• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Local model networks based mixed-sensitivity H-infinity control of CE-150 helicopters

    2017-12-21 08:33:44MohamedRedouaneKAFIHichamCHAOUISuruzMIAHAbderrazakDEBILOU
    Control Theory and Technology 2017年1期

    Mohamed Redouane KAFI,Hicham CHAOUI,Suruz MIAH,Abderrazak DEBILOU

    1.Laboratoire de Génie Electrique(LAGE),Université Kasdi Merbah Ouargla,Ouargla,Algeria;

    2.Center for Manufacturing Research,Department of ECE,Tennessee Technological University,Cookeville,TN,U.S.A.;

    3.Department of Electrical and Computer Engineering,Bradley University,Peoria,IL,U.S.A.;

    4.Faculty of Sciences,Department of Electronics,Biskra University,Algeria

    Local model networks based mixed-sensitivity H-infinity control of CE-150 helicopters

    Mohamed Redouane KAFI1,4?,Hicham CHAOUI2,Suruz MIAH3,Abderrazak DEBILOU4

    1.Laboratoire de Génie Electrique(LAGE),Université Kasdi Merbah Ouargla,Ouargla,Algeria;

    2.Center for Manufacturing Research,Department of ECE,Tennessee Technological University,Cookeville,TN,U.S.A.;

    3.Department of Electrical and Computer Engineering,Bradley University,Peoria,IL,U.S.A.;

    4.Faculty of Sciences,Department of Electronics,Biskra University,Algeria

    In this paper,a local model network H-infinity control is proposed for CE-150 helicopter stabilization.The proposed strategy capitalizes on recent developments on H-infinity control and its promising results in robust stabilization of plants under unstructured uncertainties.CE-150 helicopters are known for their varying operating conditions along with external disturbances.Therefore,local model networks are introduced for their adaptive feature and since they provide a powerful combination of fuzzy logic and conventional linear control techniques to control nonlinear systems without the added computational burden of soft-computing techniques.Using the fact that the system can be linearized at different operating points,a mixed sensitivity H-infinity controller is designed for the linearized system,and combined within a network to make transitions between them.The proposed control structure ensures robustness,decoupling of the system dynamics while achieving good performance.A comparison is carried-out against the well-known proportional-integral-derivative(PID)control technique.Results are presented to illustrate the controller’s performance in various operating conditions.

    H-infinity control,helicopter,local model network,robust stabilization

    1 Introduction

    Helicopters have received a thorough attention and have been extensively used lately to demonstrate the effectiveness of different kinds of controllers.They are considered as a well-established benchmark challenge for many control problems and have been used in various applications such as transportation,and aboveground monitoring[1,2].Varying operating conditions along with structured and unstructured uncertainties,such as external disturbances,are among the numerous challenges that need to be addressed to successfully control such highly complex nonlinear unstablesystems.Unlike quadrotors that exhibit a good degree of decoupling,which makes them easier to control,helicopters are open-loop unstable systems and their dynamics is highly nonlinear,time-varying,uncertain,and strongly coupled.

    Various flight control techniques have been proposed in the literature for the helicopter flight control problem[3–9],including robust adaptive control[6,10],state-dependent Riccati equation control[11],sliding mode control[12],trajectory tracking control[13,14],backstepping control[4,8,15],fuzzy control[16,17]and neural network control[18,19].In[10],robust nonlinear motion control of a helicopter is developed.In spite of the simplicity of control law design based on linearization around an operating point of the states,the control system’s performance and stability are achieved for only the approximated system and are not guaranteed for the overall system.On the other hand,fuzzy logic based controllers are incapable of incorporating any learning already acquired about the dynamics of the system in hand and neural network based controllers remain incapable of incorporating any human-like expertise.Moreover,these tools achieve outstanding performance at the expense of a heavy computation.Furthermore,they are based on heuristic which makes tuning not trivial[20,21].

    On another aspect,local model network theory has received a thorough attention and an increasing interest from the control community[22].This is due to its simplicity since it is based on a combination of a set of linear controllers, where each of them corresponds to an appropriate operating point.Thus,the resulting control system is able to achieve good performance for a large operating range in the presence of plants nonlinearities and uncertainties.On the other hand,H∞control is considered as one of the promising robust control techniques.Its limitation is essentially a frequency domain optimization method for designing robust control systems.H∞r(nóng)efers to the space of stable and proper transfer functions.It has evolved since the initial seminal work of Zames[23].The Book by Francis records the progress in the initial development of the subject[24],much of which was concerned with solving the Nehari optimization problem.The state-space method of solving the H∞design problems is well-established as a very practical and a simple means of computing H∞controllers(see[25]).The polynomial approach for solving these problems has also been developed over the last few years[26,27]and seen recent advances through the use ofJspectral factorization algorithms[28,29].Besides,the control of a helicopter is a challenging problem since the system is multivariable,nonlinear,and unstable in open loop.In addition to uncertain parameters,and at least of the sixth order,depending on the modeling precision.All inputs and outputs are coupled.To effectively handle strongly coupled nonlinearities, model uncertainties and time-varying unknown perturbations,local model networks are combined in this paper with H∞control for helicopter stabilization.

    The contribution of this paper is to propose a local model network based H∞controller for CE-150 helicopter stabilization problem.Local model networks provide a conceptually powerful combination of fuzzy logic and conventional linear control techniques providing an alternative approach for the control of nonlinear systems.Using nonlinear systems linearization at different significant operating points,H∞controller is designed for the linearized system,which is then combined in a local model network control structure.Therefore,decoupling of the system dynamics is achieved which is a key in obtaining good performance in the presence of uncertainties.The rest of the paper is organized as follows:Section 2 outlines the nonlinear model of helicopter simulator.Section 3 formulates the state-space model and outlines its linearization.The local model networks based H∞control synthesis is detailed in Section 4.In Section 5,simulation and experimental results are reported and discussed.Conclusion with few remarks and suggestions is also presented.

    NotationsThroughout this paper,vectors and matrices will be denoted by lower case and upper case bold letters,respectively.Scalar quantities will be denoted by non-bold letters.We let R to denote the set of real numbers.

