕精品免费在线观看视频| 国产高清不卡午夜福利| 欧美日韩亚洲国产一区二区在线观看 | 午夜福利在线观看免费完整高清在| 国产日韩一区二区三区精品不卡| 老熟女久久久| 寂寞人妻少妇视频99o| 日韩av免费高清视频| 日日啪夜夜爽| 美女大奶头黄色视频| 两个人看的免费小视频| 91成人精品电影| 成年女人毛片免费观看观看9 | 国产精品 欧美亚洲| 午夜免费男女啪啪视频观看| 91久久精品国产一区二区三区| 久热这里只有精品99| 亚洲精品国产色婷婷电影| 1024香蕉在线观看| 黑人欧美特级aaaaaa片| 99re6热这里在线精品视频| 人人澡人人妻人| 老汉色av国产亚洲站长工具|