• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Necessary and sufficient condition for modified Nevanlinna-Pick interpolation for closed-loop pole placement

    2017-12-21 08:33:50BhuvanadasARUNARajagopalanDEVANATHAN
    Control Theory and Technology 2017年1期

    Bhuvanadas ARUNA,Rajagopalan DEVANATHAN

    1.Department of Electrical and Electronics Engineering,Viswajyothi College of Engineering and Technology,Ernakulam,Kerala,686670 India;

    2.Department of Electrical and Electronics Engineering,Hindustan Institute of Technology and Science,Chennai,TN,603103 India

    Necessary and sufficient condition for modified Nevanlinna-Pick interpolation for closed-loop pole placement

    Bhuvanadas ARUNA1?,Rajagopalan DEVANATHAN2

    1.Department of Electrical and Electronics Engineering,Viswajyothi College of Engineering and Technology,Ernakulam,Kerala,686670 India;

    2.Department of Electrical and Electronics Engineering,Hindustan Institute of Technology and Science,Chennai,TN,603103 India

    Nevanlinna-Pick interpolation theory has sevaral applications, in particular in robust control. In this paper, we derive necessary and sufficient condition so that a modification of the Nevanlinna-Pick theory can place the closed-loop poles inside a circular region in the left half of the complex plane in addition to the control system design being robust and internally stable.Numerical examples illustrate the theory.

    Interpolation,pole assignment,robustness,sensitivity,uncertainty

    1 Introduction

    Kimura[4]used Nevanlinna-Pick interpolation theory to derive a condition for robust stabilizability of single-input-single-output(SISO)plants with a prescribed uncertainty band in the frequency domain and proposed a methodology to derive a strongly bounded real(SBR)function solution to the sensitivity function using Fenyves array.However,Dorato and Li[7]have shown that when complex interpolation points are involved,Kimura’s method needs to be revised using the theory developed by Youla and Saito[8].

    Devanathan[9,10]used Nevanlinna-Pick interpolation theory to find the limiting time delay for closed-loop stability.Doyle,Francis and Tannenbaum[5]have used the Nevanlinna-Pick theory to solve the model matching problem.

    As the interpolant in the above applications is in the form of a rational transfer function,it is useful to restrict its degree and at the same time meet interpolation and other design specifications.However,lack of insight provided by the classical Nevanlinna-Pick interpolation into the question regarding the degree of interpolant has been a limiting factor in the approach.

    In a major contribution in this direction to the solution to Nevanlinna-Pick problem,Byrnes,Georgiou and Linquist[11]have shown that association of an entropy like functional can lead to a unique solution to the problem.They provide a complete parametrization of strictly positive real solution to the Nevanlinna-Pick problem with the degree constraint. Blomqvist,Lindquist and Nagamune[12]generalized the theory of[11]to the matrixvalued case allowing multiple interpolation points.In[13],Ramponi et al.considered the convergence issues of the solution to a moment problem which can be shown to be a generalization of the Nevanlinna-Pick interpolation problem.Authors of[14–16]took further the efforts of analytic interpolation with degree constraint to the spectral density estimator in the multivariable case and to improve its performance.

    As regards to pole placement,Chilali et al.[17]discussed the techniques for robust pole placement in linear matrix inequality(LMI)regions for linear systems with static uncertainty on the state matrix.These results are then applied to the design of dynamic output feedback controllers that robustly assign closed-loop poles in a prescribed LMI region.Botto et al.[18]formulated a design methodology of a robust pole placement controller for discrete-time systems with parametric model uncertainties contained within known bounds.The methodology is based on the minimization of an appropriately defined objective function using Genetic Algorithms to achieve robust performance in addition to robust stability.Rao et al.[19]proposed a design of robust power system stabilizer which places the system poles in an acceptable region in the complex plane for a given set of operating and system conditions.It is claimed that the method guarantees a well damped system response over the entire set of operating conditions.In the matter of pole assignment using state feedback,given a decay rate,Cheng et al.[20]proposed to provide a bound on the overshoot which is based on parameters,independent of decay rate.The result has applications to switched linear systems.

    While Khargonekar and Tannenbaum[3]consider analyticity of sensitivity function in the right half of the complex plane using Nevanlinna-Pick theory,in this paper,we pose the question thathow far the analyticity of sensitivity function can be extended into the left half of the complex plane,before the interpolant ceases to exist.The answer to the question also addresses indirectly the regional closed-loop pole placement problem.

    The main contribution of the paper is that we propose a modification of the classical Nevanlinna-Pick theory such that the closed-loop poles can be placed inside,say,a circular region in the left half of the complex plane in the context of robust stabilization of the closed loop system.We then provide necessary and sufficient conditions for the solution to the proposed modification of Nevanlinna-Pick problem to exist.The result can be seen as a generalization,in a sense,of the modification of Nevanlinna-Pick theory proposed by Khargonekar and Tannenbaum[3].

    To summarize the rest of the paper,Section 2 gives the necessary background of robust stabilization using Nevanlinna-Pick theory.Section 3 provides a statement of the proposed modification of Nevanlinna-Pick problem.Section 4 provides the necessary and sufficient condition for a solution to the modified Nevanlinna-Pick problem to exist.Section 5 gives numerical examples to illustrate the theory.Section 6 concludes the paper.