    2 Helicopter model

    Following[30],we consider a laboratory helicopter whose body is connected to a fixed base.Hence,two degrees of freedom of the helicopter are enabled where the elevation angle ψ(rotation around horizontal axis)and the azimuth angle ?(rotation around vertical axis)describe the motion of the helicopter body.The parameters describing the helicopter motion is depicted in Fig.1.The body is actuated by two DC motors which drive the main and tail propellers.The rotor axes acting on these propellers are orthogonal to each other.

    Fig.1 Torques acting on the helicopter body in the vertical planes.

    Suppose thatˉu1(t)andˉu2(t)represent the voltages driving the main and tail motors,respectively,at timet≥0.As such,the helicopter model can be treated as a two-input two-output nonlinear multi-variable system(Fig.2).Considering the forces acting on the vertical helicopter body,the dynamics of the elevation angle is given by

    where

    Imoment of inertia of the helicopter body around horizontal axis;

    τ˙?centrifugal torque;

    τmgravitational torque;

    τGgyroscopic torque;

    τf1friction torque(Coulomb and viscous);

    τ1elevation driving torque(main propeller influence);

    τω1main propeller angular velocity;

    mmass;

    g gravity;

    l1distance fromz-axis to main rotor;

    kω1main rotor constant;

    kGgyroscopic coefficient;

    Bψviscous friction coefficient(aroundy-axis);

    CψCoulomb friction coefficient(aroundyaxis).

    Fig.2 Two degrees of freedom,Helicopter CE-150.

    Similar to the elevation dynamics,we consider the forces in the horizontal plain(see Fig.3)taking into account the forces acting on the helicopter body in the direction of the azimuth angle ?.The dynamics of ? is given by

    where

    Iψmoment of inertia around vertical axis;

    τ2stabilizing motor driving torque;

    τf2friction torque(coulomb and viscous);

    τrmain motor reaction torque;

    l2distance fromz-axis to stabilizing tail rotor;

    kω2constant for the tail rotor;

    ω2angular velocity of the tail rotors;

    B?viscous friction coefficient aroundz-axis;

    C?Coulomb friction coefficient aroundz-axis.

    Fig.3 Torques acting on the helicopter body in the horizontal planes.

    Similar to the body dynamics in elevation,no connection between the speed of the side propeller and friction torque around vertical rotational axis has been introduced into the derivation of an analytical model of the helicopter dynamics[31].The torque τris significant and arises from the torque generated by the main motor acting on rotating body. Note that the propulsion system of the CE-150 helicopter model is mainly driven by two independent DC motors.Under certain assumptions on the DC motor dynamics as stated in[30],the DC motor and propeller dynamics are given by the following equations:

    jis the motor index(j=1 for main motor andj=2 for tail motor),

    ijarmature current;

    ωjrotor angular velocity;

    τjmotor torque;

    τcjcoulomb friction load torque;

    τpjair resistance load torque;

    Rjarmature resistance;

    kijtorque constant;

    kbjback-emf constant;

    Ijrotor and propeller moment of inertia;

    Bjviscous friction coefficient;

    Cjcoulomb friction coefficient;

    Bpjair resistance coefficient(laminar flow);

    Dpair resistance coefficient(turbulent flow),∈R.

    Fig.4 complete system dynamics.

    3 State-space model and linearization

    The compact form of(12a)–(12h)can be expressed as

    withx2=x4=x6=x8=0 andx3=α∈R is simply a constant.Clearly,ˉu1=x5andˉu2=x7.The solution forx5andx7can be obtained from(14a)and(14b)assuming the fact thatx1≡ψ(elevation angle)takes the value from[0,π].By doing so,we obtain

    Forx1=0,5π/16,and 9π/16,the three different equilibrium points are

    fora1=0.1165,a2=0.268,a3=0.1959,b1=0.062,b2=0.0408,b3=0.0202,T1=0.1,T2=0.25,I=184,I?=494.3,Bψ=0.08,B?=0.04,KG=0.3185 and τg=0.071.

    4 Local model networks based H∞control

    Local model networks(LMNs)operate based on the interpolation of the local models,weighted by their associated validity functions.The output of an LMN with? local models can be expressed as[32],

    Usually,when the validity functions do not automatically sum up to 1,the partition of unity is achieved through normalization.This principle is illustrated in Fig.5.A soft-switching technique is used to combine all control outputs by a weighted(validity)function.As such,the output of global LMN controller is a weighted average of the local control outputs.This strategy enables a smooth transition of the control output between different operating points.

    Fig.5 Local model network control.

    The control law is given by

    Φiis a function that depends on the operating point and must satisfy the condition(18).The functions Φiallow us to privilege each compensator in its functional domain.A simple choice of the functions Φiis based on the use of trapezoidal functions as indicated in Fig.6.

    Fig.6 Switching.

    In region(1),the compensatorK1is in operation,whereas in region(2)the system is controlled by linear combination ofK1andK2,however,the compensatorK2is used in region(3).For acceptable behavior of the system,the operating point is described by a variable which is slowly varying with time.

    For simple cases,we can use the reference or the output as an indicator of the operating point.We note that the control principle presented in this paragraph comes closer to the principle of the adaptive control with advantage that parameter identification and estimation part is avoided,which yield less computational load and better time response.In this work,? is taken to be equal to 3.

    On the other hand,mixed-sensitivity H∞control design consists of synthesising a controllerK(s)to minimize low frequency disturbances at the plant output and the high frequency control effort while providing robustness to additive uncertainty at high frequencies.Fig.7 shows a feedback control system with augmented plant,whereG(s)is a plant,andWs(s)andWT(s)are weighting matrices.In this paper,mixed-sensitivity H∞control is applied to CE-150 helicopter model.Therefore,the sensitivity functionS(s),and the complementary sensitivity functionT(s)are defined as follows[34]:

    Fig.7 A mixed sensitivity configuration.

