• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Global finite-time attitude regulation using bounded feedback for a rigid spacecraft

    2017-12-21 08:33:41YusongZHOUWenwuZHUHaiboDU
    Control Theory and Technology 2017年1期

    Yusong ZHOU,Wenwu ZHU,Haibo DU?

    1.Anhui Vocational College of Press and Publishing,Hefei Anhui 230601,China;

    2.School of Electrical Engineering and Automation,Hefei University of Technology,Hefei Anhui 230009,China

    Global finite-time attitude regulation using bounded feedback for a rigid spacecraft

    Yusong ZHOU1,2,Wenwu ZHU2,Haibo DU2?

    1.Anhui Vocational College of Press and Publishing,Hefei Anhui 230601,China;

    2.School of Electrical Engineering and Automation,Hefei University of Technology,Hefei Anhui 230009,China

    This paper investigates the problem of global attitude regulation control for a rigid spacecraft under input saturation.Based on the technique of finite-time control and the switching control method,a novel global bounded finite-time attitude regulation controller is proposed.Under the proposed controller,it is shown that the spacecraft attitude can reach the desired attitude in a finite time.In addition,the bound of a proposed attitude controller can be adjusted to any small level to accommodate the actuation bound in practical implementation.

    Global attitude regulation,finite-time control,bounded feedback

    1 Introduction

    This paper considers the attitude regulation problem for a rigid spacecraft described by[1]

    whereq=[q0q1q2q3]T=[q0qTv]Twithqv=[q1q2q3]Tdenotes the attitude with respect to the inertial frame based on the quaternion,ω ∈R3is the angular velocity,J∈ R3×3and τ ∈ R3are,respectively,the positive definite inertia matrix,and the control torque of spacecraft.Our objective is to designa bounded controllerfor the control torque such that spacecraft attitude will converge to the desired constant attitudeqdin afinite time.

    As a classical control problem,the attitude control problem of spacecraft has been studied by many researchers[2–6].Many nonlinear control methods have been employed to solve the attitude control problem,such as optimal control[7],sliding mode control[8,9]adaptive control[10,11],H∞control[12],Fuzzy con-trol[13]and hybrid control[14],and so on.It should be pointed out that the most of the existing attitude control laws only guarantee that the closed-loop system is asymptotically stable,which means that the attitude can be controlled to converge to the equilibrium asymptotically with infinite settling time.

    In recent years,as one kind of new developed nonlinear control methods,the finite-time control method has been employed to solve the attitude control problem,which is called finite-time attitude control.The main advantage of finite-time control lies in its faster convergence rates,higher accuracies,better disturbance rejection properties and robustness against uncertainties,see the theoretic analysis[15–17]or experiment test[18–24].

    Although there have been some results about finite time attitude control for a rigid spacecraft[16,17,25,26],few results consider the constraint of input saturation.Actually,in practice, saturation nonlinearity has the need to be considered.The main aim of this paper is to provide a solution to design a finite-time attitude controller under input saturation.Based on some structural features,the finite-time control technique is skillfully used to design a bounded attitude controller for a rigid spacecraft.It is shown that the proposed method does not need the knowledge of the inertia matrix.In addition,to obtain a global attitude controller,a switching control method is employed.Finally,an example is given to verify the efficiency of the proposed method.

    2 Preliminaries and problem formulation

    2.1 Problem formulation

    The main goal of this paper is to solve the problem of finite-time attitude regulation for a rigid spacecraft under the constraint condition that the control torque is required to be bounded.Motivated by[27],the definition of finite-time attitude regulation problem is extended from the manipulator system to the spacecraft system.

    Definition 1(Finite-time attitude regulation problem)Given a desired constant attitudeqd∈R4,find an attitude control law such that the attitude of system(1)converges to the desired attitude,i.e.,q→qdin a finite time.

    To solve the attitude regulation problem,as that in[1,8],defineˉq=[ˉq0ˉq1ˉq3ˉq4]T=[ˉq0ˉqTv]T∈R4as the relative attitude error between the attitudeqand the desired attitudeqd,where

    With the help of the notation of relative attitude,the control objective is to design a control law such thatˉq(t)→[±1 0 0 0]Tin a finite time.

    2.2 Some useful definitions

    First,let us introduce some knowledge about the spacecraft model(1).

    Definition 2[1]

    .The matrixE(q)is defined as

    whereI3denotes the 3×3 identity matrix.

    .The symbol(·)×denotes a 3 × 3 skew-symmetric matrix,that is,

    where the vectorv=[v1v2v3]T.

    Second,in order to design a bounded finite-time controller,some nonlinear functions are introduced.

    Definition 3Denote sigα(x)=(sgnx)|x|α,where α > 0,x∈ R and sgn(·)is the standard sign function.In addition,ifx=[x1···xn]Tis a vector,then sigα(x)=[sigα(x1) ···sigα(xn)]T.