    2 Robust stabilization

    We begin with a review of the result due to Khargonekar and Tannenbaum[3].Let an open loop plant have a strictly proper rational transfer functionP0(s)containing zeros,zi,i=1,2,...,mand poles,pi,i=m+1,m+2,...,qin the closed right half of the complex plane C including infinity,denoted by C+.Consider a sensitivity functionSwhich is analytic in the interior of C+and is given by

    whereC(s)is the controller transfer function andP0(s)is the nominal plant transfer function such that the sensitivity function maps zeroszi,i=1,2,...,mand polespi,i=m+1,m+2,...,qas follows:

    In Fig.1,DandˉDcorrespond to open and closed unit disks in the complex plane respectively.ψ and θ correspond to conformal mappings.ψ is defined as

    G?C is a simply connected region containing 0 and 1 and is defined by the robustness property desired to be satisfied in the closed-loop design.For example,for an uncertainty of gain of the nominal plantP0(s)in the range[a,b],a<1,b>1 with a nominal gain of 1,θ can be formulated by following a standard procedure in conformal mapping theory as in[3].

    Fig.1 Commutative diagram.

    Assuming that the commutative diagram of Fig.1 holds,existence ofSis assured with the existence of ?Swhich interpolates

    SinceSis analytic in the interior of C+,the equation 1+P0C=0 does not have roots in the closed right half of the complex plane.By determiningS=θ?1??S?ψ and using(1),controllerCcan be determined.

    3 Statement of the problem

    Let us now assume that the Khargonekar and Tannenbaum problem mentioned above has a solution with the roots of the characteristic equation being strictly inside the left half of the complex plane.For regional pole placement,we could shift the imaginary axis to the left or identify an arbitrary circle in the left half plane and place the closed-loop poles in the selected region.However,we choose the closed-loop poles to be inside an Apollonius circle in the left half of the complex plane.Apollonius circle could be defined as the set of points that have a given ratio of distances to two given points(labeled+α and ?α)in Fig.2.These two points are sometimes called the foci.If the ratio of distances is 1,then the locus is a line.If the ratio is not equal to 1,then the locus is a circle.

    Fig.2 Apollonius circle.

    The reason for choosing Apollonius circle as the region of pole placement can be explained as follows:

    Fig.3 Modified commutative diagram.

    The interpolation for the function?Sin Fig.3 in terms of the original interpolation points defined in(3)can be given as

    The Nevanlinna-Pick matrix corresponding to the interpolation(4)is given by

    LetP(k)≥0,k=1.Whenk→0,then

    Hence at somek,0<k<1,P(k)fails to be positive semi-definite.The problem is to find such a “k”,using the analysis presented in this paper.Now the following problem can be stated.

    3.1 Problem definition

    Withai,bi,i=1,2,...,q,as defined in(3),we want to find the necessary and sufficient condition for an analytic functionf:ˉD→Dto exist such thatf(kai)=bi,0<k< 1,given thatf(·)exists fork=1.

    4 Solution to the modified Nevanlinna-Pick problem

    In the sequel,we denote the matrix[aij]i,j=1,2,...,qby[aij].[aij]≥ 0(> 0)is used to denote that matrix[aij]is positive semi-definite(positive definite).The Hadamard exponential[25]of[aij]is denoted as[eaij]and logarithm of matrixPdefined in the Hadamard sense,is denoted by lnP.

    if and only ifai≠aj,i≠jandi,j=1,2,...,q.

    Proof(Necessity)Consider

    Lemma 2LetP(k1)>0,0<k1<1.ThenP(k)>0,k1<k≤1 withai∈D?ˉD,bi∈D,i=1,2,...,q.

    ProofGiven

    where?denotes the Hadamard product.

    Also the diagonal elements of

    are all positive.Hence as per[25]

    It follows from[25]thatP(k)>0.Thus the conclusion follows.Theorem1 provides a necessary and sufficient condition forP(k)≥0,in terms of lnA(k). □

    Given thatai≠aj,i≠jandi,j=1,2,...,q.

    i)lnP(k)>0 only if

    where

    ProofSee Appendix A.

    Remark 2It is seen thatP≥0 even when lnP?0.Hence the result of the range ofkprovided in Theorem1 is necessarily rather restrictive.In the following,we considerP(k)directly without involving lnP(k).

    PartitionP(k)as

    whereP11(k),P22(k),P12(k)andP21(k)arem×m,(q?m)×(q?m),m×(q?m)and(q?m)×msubmatrices respectively.

    Theorem2With the partitionP(k)asin(9),P(k)≥0 if and only if?a contraction

    Given thatbi=b0∈R,i=1,2,...,m,bi=0,i=m+1,m+2,...,q.Fcan be partitioned into

    Since the Hadamard

    Thus the conclusion follows.

    is a contraction.

    ProofGivenai≠aj,i≠j,i,j=1,2,...,qas per Corollary 1,

    andA22(k)>0 as per partition(11).

    withF11≥0 and having positive elements(i.e.,1?|b0|2)on its diagonal.Hence as per[25]

    Hence the necessary and sufficient condition of Theorem2 can be stated as

    is a contraction.Thus the conclusion follows. □

    Theorem 3ExpressP(k)of(10)as a pencil,

    ProofWe have

    we can consider the pencilQ(λ)and simultaneous diagonalization ofA(k)andG(k).As per[26],?a matrixZsuch thatZ?A(k)Z=IqandZ?G(k)Z=diag{λ1,λ2,...,λq},whereIqis an identity matrix of orderqand λi,i=1,2,...,qare real.Then puttingx=Zy

    where λmaxis the maximum eigenvalue of(A(k))?1G(k).Thus the conclusion follows. □

    Remark 3The determination ofkthrough the results of Corollary 2 and Theorem2 needs to follow an iterative procedure.k=k0defined in Theorem1 can be a starting point fork.