    It is noteworthy from(20)that the minimisation ofT(s)at high frequencies leads to robustness to uncertainties.Therefore,designing a control law to meet the specifications consists of a proper selection of the weighting matricesWs(s)andWT(s),which capture the desired closed-loop dynamics.Then,the design of a stabilizing controllerK(s)is carried-out by minimizing the following cost function:

    The selection process of the weighting matrices is repeated until satisfactory performance and robustness of the closed-loop system are achieved.The matrixWs(s)is computed as follows[35,36]:

    Fig.8 Control structure for H∞local model network.

    Fig.9 Validity function and switching mechanism.

    5 Simulation results

    The purpose of this section is to show the tracking error performance of the azimuth angle ψ and the elevation angle ? for the linearized CE-150 helicopter model(16).The weight matricesW?(s),?=1,2,3,for three different operating points are chosen as

    In order to keep a minimum steady-state tracking error,for azimuth angle control ?,a gain compensator is used,for each local controller(see Fig.5).The performance of the control law(19)are summarized in Figs.10–15.Comparison against a PID controller is also given.The step responses for reference azimuth and elevation angles(ψ?=0.25,??=0)and(ψ?=0,??=0.25)are shown in Figs.10 and 11,respectively.

    Fig.10 Unit step response for reference ψ?=0.25 and ??=0.(a)Tracking performance.(b)Tracking error.

    While the desired and actual tracking performances for these reference inputs are shown in Figs.10(a)and 11(a),a good coupling is observed through the tracking errors shown in Figs.10(b)and 11(b).It is noteworthy that while the PID controller shows a slower response in Fig.10,unacceptable overshoot is observed in Fig.11.We repeat this setup for the reference inputs(ψ?=0.5,??=0)and(ψ?=0,??=0.5)and the tracking performance of the azimuth and elevation angles(desired and actual),and their corresponding tracking errors are revealed in Figs.12 and 13,respectively.

    Fig.11 Unit step response for reference ψ?=0 and ??=0.25.(a)Tracking performance.(b)Tracking error.

    Fig.12 Unit step response for reference ψ?=0.5 and ??=0.(a)Tracking performance.(b)Tracking error.

    Fig.13 Unit step response for reference ψ?=0 and ??=0.5.(a)Tracking performance.(b)Tracking error.

    As can be noticed that as the settling time decreases,the performances in terms of oscillations are deteriorated because of the neglected nonlinear dynamics,as expected.Similar to previous simulations,the PID controller shows a slower response in Fig.12 while significant overshoot is observed in Fig.13.Unlike previous simulations,we choose(ψ?=0.5,??=0.5)in order to illustrate the controller’s ability to sustain the helicopter’s dynamic performance on the same azimuth and elevation angles(see Fig.14).

    Finally,Fig.15 reports the controller’s performance due to a sudden change on the desired azimuth and elevation angles.

    As it can be seen,the LMN controller achieves a good convergence.It is important to note that the ? angle convergence speed is relatively faster as opposed to the ψ angle.As illustrated in Figs.14 and 15,the LMN controller provides a faster step response convergence with less overshoot compared to the PID controller.The above simulation results reveal that the H∞controller coupled with the local model network has the ability to track a predefined trajectories of the azimuth and elevation angles regardless of their complexities.Furthermore,the proposed controller shows similar behavior and kept good performance in varying operating conditions.

    Fig.14 Unit step response for reference ψ?=0.5 and ??=0.5.(a)Tracking performance.(b)Tracking error.

    Fig.15 Time change step response for ψ?and ??.(a)Tracking performance.(b)Tracking error.

    6 Conclusions

    In this paper, a local model network basedH∞control technique is proposed to solve the stabilization problem of CE-150helicopters.Using the fact that the system can be linearized around a set of operating points,we have designed an H∞controller for the linearized system.For this,we have solved the so-called mixed sensitivity problem.The problem was transferred to a standard H∞problem and solved for the stabilizing gain that satisfies the desired criteria,next we embed them within a network.From simulation results,we notice that the obtained controller ensures the decoupling of the system dynamics,and good performance.Therefore,we can conclude that the local model networks based H∞control is suitable for the stabilization of the proposed helicopter simulator model.

    [1]H.Liu,G.Lu,Y.Zhong.Robust LQR attitude control of a 3-DOF laboratory helicopter for aggressive maneuvers.IEEE Transactions on Industrial Electronics,2013,60(10):4627–4636.

    [2]A.L.Fradkov,B.Andrievsky,D.Peaucelle.Estimation and control under information constraints for LAAS helicopter benchmark.IEEE Transactions on Control Systems Technology,2010,18(5):1180–1187.

    [3]R.Lozano,P.Castillo,P.Garcia,et al.Robust prediction-based control for unstable delay systems:application to the yaw control of a mini-helicopter.Automatica,2004,40(4):603–612.

    [4]J.C.Avila Vilchis,B.Brogliato,A.Dzul,et al.Nonlinear modelling and control of helicopters.Automatica,2003,39(9):1583–1596.

    [5]D.Mclean,H.Matsuda.Helicopter station-keeping:comparing LQR,fuzzy-logic and neural-net controllers.Engineering Applied Artificial Intelligence,1998,11(3):411–418.

    [6]S.K.Kannan,E.N.Johnson.Adaptive flight control for an autonomous unmanned helicopter.AIAA Guidance,Navigation,and Control Conference,Monterey:AIAA,2002:DOI 10.2514/6.2002-4439.

    [7]H.C.Christmann,H.B.Christophersen,A.D.Wu,et al.Guidance,Navigation,Control,and Operator Interfaces for Small Rapid Response Unmanned Helicopters.Atlanta,U.S.A.:Georgia Institute of Technology,2008.

    [8]S.K.Kannan,E.N.Johnson.Adaptive trajectory control for autonomous helicopters.Journal of Guidance Control Dynamics,2005,28(3):524–538.

    [9]J.V.R.Prasad,M.Mittal.Three-dimensional modeling and control of a twin-lift helicopter system.Journal of Guidance Control Dynamics,1993,16(1):86–95.

    [10]A.Serrni,A.Isidor,L.Marconi.Robust nonlinear motion control of a helicopter.IEEE Transactions on Automatic Control,2003,48(3):413–426.