    Definition 5(Homogeneity[28])Consider system

    wheref=[f1(x)···fm(x)]T:U0→ Rmis continuous on an open neighborhoodU0of the origin.Let(r1,...,rm)∈Rmwithri>0,i=1,...,m.f(x)is said to be homogeneous of degreek∈R with respect to(r1,...,rm)if,foranygivenε > 0,fi(εr1x1,...,εrmxm)= εk+rifi(x),i=1,...,m,?x∈ Rm,wherek> ?min{ri,i=1,...,m}.System(3)is said to be homogeneous iff(x)is homogeneous.

    3 Some lemmas

    Lemma 2[27,29]Consider the following system

    wheref(x)is a continuous homogeneous vector field of degreek<0 with respect to(r1,...,rm)and?f(x)satisfiesf(0)=0.Assume thatx=0 is an asymptotically stable equilibrium of system˙x=f(x).Thenx=0 is a locally finite-time stable equilibrium of system(4)if

    In addition,if system(4)is globally asymptotically stable and locally finite-time stable,then this system is globally finite-time stable.

    Lemma 5[32]For anyxi∈R,i=1,...,n,and a real numberp∈(0,1],(|x1|+...+|xn|)p≤|x1|p+...+|xn|p.

    4 Main results

    According to the problem statement in Section 2.1,it can be obtained from[1]that the dynamics equation for the relative attitude error is

    Due to the quaternion constraint,i.e.,

    Under this notation,it can be followed from(6)that

    The following property about this model is given in[33].

    4.1 Design of a bounded finite-time attitude controller

    Theorem 1For the spacecraft attitude control systems(10),if the control torque τ is designed as

    Under the control law(11),it follows from system(12)that the closed-loop system is

    With the help of the transformed system(13),next,we will prove that system(13)is finite-time stable.

    Step 1(Asymptotical stability)

    Inspired by[27],the candidate Lyapunov function for system(13)is constructed as follows:

    Since the function ψ1(sigα1(s))is an odd function and the matrixM(x1)is positive definite,the Lyapunov functionV(x1,x2)is positive definite.Taking the derivative ofValong system(13)yields

    By Property 1,it can be concluded that

    which results in

    Based on the definition of function ψ2(·),and noting that the function sigα2(·)is an odd function,we have

    Noticing that the matrixM(x1)is positive definite,then

    which leads to thatx1≡ 0.By LaSalle’s invariant principle[34],it can be concluded that(x1(t),x2(t))→0 ast→∞.As a matter of fact,it can be concluded that the the closed-loop system(13)is globally asymptotically stable.

    Step 2(Local finite-time stability)

    In this step,we will prove that system(13)is locally finite-time stable.The proof is mainly based on Lemma1.

    By the conditions for the odd functions ψ1and ψ2(i.e.,ψi(y)=ciy+o(y)(i=1,2)),rewrite system(13)as follows:

    First,we will prove that the nominal system of(21),i.e.,system

    is asymptotically stable and homogeneous.Construct the following candidate Lyapunov function for system(23)

    whose derivative along system(23)is

    By LaSalle’s invariant principle,it can be concluded that the system(23)is asymptotically stable. In addition, note that 0 < α1< 1 and α2=2α1/(1+ α1).By Definition 1,it can be verified that system(23)is homogeneous of degreek=(α1? 1)/2 < 0 with respect to the dilation(r1,r1,r1,r2,r2,r2),wherer1=1,r2=(1+α1)/2.

    Then,we will show that the nonlinear functionf(x1,x2)of system(21)satisfies the condition of Lemma 1.SinceM?1(x1)is a smooth function,we haveM?1(εr1x1)?M?1(0)=o(εr1)by using the mean value inequality.As a result,for any(x1,x2)≠0,

    Then,according to Lemma 1,it can be concluded that system(13)is locally finite-time stable.

    Therefore,by the results of Steps 1 and 2,system(13)is finite-time stable,i.e.,x1→0,x2→0 in finite time.Sincex2=˙x1=˙ˉqv=G(ˉqv)ω and matrixG(ˉqv)is nonsingular,we haveˉqv→0,ω→0 in finite time.The proof is completed. □

    Since|tanh(·)|≤ 1 and|sat(·)|≤ 1,the proposed finitetime attitude controllers(27)and(28)are bounded by

    Hence,the bound of a proposed attitude controller can be adjusted to any small level to accommodate the actuation bound in practical implementation.

    Remark 2Compared to the existing finite-time attitude controllers in[16,17,25,26],besides the boundedness of the proposed finite-time attitude controller,it does not need any precise information of the inertia matrixJ.In other words,the proposed finite time control law is model-independent.

    4.2 Design of global bounded finite-time attitude controller

    In this section,a global bounded finite-time controller is designed for attitude control system(1).

    Theorem 1For the spacecraft attitude control systems(1),if the control torque τ is designed as

    wherek1> 0,k2> 0,0 < α1< 1 and α2=2α1/(1+α1),then the attitude of system(1)will reach the desired attitudeqdin a finite time,i.e.,q→qd,in a finite time.

    whose derivative along system(6)is

    Remark 3According to the proof procedure of Theorem 2,it is easy to get the following conclusion.That is for the spacecraft attitude control system(1),if the control torque τ is designed as

    wherek1>0 andk2>0,the attitude will converge to the desired attitude be asymptotically,i.e.,q→qd,ast→ ∞.In numerical simulations,we will illustrate the advantages of finite-time control,i.e.,faster convergence rate and better disturbance rejection property.