    If lnP(k0)≥0,thenP(k0)≥0 and it is possible thatP(k)≥0,k<k0.Hence one needs to search iteratively fork<k0to find the limiting value ofksuch thatP(k)≥0 using Theorem2 or Theorem3.

    However,if lnP(k0)?0,then the limiting value ofksuch thatP(k)≥0 could be above or belowk0.Choosek1≥k0.

    IfP(k1)?0,search fork>k1untilP(k)≥0 as per Theorem2 or Theorem3.

    However,ifP(k1)≥0,search fork<k1iteratively untilP(k)≥0 as per Theorem2 or Theorem3.

    5 Numerical examples

    5.1 Verification of Theorem1

    Letai∈ˉD,bi∈D,i=1,...,4 be defined as follows:

    calculatek0as per of the sufficiency condition i)of Theorem1 using

    Hencek0=max(0.3079,0.2105)=0.3079.It is found that lnP(k0)?0.Choosingk=0.4>k0,as the starting value,through an iterative calculation,it is found that the following inequality is satisfied fork=0.87.That is

    Hence as per Theorem1,lnP(k)>0 fork>0.87 and hence as per Lemma 2,it follows thatP(k)>0,0.87<k≤1.It is verified that

    5.2 Closed-loop pole placement

    Consider a nominally unstable plant

    The objective is to design a robust and internally stable controller with the closed-loop poles inside an Apollonius circle in the left half of the complex plane(see Section 2)using the modified Nevanlinna-Pick theory proposed in this paper.

    The real zeros of the plant are

    and the complex conjugate pole pair is

    In this exampleq=4 andm=2.

    Consider the existence off(ai)=bi,ai∈ˉD,bi∈D,i=1,...,4,wherebi=θ(1)=0.2∈D,i=1,2;andbi=0;i=3,4.It is assumed that θ(1)=0.2 for simplicity.Now

    For applying Theorem1,we need to use an iterative procedure.As per Remark 3,the starting valuek0is given by

    Hence,k0=max(0.6667,0.4444)=0.6667.It is found that fork=k0,lnP(k0)?0.

    Choosingk=0.75>k0,then,as per Theorem2,the matrixP(k)is partitioned as follows:

    The contraction,

    Now the closed-loop pole placement can be completed as follows.

    Here complex interpolation points are considered first so as to apply the result of Dorato and LI[7].Now we proceed to find theBRfunctionS′′(s)=U(s)using[7]which interpolates

    Fig.4 Detailed commutative diagra m.

    Selecting the arbitrary BR functionU4(s)=0 and using the interpolation formula

    U3(s),U2(s)andU1(s)are computed where the real functions λj(s), μj(s)and γj(s)are determined according to[7,8].The required interpolating BR function is then obtained as

    WhileS′′:C+→D,we notice by comparing Fig.3 and Fig.4 thatS′=S′′? φ′,where

    wherek=0.75.

    S′is obtained by effecting the transformation(19)into(18)to get

    From Fig.4,S(s)= θ?1?S′(s),where θ(s)=0.2s,is assumed for simplicity with θ(1)=0.2 as assumed earlier.Then θ?1:s=5θand from Fig.4,S′= θresulting inS(s)=5S′(s).Hence

    Now the controller transfer function can be derived using(1)as

    6 Conclusions

    In this paper,we have modified the classical Nevanlinna-Pick result on analytical interpolation ofˉDtoD.Necessary and sufficient condition for the existence of the interpolant in the modified case is presented.The result is used for closed-loop pole placement in the left half of the complex plane in a robust stabilization context.Numerical examples are used to illustrate the theory.

    As can be seen from the illustrative example,the results of the paper can be used to find the limiting value ofk,0<k<1 such thatP(k)>0 through an iterative method only.It is proposed that as a future work,an explicit expression for the limiting value ofkneeds to be found.

    [1]G.Pick.über die Beschr?nkungen analytischer Funktionen,welche durch vorgegebene Funktionswerte bewirkt werden.Mathematische Annalen,1915,77(1):7-23.

    [2]R.Nevanlinna.über beschr?nkte Funktionen die in gegebenen Punkten vorgeschriebene Werte annehmen.Annales Academiae Scientiarum Fennicae,1919:Ser.A,13.

    [3]P.Khargonekar,A.Tannenbaum.Non-Euclidian metrics and the robust stabilization of systems with parameter uncertainty.IEEE Transactions on Automatic Control,1985,30(10):1005–1013.

    [4]H.Kimura.Robust stabilizability for a class of transfer functions.IEEE Transactions on Automatic Control,1984,29(9):788–793.

    [5]J.Doyle,B.A.Francis,A.Tannenbaum.Feedback Control Theory.New York:Macmillan Publishing Company,1990:149–162.

    [6]P.Delsarte,Y.Genin,Y.Kamp.On the role of the Nevanlinna-Pick problem in circuit and system theory.Circuit Theory and Applications,1981,9(2):177–187.

    [7]P.Dorato,Y.Li.A modification of the classical Nevanlinna-Pick interpolation algorithm with applications to robust stabilization.IEEE Transactions on Automatic Control,1986,31(7):645–648.

    [8]D.C.Youla,M.Saito.Interpolation with positive real functions.Journal of the Franklin Institute,1967,284(2):77–108.