    [11]A.Bogdanov,E.Wan.State-dependent Riccati equation control for small autonomous helicopters.Journal of Guidance,Control,and Dynamics,2007,30(1):47–60.

    [12]H.Sira-Ramirez,M.Zribi,S.Ahmad.Dynamical sliding mode control approach for vertical flight regulation in helicopters.IEE Proceedings–Control Theory and Applications,1994,141(1):19–24.

    [13]E.N.Johnson,S.K.Kannan.Adaptive trajectory based control for autonomous helicopters.The 21st Digital Avionics Systems Conference,2002:DOI 10.1109/DASC.2002.1052945.

    [14]J.Shan,H.-T.Liu,S.Nowotny.Synchronised trajectory tracking control of multiple 3-DOF experimental helicopters.IEE Proceedings–Control Theory and Applications,2005,152(6):683–692.

    [15]A.Benallegue,T.Madani.Backstepping control for a quadrotor helicopter.IEEE/RSJ International Conference on Intelligent Robots and Systems,Beijing:IEEE,2006:3255–3260.

    [16]D.Driankov,B.Kadmiry.A fuzzy gain-scheduler for the attitude control of an unmanned helicopter.IEEE Transactions on Fuzzy System,2004,12(4):502–515.

    [17]D.Driankov,B.Kadmiry.A fuzzy flight controller combining linguistic and model-based fuzzy control.Fuzzy Sets Systems,2004,146(3):313–347.

    [18]K.P.Tee,S.S.Ge,B.Ren.Adaptive neural network control of helicopters with unknown dynamics.Proceedings of the 45th IEEE Conference on Decision and Control,San Diego:IEEE,2006:3022–3027.

    [19]R.Enns,J.Si.Helicopter trimming and tracking control using direct neural dynamic programming.IEEE Transactions on Neural Network,2003,14(4):929–939.

    [20]H.Chaoui,W.Gueaieb.Type-2 fuzzy logic control of a flexiblejoint manipulator.Journal of Intelligent and Robotic Systems,2008,51(2):159–186.

    [21]H.Chaoui,W.Gueaieb,M.Biglarbegian,et al.Computationally efficient adaptive type-2 fuzzy control of flexible-joint manipulators.Robotics,2013,2(2):66–91.

    [22]K.S.Narendra,J.Balakrishnan,M.K.Ciliz.Adaptation and learning using multiple models,switching,and tuning.IEEE Control Systems,1995,15(3):37–51.

    [23]G.Zames.Feedback and optimal sensitivity:Model reference transformations,multiplicative seminorms,and approximate inverses.IEEE Transactions on Automatic Control,1981,26(2):301–320.

    [24]B.A.Francis(Ed.).A Course inH∞Control Theory.Lecture Notes in Control and Information Sciences.Berlin:Springer,1987.

    [25]J.C.Doyle,K.Glover,P.P.Khargonekar,et al.State-space solutions to standard H2and H∞control problems.IEEE Transactions on Automatic Control,1989,34(8):831–847.

    [26]H.Kwakernaak.A polynomial approach to minimax frequency domain optimization of multivariable feedback systems.International Journal of Control,1986,44(1):117–156.

    [27]M.J.Grimble.Optimal H∞r(nóng)obustness and the relationship to lqg design problems.International Journal of Control,1986,43(2):351–372.

    [28]H.Kwakennaak.The polynomial approach to H∞optimal regulation.H∞Control Theory,Berlin:Springer,1990:141–221.

    [29]M.J.Grimble.Polynomial Matrix Solution of the Standard State feedbackH∞Control Problem and Relationship to the Riccati Equation State Space Solution.Research Report No.ICU/302.Scotland:University of Strathclyde,1990.

    [30]A.Badnjevi,E.uni,T.Uzunovi,et al.Design and implementation of three-dimensional simulator for control of laboratory model helicopter.The 33rd International Convention on Information and Communication Technology,Electronics and Microelectronics,Opatija,Croatia:IEEE,2010:1362–1367.

    [31]P.Horaek.CE 150 helicopter model.Educational Models:http://www.humusoft.com/models/ce150/.

    [32]A.Miranian,K.Rouzbehi.Nonlinear power system load identification using local model networks.IEEE Transactions on Power Systems,2013,28(3):2872–2881.

    [33]O.Konig,C.Hametner,G.Prochart,et al.Battery emulation for power-hil using local model networks and robust impedance control.IEEE Transactions on Industrial Electronics,2014,61(2):943–955.

    [34]S.Ozana,P.Vojciak,M.Pies,et al.Control design of mixed sensitivity problem for educational model of helicopter.Control Engineering,2014,12(5):488–500.

    [35]P.Lundstrom,S.Skogestad,Z.Wang.Uncertainty weight selection for H-infinity and mu-control methods.Proceedings of the 30th IEEE Conference on Decision and Control,Brighton,U.K.:IEEE,1991:1537–1542.

    [36]A.Bansal,V.Sharma.Design and analysis of robust H-infinity controller.Control Theory and Informatics,2013,3(2):7–14.

    17 July 2015;revised 2 June 2016;accepted 2 June 2016

    DOI10.1007/s11768-017-5073-x

    ?Corresponding author.

    E-mail:kafi.redouane@univ-ouargla.dz.Tel.:+213662091913.

    ?2017 South China University of Technology,Academy of Mathematics and Systems Science,CAS,and Springer-Verlag Berlin Heidelberg

    Mohamed Redouane KAFIreceived the B.Sc.degree in Electrical Engineering from the University Batna,Algeria,the M.Sc.degree from the Military Polytechnical School,Algeria.He is currently working towards his Ph.D.degree in Electrical Engineering from the University Biskra,Algeria.He is currently an Assistant Professor at the Electrical Engineering(EE)department at the University Kasdi Merbah Ouargla,Algeria.His research lies in the broad area of robust control design for nonlinear systems.In particular,he conducts research on UAV design,control systems and mechatronics.He is a founder member of the Electrical Engineering research Laboratory(LAGE)at the University Kasdi Merbah Ouargla,and a member of identification,command,control and communications laboratory at the University Biskra.Mr.KAFI is a author/co-author of technical papers,which are published in leading journals and conferences.E-mail:kafi.redouane@univ-ouargla.dz.

    Hicham CHAOUI(S’01-M’12-SM’13)received the B.Sc.degree in Electrical Engineering from the Institut supérieur du Génie Appliqué(IGA),Casablanca,Morocco,in 1999,the M.A.Sc.degree in Electrical Engineering,the M.Sc.degree in Computer Science(with honors),the graduate degree in Project Management,and the Ph.D.degree in Electrical Engineering(with honors)all from the University of Quebec,Canada,in 2003,2005,2007,and 2012,respectively.His career has spanned both academia and industry in the field of intelligent control and renewable energies.Prior to his academic career,he held various engineering and management positions including Vice-President of Innovation and Technology Development at TDE Techno Design,Montreal,QC,Canada.He is currently an Assistant Professor at Tennessee Technological University,TN,U.S.A.and an Adjunct Professor at the Université du Québec Trois-Riviéres(UQTR),QC,Canada.His research interests include adaptive and nonlinear control theory,intelligent control,robotics,electric motor drives,and energy storage.His scholarly work has produced more than 75 journal and conference publications.Dr.Chaoui is a senior member of IEEE.He was a recipient of the Best Thesis Award(health,natural science,and engineering)and the Governor General of Canada Gold Medal Award for his doctoral dissertation in 2012.E-mail:hchaoui@tntech.edu.

    Suruz MIAHhas his B.Sc.degree from Khulna University of Engineering and Technology(KUET),Bangladesh,and both M.Sc.and Ph.D.degrees from University of Ottawa,Canada.He is currently an Assistant Professor of the Electrical and Computer Engineering(ECE)department at Bradley University and also holds an Adjunct Professor position at the School of Electrical Engineering and Computer Science of the University of Ottawa.Before joining the ECE department at Bradley,he spent more than two years conducting research on multi-agent systems and control for Defence Research and Development Canada(DRDC)’s Centre for Operational Research and Analysis(CORA),Ottawa,Ontario,Canada.His research lies in the broad area of cyber-physical systems.In particular,he conducts research on mobile robot navigation,control systems,mechatronics,multi-agents systems and control.He is the founder of the Robotics and Mechatronics(RAM)Research laboratory at Bradley and a research member of the Machine Intelligence,Robotics,and Mechatronics(MIRaM)laboratory at the University of Ottawa.Dr.Miah is an author/co-author of more than 40 technical papers,which are published in leading journals and conferences.He has been an active member of the Institute of Electrical and Electronics Engineers(IEEE)since 2007,and has been serving as a reviewer of many prestigious journals and conference proceedings.E-mail:smiah@bradley.edu.

    Abderrazak DEBILOUhas the DES degree from University Batna,Algeria,the M.Sc.degree from the University Bordeaux 1,France,and the Ph.D.degree from the University Bordeaux 1,France.He is currently a professor at Electrical Engineering(EE)department,and vice-president at the University Biskra,Algeria.His research lies in the broad area of robust control design for nonlinear systems.In particular,he conducts research on UAV design,control systems,robotics,and image processing.He is a founder of the identification,command,control and communications Laboratory,at the University Biskra.Dr.Debilou conducts and supervises multiple research projects.E-mail:debilou@univ-biskra.dz.