    [9]R.Devanathan.Robust stabilization of a SISO system with uncertainty in time delay.IEEE Transactions on Automatic Control,1992,37(11):1820–1823.

    [10]R.Devanathan.A lower bound for limiting time delay for closedloop stability of an arbitrary SISO plant.IEEE Transactions on Automatic Control,1995,40(4):717–721.

    [11]C.I.Byrnes,T.T.Georgiou,A.Lindquist.A generalized entropy criterion for Nevanlinna-Pick interpolation with degree constraint.IEEE Transactions on Automatic Control,2001,45(6):822–839.

    [12]A.Blomqvist,A.Lindquist,R.Nagamune.Matrix-valued Nevanlinna-Pick interpolation with complexity constraint:an optimization approach.IEEE Transactions on Automatic Control,2003,48(12):2172–2190.

    [13]F.Ramponi,A.Ferrante,M.Pavon.On the well-posedness of multivariate spectrum approximation and convergence of highresolution spectral estimators.Systems&Control Letters,2010,59(3/4):167–172.

    [14]F.Ramponi,A.Ferrante,M.Pavon.A globally convergent matricial algorithm for multivariate spectral estimation.IEEE Transactions on Automatic Control,2009,54(10):2376–2388.

    [15]A.Ferrante,C.Masiero,M.Pavon.Time and spectral domain relative entropy:a new approach to multivariate spectral estimation.IEEE Transactions on Automatic Control,2012,57(10):2561–2575.

    [16]A.Ferrante,M.Pavon,M.Zorzi.A maximum entropy enhancement for a family of high-resolution spectral estimators.IEEE Transactions on Automatic Control,2012,57(2):318–329.

    [17]M.Chilali,P.Gahinet,P.Apkarian.Robust pole placement in LMI regions.IEEE Transactions on Automatic Control,1999,44(12):2257–2270.

    [18]M.A.Botto,R.Babuska,J.S.Costa.Discrete-time robust pole placement design through global optimization.Proceedings of the 15th IFAC World Congress,Spain:Pergamon,2002:343–348.

    [19]P.S.Rao,I.Sen.Robust pole placement stabilizer design using linear matrix inequalities.IEEE Transactions on Power Systems,2000,15(1):313–319.

    [20]D.Cheng,L.Guo,Y.Lin,et al.A note on overshoot estimation in pole placements.Journal of Control Theory and Applications,2004,2(2):161–164.

    [21]L.V.Ahlfors.Complex Analysis.Singapore:Mc Graw-Hill International Edition,1979:76–89.

    [22]B.Aruna,R.Devanathan.Modified Nevanlinna-Pick interpolation theory for control system design.Proceedings of the 3rd IEEE Control and System Graduate Research Colloquim,Shah Alam,Malaysia:IEEE,2012:130–135.

    [23]B.Aruna,R.Devanathan.Modified N-P interpolation theory for closed loop pole placement.Asian Journal of Control,2015,17(5):1880–1888.

    [24]Golten,A.Verwer.Control System Design and Simulation.Singapore:Mc Graw-Hill International Edition,1992.

    [25]R.A.Horn,C.R.Johnson.Matrix Analysis.New York:Cambridge University Press,1990.

    [26]F.R.Gantmacher.The Theory of Matrices.New York:Chelsea Publication Company,1977:337–338.

    Appendix

    wherea′i=kai,i=1,2,...,q.Using the fact thatbi=b0,i=1,2,...,mandbi=0,i=m+1,m+2,...,q,one can write(a2)as

    andB=[bij],where

    Under elementary operations usingE=[eij]where

    Using(a3)and(a5)and noting thatEis nonsingular,we can write that

    Since|b0|<1,the second term on the RHS of(a6)has a single negative element with all other elements being zero.We have

    since[a′ij]>0 as per Corollary 1.RHS of(a6)becomes

    SinceB′has only one nonzero element of unity at(r,r)th location with all other elements zero,a necessary condition for(a8)to hold is that

    ii)(Necessity)Following the arguments(a1)upto(a8),a necessary condition for(a8)to hold is that

    Following Lemma 7.8.5[25],it is clear that,for(a11)to hold,it is necessary that

    (Sufficiency)We have

    Givenk,0<k< 1 such that?ln(1?|b0|2)<αrr(k),r∈{1,2,...,m}with αrr(k)as defined in(a12),it follows from Lemma 7.8.5[25],that

    Using(a5)and(a7),it follows that

    withbi,i=1,2,...,qas defined in the theorem,i.e.,

    Thus the conclusion follows.

    17 January 2016;revised 31 August 2016;accepted 2 September 2016

    DOI10.1007/s11768-017-6011-7

    ?Corresponding author.

    E-mail:arunab2303@gmail.com.Tel.:+919072964416.

    ?2017 South China University of Technology,Academy of Mathematics and Systems Science,CAS,and Springer-Verlag Berlin Heidelberg

    Bhuvanadas ARUNAgraduated in Electrical Engineering from the Government Engineering College,Trichur,Kerala,India.She obtained her post graduate degree in Power Systems from the Regional Engineering College,Trichy,Tamil Nadu,India and received her Ph.D. from Hindustan University, Chennai, India. She has served Hindustan University, Chennai for 23 years.Currently,she is Professor in the Department of Electrical and Electronics Engineering of Viswajyothi College of Engineering and Technology,Kerala,India.She has published papers in international and national conference proceedings and journals.Her research interests are in advanced control of machines and power systems.E-mail:arunab2303@gmail.com.

    Rajagopalan DEVANATHANreceived his Ph.D.and M.Sc.(Eng.)from Queens University,Kingston,Ontario,Canada and his B.E.and M.E.degrees from Indian Institute of Science,Bangalore,India.Dr.Devanathan has taught at Nanyang Technological University(NTU),Singapore for over two decades.He has published over 130 papers in international and national conference proceedings and journals,and has received awards from IEEE Education Society and NTU.He has chaired and co-chaired international conferences organized by IEEE as well as NTU.Currently,he is Professor Emeritus in Electrical&Electronic Engineering in Hindustan University,Chennai,India.He has a broad interest including control systems,sensor networks,discrete event systems,computational linguistics and computer arithmetic.He is a life senior member of IEEE.E-mail:devanathanr@hindustanuniv.ac.in.

    边亲边吃奶的免费视频| 国产v大片淫在线免费观看| 一区二区三区四区激情视频| 亚洲乱码一区二区免费版| 国产伦精品一区二区三区四那| 三级毛片av免费| 一级二级三级毛片免费看| 91久久精品电影网| 国产午夜精品一二区理论片| 国产黄色视频一区二区在线观看| 亚洲av福利一区| 亚洲精品自拍成人| 日韩欧美精品免费久久| 人人妻人人澡欧美一区二区| 尾随美女入室| 国产69精品久久久久777片| 日日干狠狠操夜夜爽| 国内揄拍国产精品人妻在线| 国产男女超爽视频在线观看| 日本一本二区三区精品| 能在线免费观看的黄片| 久久久精品欧美日韩精品| 色综合亚洲欧美另类图片| av.在线天堂| 一级毛片aaaaaa免费看小| 国产单亲对白刺激| 国产精品久久久久久av不卡| 免费电影在线观看免费观看| ponron亚洲| 中文资源天堂在线| 欧美极品一区二区三区四区| 男人爽女人下面视频在线观看| 床上黄色一级片| 亚洲精品视频女| 久久久久免费精品人妻一区二区| 如何舔出高潮| 久久国内精品自在自线图片| 国产一区二区亚洲精品在线观看| 久久99精品国语久久久| 日韩,欧美,国产一区二区三区| 久久精品国产鲁丝片午夜精品| 在现免费观看毛片| 亚洲精品国产成人久久av| av免费观看日本| 肉色欧美久久久久久久蜜桃 | 男插女下体视频免费在线播放| 一边亲一边摸免费视频| 亚洲欧美日韩无卡精品| 黄色日韩在线| 欧美激情国产日韩精品一区| 精品久久久久久久人妻蜜臀av| 久久久久性生活片| 精品久久久久久久末码| 日韩av免费高清视频| av播播在线观看一区| 国产高清不卡午夜福利| 午夜精品一区二区三区免费看| 日本黄色片子视频| 一本久久精品| 国产精品爽爽va在线观看网站| 日韩伦理黄色片| 欧美xxⅹ黑人| 人妻一区二区av| av线在线观看网站| 男人和女人高潮做爰伦理| 亚洲av电影在线观看一区二区三区 | 极品少妇高潮喷水抽搐| 亚洲四区av| 青青草视频在线视频观看| 亚洲av成人精品一二三区| 国产永久视频网站| 黄色配什么色好看| 成人美女网站在线观看视频| 天堂俺去俺来也www色官网 | 欧美成人精品欧美一级黄| 美女cb高潮喷水在线观看| 成人漫画全彩无遮挡| 国产精品久久久久久精品电影| 久久久久久九九精品二区国产| 国内精品一区二区在线观看| 午夜精品一区二区三区免费看| 国产v大片淫在线免费观看| 亚洲成人久久爱视频| 精品久久久久久久末码| 乱人视频在线观看| 久久久成人免费电影| 日韩精品青青久久久久久| 黄色日韩在线| 国内精品一区二区在线观看| 欧美97在线视频| 免费黄网站久久成人精品| 久99久视频精品免费| 在线观看免费高清a一片| 日本猛色少妇xxxxx猛交久久| 91av网一区二区| av在线观看视频网站免费| 你懂的网址亚洲精品在线观看| 日日干狠狠操夜夜爽| 久久人人爽人人爽人人片va| 婷婷色综合大香蕉| 日韩av不卡免费在线播放| 亚洲成色77777| 麻豆成人av视频| 