    午夜激情福利司机影院| 成人av在线播放网站| 麻豆国产av国片精品| 色av中文字幕| 国产精品乱码一区二三区的特点| 亚洲美女黄片视频| 琪琪午夜伦伦电影理论片6080| 免费观看的影片在线观看| 国产精品久久久久久久久免 | 99热精品在线国产| 国产黄片美女视频| 草草在线视频免费看| 观看美女的网站| 国产欧美日韩一区二区精品| 内地一区二区视频在线| 国产精品一区二区三区四区免费观看 | 国产高清视频在线播放一区| 亚洲中文字幕一区二区三区有码在线看| 国产精品一区二区三区四区免费观看 | 国产亚洲精品综合一区在线观看| 99久久精品一区二区三区| 久久精品国产综合久久久| 全区人妻精品视频| av欧美777| 男女之事视频高清在线观看| 成人鲁丝片一二三区免费| 国产高清videossex| 99久久精品一区二区三区| 日韩精品中文字幕看吧| 国产伦一二天堂av在线观看| 两个人看的免费小视频| 国产高清三级在线| 看黄色毛片网站| 欧美日本视频| 又黄又粗又硬又大视频| 九九在线视频观看精品| 神马国产精品三级电影在线观看| 国产精品三级大全| 成人鲁丝片一二三区免费| 亚洲一区二区三区不卡视频| 亚洲精品成人久久久久久| 少妇裸体淫交视频免费看高清| aaaaa片日本免费| 小蜜桃在线观看免费完整版高清| 人人妻人人澡欧美一区二区| 51午夜福利影视在线观看| 国产精品亚洲av一区麻豆| 毛片女人毛片| 亚洲精品成人久久久久久| 亚洲精品在线美女| 好男人电影高清在线观看| 亚洲 国产 在线| 久久欧美精品欧美久久欧美| 亚洲精品成人久久久久久| 高清日韩中文字幕在线| 一级作爱视频免费观看| 中文资源天堂在线| 午夜影院日韩av| 欧美性猛交╳xxx乱大交人| 免费在线观看成人毛片| 日韩国内少妇激情av| 亚洲乱码一区二区免费版| 舔av片在线| aaaaa片日本免费| 好看av亚洲va欧美ⅴa在| 人人妻人人澡欧美一区二区| 综合色av麻豆| 99热6这里只有精品| 成人精品一区二区免费| 一级a爱片免费观看的视频| 国产黄色小视频在线观看| 狂野欧美激情性xxxx| 伊人久久精品亚洲午夜| 免费av毛片视频| 中亚洲国语对白在线视频| 高清在线国产一区| 国产99白浆流出| 国产国拍精品亚洲av在线观看 | 久久久久久久久中文| 日韩欧美国产一区二区入口| 国产精品精品国产色婷婷| e午夜精品久久久久久久| 欧美乱码精品一区二区三区| 亚洲片人在线观看| 最近最新免费中文字幕在线| 精品久久久久久久久久久久久| 成人特级黄色片久久久久久久| 草草在线视频免费看| 一边摸一边抽搐一进一小说| 国产欧美日韩精品一区二区| 男人舔奶头视频| 国产精品精品国产色婷婷| 久久精品国产99精品国产亚洲性色| 日本熟妇午夜| 久久这里只有精品中国| 亚洲五月婷婷丁香| 人人妻人人看人人澡| 女人高潮潮喷娇喘18禁视频| 国产伦人伦偷精品视频| 观看免费一级毛片| 亚洲精品一区av在线观看| 制服丝袜大香蕉在线| 亚洲欧美精品综合久久99| 手机成人av网站| 欧美bdsm另类| 国产欧美日韩一区二区精品| 特级一级黄色大片| 久久精品国产清高在天天线| 国产成人av教育| 中文资源天堂在线| 99久久精品热视频| 久99久视频精品免费| 午夜免费男女啪啪视频观看 | 精品久久久久久久久久久久久| 精品国产亚洲在线| 乱人视频在线观看| 亚洲av电影不卡..在线观看| 老汉色∧v一级毛片| 欧美日韩中文字幕国产精品一区二区三区| 老司机福利观看| 黄色日韩在线| 欧美黄色片欧美黄色片| 成年免费大片在线观看| h日本视频在线播放| 黄片小视频在线播放| 亚洲国产色片| 波多野结衣巨乳人妻| 国产精品99久久99久久久不卡| 老鸭窝网址在线观看| 一二三四社区在线视频社区8| 18禁在线播放成人免费| 欧美成狂野欧美在线观看| 色综合欧美亚洲国产小说| 久久久精品大字幕| 国产探花极品一区二区| 日本黄大片高清| 精品久久久久久,| 国产成人系列免费观看| 极品教师在线免费播放| 亚洲成av人片免费观看| 色尼玛亚洲综合影院| 啦啦啦韩国在线观看视频| 中文亚洲av片在线观看爽| 午夜免费成人在线视频| 国产私拍福利视频在线观看| 亚洲av一区综合| 成人性生交大片免费视频hd| svipshipincom国产片| 日韩欧美国产在线观看| 国产伦一二天堂av在线观看| 人妻夜夜爽99麻豆av| 国产真人三级小视频在线观看| 国产成人福利小说| 免费人成视频x8x8入口观看| 久99久视频精品免费| 亚洲男人的天堂狠狠| 免费人成在线观看视频色| 欧美不卡视频在线免费观看| 动漫黄色视频在线观看| 亚洲美女黄片视频| 成年女人永久免费观看视频| 国产精品 国内视频| 久久九九热精品免费| 亚洲成a人片在线一区二区| 欧美最黄视频在线播放免费| 亚洲 国产 在线| а√天堂www在线а√下载| 国产在视频线在精品| 国产精品综合久久久久久久免费| 99久久无色码亚洲精品果冻| 亚洲在线观看片| 午夜免费成人在线视频| 欧美又色又爽又黄视频| 国产精品一区二区免费欧美| 少妇的逼水好多| 在线观看免费视频日本深夜| 成人特级黄色片久久久久久久| 老汉色∧v一级毛片| 中文字幕人成人乱码亚洲影| 欧美性猛交╳xxx乱大交人| 在线观看日韩欧美| 亚洲av成人精品一区久久| 国产一区二区三区视频了| 亚洲内射少妇av| 性欧美人与动物交配| 国产老妇女一区| 露出奶头的视频| 亚洲久久久久久中文字幕| 国产高潮美女av| 搡老妇女老女人老熟妇| 99久久精品一区二区三区| 亚洲精品成人久久久久久| 亚洲最大成人手机在线| 国产精品国产高清国产av| 国产av不卡久久| 色av中文字幕| 久久欧美精品欧美久久欧美| 一本一本综合久久| 两性午夜刺激爽爽歪歪视频在线观看| 床上黄色一级片| 成人亚洲精品av一区二区| 三级国产精品欧美在线观看| 国产精品久久久久久人妻精品电影| 久久久精品大字幕| 国产免费av片在线观看野外av| 