成年女人在线观看亚洲视频 | 男人狂女人下面高潮的视频| 亚洲av免费高清在线观看| 两个人视频免费观看高清| 床上黄色一级片| 一级毛片 在线播放| 久久国产乱子免费精品| 91午夜精品亚洲一区二区三区| 欧美区成人在线视频| 高清视频免费观看一区二区 | 搡女人真爽免费视频火全软件| 国产精品一区二区在线观看99 | 成人亚洲欧美一区二区av| 麻豆成人av视频| 可以在线观看毛片的网站| 99久久人妻综合| 美女高潮的动态| 简卡轻食公司| 水蜜桃什么品种好| 最后的刺客免费高清国语| 日韩av在线大香蕉| 国产精品女同一区二区软件| 久久精品综合一区二区三区| 国产黄a三级三级三级人| 日日撸夜夜添| 日韩制服骚丝袜av| 看非洲黑人一级黄片| 日产精品乱码卡一卡2卡三| 成人毛片a级毛片在线播放| 最近中文字幕2019免费版| 成年版毛片免费区| 国产午夜精品论理片| 国产伦精品一区二区三区四那| 国产伦精品一区二区三区四那| 免费av观看视频| 联通29元200g的流量卡| 日日啪夜夜爽| 中文字幕免费在线视频6| 超碰97精品在线观看| 51国产日韩欧美| 能在线免费观看的黄片| 国产老妇伦熟女老妇高清| 久久久久网色| 日本一二三区视频观看| 69av精品久久久久久| 69人妻影院| 国产黄色小视频在线观看| 日韩强制内射视频| 乱人视频在线观看| or卡值多少钱| 久久久久久国产a免费观看| 高清av免费在线| 亚洲av免费在线观看| 久久久久久伊人网av| 国产成人91sexporn| 精品国产三级普通话版| 美女大奶头视频| 国产 一区精品| av播播在线观看一区| 日本与韩国留学比较| 日本与韩国留学比较| 日韩精品有码人妻一区| 男女下面进入的视频免费午夜| 2022亚洲国产成人精品| 亚洲精品视频女| 2022亚洲国产成人精品| 亚洲av国产av综合av卡| 国产永久视频网站| 天天躁夜夜躁狠狠久久av| 久久热精品热| 婷婷色麻豆天堂久久| 2022亚洲国产成人精品| 日产精品乱码卡一卡2卡三| 国产亚洲5aaaaa淫片| 亚洲乱码一区二区免费版| 91aial.com中文字幕在线观看| 黄片wwwwww| 久久精品久久久久久噜噜老黄| 97人妻精品一区二区三区麻豆| 亚洲精品成人久久久久久| 91av网一区二区| 久久精品国产自在天天线| 看非洲黑人一级黄片| 热99在线观看视频| 99热网站在线观看| 免费不卡的大黄色大毛片视频在线观看 | 激情 狠狠 欧美| 超碰av人人做人人爽久久| 国产高清国产精品国产三级 | 国产精品蜜桃在线观看| 狠狠精品人妻久久久久久综合| 日本三级黄在线观看| 欧美一级a爱片免费观看看| 可以在线观看毛片的网站| 久久久久久久久中文| 国产午夜精品论理片| 久久久久国产网址| 人人妻人人澡人人爽人人夜夜 | 亚洲怡红院男人天堂| 丰满人妻一区二区三区视频av| 国产成人91sexporn| 亚州av有码| 我要看日韩黄色一级片| 久久综合国产亚洲精品| 一二三四中文在线观看免费高清| 国产成人a∨麻豆精品| 午夜福利在线观看吧| 亚洲欧美清纯卡通| 国产精品熟女久久久久浪| 久久久久精品性色| 久久精品夜色国产| 青春草国产在线视频| 欧美极品一区二区三区四区| 日日啪夜夜爽| 日韩电影二区| 国产成人午夜福利电影在线观看| 搞女人的毛片| h日本视频在线播放| 亚洲欧美精品自产自拍| 男女边摸边吃奶| 精华霜和精华液先用哪个| 热99在线观看视频| 黑人高潮一二区| 国产亚洲最大av| 国精品久久久久久国模美| 精品久久久精品久久久| 亚洲欧美中文字幕日韩二区| 一级黄片播放器| 国产一级毛片在线| 久久久久久久亚洲中文字幕| 小蜜桃在线观看免费完整版高清| 99re6热这里在线精品视频| 黄色日韩在线| av网站免费在线观看视频 | 国产黄a三级三级三级人| 国产精品三级大全| 18禁在线播放成人免费| 一二三四中文在线观看免费高清| 美女cb高潮喷水在线观看| 三级毛片av免费| 欧美极品一区二区三区四区| 国产精品麻豆人妻色哟哟久久 | 欧美精品国产亚洲| 日韩强制内射视频| 国产成人a∨麻豆精品| 午夜精品在线福利| 韩国av在线不卡| 色尼玛亚洲综合影院| 日韩视频在线欧美| 中国美白少妇内射xxxbb| 久久久久久久久久久免费av| 亚洲精品aⅴ在线观看| 深夜a级毛片| 亚州av有码| 在线观看美女被高潮喷水网站| 丰满少妇做爰视频| 水蜜桃什么品种好| 精品99又大又爽又粗少妇毛片| 久久久欧美国产精品| 亚洲经典国产精华液单| 成人毛片60女人毛片免费| 精品久久久久久久久亚洲| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 成人亚洲精品一区在线观看 | 97在线视频观看| 91精品伊人久久大香线蕉| 好男人在线观看高清免费视频| 久久久久久久国产电影| 一级毛片aaaaaa免费看小| 免费大片黄手机在线观看| 免费观看在线日韩| 