国产精品美女特级片免费视频播放器| 亚洲人成网站在线播放欧美日韩| 90打野战视频偷拍视频| 国产成人a区在线观看| 亚洲自拍偷在线| 给我免费播放毛片高清在线观看| 特级一级黄色大片| a级毛片a级免费在线| 99久久成人亚洲精品观看| 波多野结衣高清无吗| 午夜福利在线观看吧| 亚洲午夜理论影院| 波多野结衣高清作品| 色综合欧美亚洲国产小说| 国产高清视频在线播放一区| 日韩av在线大香蕉| 搡老熟女国产l中国老女人| 香蕉av资源在线| 在线看三级毛片| 国产视频一区二区在线看| 99国产综合亚洲精品| 国产色爽女视频免费观看| 亚洲自拍偷在线| 久久久色成人| 久久国产精品影院| 搡老妇女老女人老熟妇| 久久精品国产综合久久久| 在线免费观看的www视频| 少妇的丰满在线观看| 麻豆久久精品国产亚洲av| 国产一区二区三区在线臀色熟女| 在线看三级毛片| 久久久精品大字幕| 成人鲁丝片一二三区免费| 精品久久久久久久人妻蜜臀av| 亚洲av成人不卡在线观看播放网| 亚洲av日韩精品久久久久久密| 国产日本99.免费观看| 欧美绝顶高潮抽搐喷水| 国内少妇人妻偷人精品xxx网站| 成年女人永久免费观看视频| 久久久久性生活片| 一区二区三区国产精品乱码| 久久久久亚洲av毛片大全| 久久久久久久午夜电影| 成人av在线播放网站| 天堂av国产一区二区熟女人妻| 日本免费一区二区三区高清不卡| 午夜免费观看网址| 欧美xxxx黑人xx丫x性爽| 久久久久精品国产欧美久久久| 一本综合久久免费| 2021天堂中文幕一二区在线观| 久久久久久久午夜电影| 很黄的视频免费| 91九色精品人成在线观看| 亚洲国产精品999在线| 国产精品女同一区二区软件 | 亚洲精品一卡2卡三卡4卡5卡| 搡老岳熟女国产| 日韩欧美免费精品| e午夜精品久久久久久久| 一个人看视频在线观看www免费 | 婷婷丁香在线五月| 在线十欧美十亚洲十日本专区| 午夜影院日韩av| 日韩欧美免费精品| 亚洲第一欧美日韩一区二区三区| 老司机深夜福利视频在线观看| 精品人妻1区二区| 亚洲五月天丁香| 国产精品电影一区二区三区| 免费看a级黄色片| 好男人在线观看高清免费视频| 精品福利观看| av视频在线观看入口| 亚洲国产欧美网| 十八禁网站免费在线| 成人18禁在线播放| 一区福利在线观看| 亚洲欧美精品综合久久99| 亚洲av成人不卡在线观看播放网| 在线观看免费午夜福利视频| 12—13女人毛片做爰片一| 久久天躁狠狠躁夜夜2o2o| 国产精品亚洲美女久久久| 国产国拍精品亚洲av在线观看 | 国产一区在线观看成人免费| 国产成人欧美在线观看| 午夜影院日韩av| 国产麻豆成人av免费视频| 一区二区三区激情视频| 黄片大片在线免费观看| 小说图片视频综合网站| 亚洲精品影视一区二区三区av| 成人永久免费在线观看视频| 淫秽高清视频在线观看| 看黄色毛片网站| 天堂√8在线中文| 九色国产91popny在线| 最新中文字幕久久久久| 色av中文字幕| 国产不卡一卡二| 美女高潮的动态| 日韩免费av在线播放| 成年人黄色毛片网站| 国产老妇女一区| 日韩av在线大香蕉| 老司机在亚洲福利影院| 久久6这里有精品| 香蕉久久夜色| 欧美性猛交╳xxx乱大交人| 成人欧美大片| www.999成人在线观看| 日本一本二区三区精品| 一级黄色大片毛片| 国产激情偷乱视频一区二区| 老汉色∧v一级毛片| or卡值多少钱| 亚洲第一欧美日韩一区二区三区| 免费av不卡在线播放| 中文字幕人妻丝袜一区二区| 别揉我奶头~嗯~啊~动态视频| 麻豆一二三区av精品| 2021天堂中文幕一二区在线观| 亚洲av第一区精品v没综合| 性欧美人与动物交配| 亚洲最大成人中文| 国产精品av视频在线免费观看| 亚洲欧美日韩高清专用| 欧美高清成人免费视频www| 最新中文字幕久久久久| 国产欧美日韩一区二区精品| 亚洲无线观看免费| av欧美777| 俺也久久电影网| a级一级毛片免费在线观看| 国产成人系列免费观看| 亚洲第一欧美日韩一区二区三区| 国产真人三级小视频在线观看| 国产单亲对白刺激| 午夜福利18| 很黄的视频免费| 国产三级中文精品| 97超级碰碰碰精品色视频在线观看| 91字幕亚洲| bbb黄色大片| 亚洲专区中文字幕在线| x7x7x7水蜜桃| 久久人人精品亚洲av| 99热6这里只有精品| 嫩草影视91久久| 可以在线观看的亚洲视频| 91久久精品电影网| 国产美女午夜福利| 亚洲精品一区av在线观看| 老司机午夜十八禁免费视频| 亚洲成人精品中文字幕电影| 成年女人毛片免费观看观看9| 男女午夜视频在线观看| 欧美丝袜亚洲另类 | 天天一区二区日本电影三级| 99国产精品一区二区蜜桃av| 欧美日韩精品网址| 99riav亚洲国产免费| 欧美区成人在线视频| a在线观看视频网站| 国产视频一区二区在线看| 十八禁人妻一区二区| 久久香蕉精品热| 免费看十八禁软件| 久久精品91蜜桃| 一本久久中文字幕| 99国产精品一区二区三区| 丁香欧美五月| 97碰自拍视频| 亚洲精品影视一区二区三区av| 久久久精品大字幕| 久久精品夜夜夜夜夜久久蜜豆| 免费看十八禁软件| 麻豆一二三区av精品| 亚洲精品美女久久久久99蜜臀| 又爽又黄无遮挡网站| 动漫黄色视频在线观看| 精品久久久久久久毛片微露脸| 亚洲欧美激情综合另类| 麻豆成人av在线观看| 黄色视频,在线免费观看| 很黄的视频免费| 两个人的视频大全免费| 久久天躁狠狠躁夜夜2o2o| 蜜桃久久精品国产亚洲av| 麻豆成人av在线观看| 欧美性感艳星| 亚洲人成网站高清观看| 亚洲精品成人久久久久久| 国产成人欧美在线观看| 色在线成人网| 在线观看日韩欧美| 日本成人三级电影网站| 亚洲内射少妇av| 尤物成人国产欧美一区二区三区| 男人舔奶头视频| 精品久久久久久久末码| 免费av观看视频| 99精品欧美一区二区三区四区| 操出白浆在线播放| 国产99白浆流出| 18禁美女被吸乳视频| 麻豆一二三区av精品| 午夜免费观看网址| 国产单亲对白刺激| 91字幕亚洲| 免费观看的影片在线观看| 少妇高潮的动态图| 黄色视频,在线免费观看| 国产激情欧美一区二区| 欧美bdsm另类| 97超级碰碰碰精品色视频在线观看| 国产精品久久久久久久电影 | 成人欧美大片| 少妇丰满av| 亚洲欧美激情综合另类| 12—13女人毛片做爰片一| 一个人观看的视频www高清免费观看| 欧美绝顶高潮抽搐喷水| 欧美黑人欧美精品刺激| 欧美中文综合在线视频| 国产高清视频在线播放一区| 亚洲av免费高清在线观看| 在线观看66精品国产| 69人妻影院| 国产伦在线观看视频一区| 亚洲无线在线观看| 欧美一级a爱片免费观看看| 久久精品夜夜夜夜夜久久蜜豆| 一进一出抽搐动态| 成人特级黄色片久久久久久久| 女人十人毛片免费观看3o分钟| 亚洲成av人片在线播放无| 久久精品国产清高在天天线| 此物有八面人人有两片| 国产综合懂色| 中文字幕熟女人妻在线| 国产69精品久久久久777片| 亚洲av二区三区四区| 一二三四社区在线视频社区8| a级毛片a级免费在线| 日本黄色片子视频| 熟女电影av网| 熟女电影av网| 在线观看av片永久免费下载| 精品免费久久久久久久清纯| 亚洲国产精品久久男人天堂| 国产乱人视频| 午夜福利在线观看吧| 中文在线观看免费www的网站| 国产高清视频在线播放一区| 欧美性猛交╳xxx乱大交人| aaaaa片日本免费| 久久香蕉精品热| 国产一区二区三区在线臀色熟女| 精品久久久久久成人av| 又粗又爽又猛毛片免费看| 男女视频在线观看网站免费| 国产精品一区二区免费欧美| 此物有八面人人有两片| 欧美黑人巨大hd| 久久久精品大字幕| 婷婷精品国产亚洲av在线| 久久6这里有精品| a级一级毛片免费在线观看| 日韩免费av在线播放| 色精品久久人妻99蜜桃| 国产精品一区二区免费欧美| 国产真实伦视频高清在线观看 | 中文字幕久久专区| 亚洲乱码一区二区免费版| 男插女下体视频免费在线播放| 欧美日韩国产亚洲二区| 国产精品免费一区二区三区在线| 亚洲av电影在线进入| 亚洲成人久久爱视频| 一级黄色大片毛片| 精品久久久久久久毛片微露脸| 美女高潮的动态| 成人特级黄色片久久久久久久| 亚洲精品粉嫩美女一区| 亚洲一区高清亚洲精品| 三级男女做爰猛烈吃奶摸视频| 色播亚洲综合网| 欧美另类亚洲清纯唯美| 两个人的视频大全免费| 国产一区二区三区在线臀色熟女| 欧美极品一区二区三区四区| 亚洲人成网站在线播放欧美日韩| 亚洲精品美女久久久久99蜜臀| 国产中年淑女户外野战色| 波野结衣二区三区在线 | 亚洲精品色激情综合| 操出白浆在线播放| 757午夜福利合集在线观看| 亚洲精品粉嫩美女一区| 国产高清三级在线| 色噜噜av男人的天堂激情| 国产淫片久久久久久久久 | 日本一二三区视频观看| 天堂av国产一区二区熟女人妻| 久久这里只有精品中国| 午夜激情欧美在线| 麻豆久久精品国产亚洲av| 欧美成人性av电影在线观看| 美女被艹到高潮喷水动态| 国产欧美日韩精品亚洲av| 久久久久精品国产欧美久久久| 久久人人精品亚洲av| 欧美zozozo另类| 啦啦啦韩国在线观看视频| 男人舔女人下体高潮全视频| 熟女人妻精品中文字幕| 色哟哟哟哟哟哟| 男女视频在线观看网站免费| 国产探花极品一区二区| or卡值多少钱| 啦啦啦观看免费观看视频高清| 男女做爰动态图高潮gif福利片| 国产麻豆成人av免费视频| 欧美不卡视频在线免费观看| 美女高潮喷水抽搐中文字幕| 中文字幕精品亚洲无线码一区| 国产精品98久久久久久宅男小说| 国产欧美日韩一区二区三| 99久久精品国产亚洲精品| 99久久久亚洲精品蜜臀av| 男女视频在线观看网站免费| 91九色精品人成在线观看| 午夜免费观看网址| 97超级碰碰碰精品色视频在线观看| 老熟妇乱子伦视频在线观看| 亚洲内射少妇av| 校园春色视频在线观看| 国产爱豆传媒在线观看| 免费搜索国产男女视频| 99久久精品一区二区三区| 丰满的人妻完整版| 欧美日韩亚洲国产一区二区在线观看| av在线蜜桃| 免费人成视频x8x8入口观看| 小蜜桃在线观看免费完整版高清| 香蕉av资源在线| 欧美3d第一页| 一区二区三区高清视频在线| 日韩av在线大香蕉| 久久久久免费精品人妻一区二区| 99精品欧美一区二区三区四区| 成熟少妇高潮喷水视频| 中文字幕av成人在线电影| 欧美xxxx黑人xx丫x性爽| 欧美乱码精品一区二区三区| 色吧在线观看| 国产精品 欧美亚洲| 国产午夜精品久久久久久一区二区三区 | 最近最新中文字幕大全免费视频| 成人精品一区二区免费| 国产成年人精品一区二区| 亚洲天堂国产精品一区在线| 免费av毛片视频| 成年女人毛片免费观看观看9| 两个人的视频大全免费| 桃红色精品国产亚洲av| 国内精品一区二区在线观看| 淫秽高清视频在线观看| 日韩欧美在线乱码| 国产三级黄色录像| 国产成人a区在线观看| 丰满的人妻完整版| 欧美大码av| 久久精品国产清高在天天线| 欧美大码av| 十八禁网站免费在线| 中文字幕久久专区| 亚洲av免费在线观看| 亚洲男人的天堂狠狠| 亚洲成人精品中文字幕电影| 一级黄片播放器| 成人国产一区最新在线观看| 最近在线观看免费完整版| 在线a可以看的网站| 一边摸一边抽搐一进一小说| 少妇熟女aⅴ在线视频| 狠狠狠狠99中文字幕| 国产精品亚洲美女久久久| 99国产综合亚洲精品| 欧美高清成人免费视频www| 国产精品女同一区二区软件 | 一个人免费在线观看的高清视频| 一级毛片高清免费大全| 亚洲熟妇中文字幕五十中出| 99精品在免费线老司机午夜| 久久香蕉国产精品| 亚洲午夜理论影院| 国内毛片毛片毛片毛片毛片| 99久久99久久久精品蜜桃| 黄色视频,在线免费观看| 香蕉久久夜色| 制服丝袜大香蕉在线| 欧美不卡视频在线免费观看| 在线观看午夜福利视频| 全区人妻精品视频| 久久九九热精品免费|