亚洲成人精品中文字幕电影| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产精品久久久久久久电影| 亚洲真实伦在线观看| 一级毛片 在线播放| 99九九线精品视频在线观看视频| 性色avwww在线观看| 国产69精品久久久久777片| 真实男女啪啪啪动态图| 熟妇人妻久久中文字幕3abv| 永久网站在线| 91av网一区二区| 麻豆国产97在线/欧美| 亚洲国产精品成人综合色| 最近2019中文字幕mv第一页| 蜜桃久久精品国产亚洲av| 亚洲人成网站在线观看播放| 久久久久久久久久人人人人人人| 天天躁夜夜躁狠狠久久av| 久久久精品94久久精品| 国产精品爽爽va在线观看网站| 亚洲国产最新在线播放| 三级国产精品片| 久久久久久久亚洲中文字幕| 久久鲁丝午夜福利片| 91午夜精品亚洲一区二区三区| 亚洲国产精品专区欧美| 一区二区三区四区激情视频| 51国产日韩欧美| 国产综合懂色| 免费大片黄手机在线观看| 日韩av在线免费看完整版不卡| 国产精品av视频在线免费观看| 国产高清国产精品国产三级 | 成年女人看的毛片在线观看| 免费观看a级毛片全部| 国产一区二区亚洲精品在线观看| 97热精品久久久久久| 欧美丝袜亚洲另类| 日本三级黄在线观看| 久久久久久久亚洲中文字幕| av线在线观看网站| 午夜免费男女啪啪视频观看| 欧美潮喷喷水| 国产熟女欧美一区二区| 3wmmmm亚洲av在线观看| 国产视频首页在线观看| 日韩亚洲欧美综合| 99久久人妻综合| 亚洲欧美日韩东京热| 男女啪啪激烈高潮av片| 97超视频在线观看视频| 国产成人a∨麻豆精品| 亚洲成人一二三区av| 国产午夜精品一二区理论片| 日本-黄色视频高清免费观看| 五月伊人婷婷丁香| 听说在线观看完整版免费高清| 2021少妇久久久久久久久久久| 内地一区二区视频在线| 搞女人的毛片| 国产精品国产三级专区第一集| 午夜激情久久久久久久| 18禁裸乳无遮挡免费网站照片| 亚洲精品国产av蜜桃| 成人高潮视频无遮挡免费网站| av在线观看视频网站免费| 有码 亚洲区| 国产精品嫩草影院av在线观看| 高清在线视频一区二区三区| 不卡视频在线观看欧美| av在线观看视频网站免费| 成人漫画全彩无遮挡| 亚洲美女搞黄在线观看| 91狼人影院| 国产精品国产三级专区第一集| 亚洲欧洲日产国产| 午夜福利视频1000在线观看| 直男gayav资源| 久久久久国产网址| 国产一区二区三区av在线| 乱人视频在线观看| 97精品久久久久久久久久精品| 国产淫语在线视频| 天堂中文最新版在线下载 | av福利片在线观看| 日韩精品有码人妻一区| 日日干狠狠操夜夜爽| 成人鲁丝片一二三区免费| 日韩成人伦理影院| 午夜福利在线在线| 激情五月婷婷亚洲| 最近的中文字幕免费完整| 日韩一区二区视频免费看| 纵有疾风起免费观看全集完整版 | 亚洲va在线va天堂va国产| 久久精品国产鲁丝片午夜精品| 白带黄色成豆腐渣| 日韩中字成人| 国产av国产精品国产| 少妇熟女欧美另类| 亚洲国产精品国产精品| 久久久久国产网址| 国产黄频视频在线观看| 色综合站精品国产| 亚洲精品国产av成人精品| 亚洲精品乱码久久久v下载方式| 亚洲无线观看免费| 国内少妇人妻偷人精品xxx网站| 热99在线观看视频| 午夜亚洲福利在线播放| 亚洲欧美中文字幕日韩二区| 日本一本二区三区精品| 亚洲成色77777| 日本色播在线视频| 91在线精品国自产拍蜜月| 99热这里只有是精品在线观看| 午夜免费观看性视频| 亚洲电影在线观看av| 在线观看一区二区三区| 日本爱情动作片www.在线观看| 建设人人有责人人尽责人人享有的 | 日本免费a在线| 亚洲精品成人av观看孕妇| 青春草视频在线免费观看| 欧美区成人在线视频| 成人国产麻豆网| 少妇裸体淫交视频免费看高清| 97精品久久久久久久久久精品| 亚洲丝袜综合中文字幕| 午夜福利高清视频| 国产一区二区亚洲精品在线观看| 亚洲人与动物交配视频| 91精品一卡2卡3卡4卡| 国产一区二区三区av在线| 久久6这里有精品| 亚洲久久久久久中文字幕| 成年女人看的毛片在线观看| 久久人人爽人人爽人人片va| 国产成人精品一,二区| 我的老师免费观看完整版| 高清av免费在线| 在线免费观看不下载黄p国产| 国产伦理片在线播放av一区| 日本色播在线视频| 少妇猛男粗大的猛烈进出视频 | 欧美成人午夜免费资源| 高清午夜精品一区二区三区| 午夜激情久久久久久久| 午夜激情欧美在线| 欧美人与善性xxx| 久久这里只有精品中国| 丰满少妇做爰视频| 中文字幕久久专区| 男女啪啪激烈高潮av片| 欧美一区二区亚洲| 内地一区二区视频在线| 欧美日韩一区二区视频在线观看视频在线 | 直男gayav资源| 大话2 男鬼变身卡| 精品一区在线观看国产| 男人狂女人下面高潮的视频| 网址你懂的国产日韩在线| 日韩欧美三级三区| 国产成人aa在线观看| 特级一级黄色大片| 99久久精品热视频| 久久久久网色| 麻豆成人av视频| www.色视频.com| 精品人妻熟女av久视频| 99re6热这里在线精品视频| 九九久久精品国产亚洲av麻豆| 日本欧美国产在线视频| 亚洲欧美成人精品一区二区| 天堂中文最新版在线下载 | av网站免费在线观看视频 | 日韩一区二区三区影片| 亚洲经典国产精华液单| 又粗又硬又长又爽又黄的视频| 三级国产精品片| 国产精品一区二区在线观看99 | 春色校园在线视频观看| 成人午夜精彩视频在线观看| 91av网一区二区| 高清欧美精品videossex| 免费无遮挡裸体视频| 偷拍熟女少妇极品色| 九九爱精品视频在线观看| 天堂中文最新版在线下载 | 亚洲三级黄色毛片| 免费av不卡在线播放| 国产伦精品一区二区三区视频9| 国产免费视频播放在线视频 | 久久热精品热| 国产高清有码在线观看视频| 又黄又爽又刺激的免费视频.| 午夜福利在线在线| 六月丁香七月| 精品久久久久久成人av| 国产精品一区二区性色av| 久久综合国产亚洲精品| videos熟女内射| 蜜臀久久99精品久久宅男| 18禁在线无遮挡免费观看视频| 秋霞伦理黄片| 最新中文字幕久久久久| 日本av手机在线免费观看| 丝袜喷水一区| 黄片无遮挡物在线观看| 男插女下体视频免费在线播放| 人妻制服诱惑在线中文字幕| 亚洲国产欧美在线一区| 男人狂女人下面高潮的视频| 夜夜看夜夜爽夜夜摸| 18禁在线播放成人免费| 老师上课跳d突然被开到最大视频| 亚洲精品日韩在线中文字幕| 69人妻影院| av专区在线播放| 搡女人真爽免费视频火全软件| 乱系列少妇在线播放| 三级经典国产精品| 一级毛片电影观看| 久久精品国产鲁丝片午夜精品| 日韩精品青青久久久久久| 国产精品久久视频播放| 亚洲欧美成人精品一区二区| 日日撸夜夜添| 91精品国产九色| 我的老师免费观看完整版| 免费观看无遮挡的男女| 国产激情偷乱视频一区二区| 婷婷六月久久综合丁香| 久久久久性生活片| 免费观看av网站的网址| 国产综合精华液| 联通29元200g的流量卡| 亚洲av男天堂| 蜜桃亚洲精品一区二区三区| 国产乱人视频| 一本久久精品| 久久久久国产网址| 亚洲国产欧美人成| 又爽又黄a免费视频| 亚洲欧美日韩无卡精品| 国产中年淑女户外野战色| 两个人的视频大全免费| 六月丁香七月| 欧美+日韩+精品| 欧美精品国产亚洲| 亚洲精品乱码久久久v下载方式| 午夜福利在线在线| 毛片女人毛片| 欧美激情国产日韩精品一区| 亚洲内射少妇av| videos熟女内射| 3wmmmm亚洲av在线观看| 51国产日韩欧美| 亚洲欧美精品自产自拍| 一个人观看的视频www高清免费观看| 久久久欧美国产精品| 亚洲18禁久久av| 久久久久久久久久久丰满| 黄片无遮挡物在线观看| 乱系列少妇在线播放| 亚洲国产高清在线一区二区三| 日韩精品青青久久久久久| 大香蕉97超碰在线| 亚洲经典国产精华液单| 一个人免费在线观看电影| 成人午夜精彩视频在线观看| 免费不卡的大黄色大毛片视频在线观看 | 又爽又黄无遮挡网站| 在线观看av片永久免费下载| 久久国内精品自在自线图片| h日本视频在线播放| 观看美女的网站| 久久久久免费精品人妻一区二区| 一边亲一边摸免费视频| 国产色爽女视频免费观看| 久久这里只有精品中国| 久热久热在线精品观看| 人人妻人人澡欧美一区二区| 能在线免费观看的黄片| 免费观看av网站的网址| 少妇猛男粗大的猛烈进出视频 | 久久久久久久久中文| 午夜激情久久久久久久| 国产综合懂色| 99久久精品热视频| 亚洲av不卡在线观看| 亚洲自拍偷在线| 人妻系列 视频| 日韩av在线免费看完整版不卡| 老司机影院成人| 国内精品美女久久久久久| 久久精品夜色国产| 亚洲av日韩在线播放| 最近手机中文字幕大全| 成人亚洲欧美一区二区av| 91精品伊人久久大香线蕉| 久久久久国产网址| 国产黄片视频在线免费观看| 欧美高清成人免费视频www| 国产亚洲午夜精品一区二区久久 | 又爽又黄a免费视频| 婷婷六月久久综合丁香| 亚洲精品乱码久久久v下载方式| 黄片wwwwww| 女的被弄到高潮叫床怎么办| 深夜a级毛片| 男人狂女人下面高潮的视频| 亚洲乱码一区二区免费版| 国产乱来视频区| 国产精品国产三级专区第一集| 最近的中文字幕免费完整| 在线观看av片永久免费下载| 久久久久精品性色| 91久久精品电影网| 在线免费十八禁| 国产爱豆传媒在线观看| 最近手机中文字幕大全| 欧美日韩一区二区视频在线观看视频在线 | 看免费成人av毛片| 亚洲aⅴ乱码一区二区在线播放| 黄色配什么色好看| 国精品久久久久久国模美| 国产毛片a区久久久久| 亚洲aⅴ乱码一区二区在线播放| 欧美激情久久久久久爽电影| 性插视频无遮挡在线免费观看| h日本视频在线播放| 六月丁香七月| 欧美区成人在线视频| 男插女下体视频免费在线播放| 全区人妻精品视频| 2021少妇久久久久久久久久久| 国内精品美女久久久久久| 亚洲国产精品成人久久小说| 在线观看av片永久免费下载|