    5 Illustrative examples

    Consider the attitude regulation problem for the spacecraft described by system(1).The inertia matrix of the spacecraft is given as in[16]:

    The initial attitude and initial angular velocity are also set as in[16]:q(0)=[0.3320 0.4618 0.1915 0.7999]T,ω(0)=[2.2?1.2?3]Trad/s.The desired attitude isqd=[0.8 0?0.6 0]T.Different from[16,25,26],here the control torque is required to be bounded.Therefore,the existing finite-time controller is unavailable.

    To show how the fractional powers in the proposed finite-time controller affect the system dynamical performances(e.g.,convergence time),Table 1 gives the convergence time for the closed-loop system under the different fractional powers α1,α2.It can be found that if the fractional power α1→ 0,α2→ 0,the convergent rate is faster.As a result,by regulating the additional parameter,i.e.,the fractional powers α1and α2,the convergent rate can be faster without increasing the control gainsk1,k2.As for the rigorous theoretical analysis why the finite-time control can offer better dynamical performance and how the fractional power affects the system dynamical performances,it can be found that in[15,35].

    Fig.1 Response curves of the closed-system under finite-time controller(FC).

    Fig.2 Response curves of the closed-system under asymptotically stable controller(ASC).

    Table 1 Comparison of convergence time of the closed-system under different fractional powers of finite-time controller(FC).

    6 Conclusions

    The finite-time attitude stabilization problem for a rigid spacecraft under input saturation has been investigated in this paper.Based on the finite-time control technique,a continuous finite-time attitude regulation controller is proposed.Then,by using a switching control approach,a novel global bounded finite-time attitude regulation controller without inertial matrix information has been developed.Finally,an example is given to verify the effectiveness of the proposed method.Future work includes extending the results in this paper to the cases when the the dynamics of actuator is considered.

    [1]M.D.Shuster.A survey of attitude representations.Journal of the Astronautical Sciences,1993,41(4):439–517.

    [2]P.C.Hughes.Spacecraft Attitude Dynamics.New York:Wiley,1986.

    [3]S.Liu,Z.Geng,J.Sun.Finite-time attitude control:a finite-time passivity approach.IEEE/CAA Journal of Automatica Sinica,2015,2(1):102–108.

    [4]J.Zhang,C.Sun,R.Zhang,et al.Adaptive sliding mode control for re-entry attitude of near space hypersonic vehicle based on backstepping design.IEEE/CAA Journal of Automatica Sinica,2015,2(1):94–101.

    [5]Y.Xia,N.Zhou,K.Lu,et al.Attitude control of multiple rigid bodies with uncertainties and disturbances.IEEE/CAA Journal of Automatica Sinica,2015,2(1):2–10.

    [6]H.Gui,G.Vukovich,S.Xu.Attitude tracking of a rigid spacecraft using two internal torques.IEEE Transactions on Aerospace and Electronic Systems,2015,51(4):2900–2913.

    [7]P.Tsiotras.Stabilization and optimality results for the attitude control problem.Journal of Guidance,Control and Dynamics,1996,19(4):772–779.

    [8]G.Xing,S.A.Parvez.Nonlinear attitude state tracking control for spacecraft.Journal of Guidance,Control and Dynamics,2001,24(3):624–626.

    [9]Y.Xia,Z.Zhu,M.Fu,et al.Attitude tracking of rigid spacecraft with bounded disturbances.IEEE Transactions on Industrial Electronics,2011,58(2):647–659.

    [10]B.T.Costic,D.M.Dawson,M.S.de Queiroz,et al.Quaternion based adaptive attitude tracking controller without velocity measurements.Journal of Guidance,Control,and Dynamics,2001,24(6):1214–1222.

    [11]Z.Chen,J.Huang.Attitude tracking and disturbance rejection of rigid spacecraft by adaptive control.IEEE Transaction on Automatic Control,2009,54(3):600–605.

    [12]L.L.Show,J.C.Juang,Y.W.Jan.An LMI-based nonlinear attitude control approach.IEEE Transactions on Control Systems Technology,2003,11(1):73–83.

    [13]C.Cheng,S.Shu.Application of fuzzy controllers for spacecraft attitude control.IEEE Transactions on Aerospace and Electronic Systems,2009,45(2):761–765.

    [14]C.G.Mayhew,R.G.Sanfelice,A.R.Teel.Robust global asymptotic attitude stabilization of a rigid body by quaternionbased hybrid feedback.Proceedings of Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference,Shanghai:IEEE,2009:2522–2527.

    [15]S.P.Bhat,D.S.Bernstein.Finite-time stability of continuous autonomous systems.SIAM Journal on Control and Optimization,2000,38(3):751–766.

    [16]S.Li,S.Ding,Q.Li.Global set stabilisation of the spacecraft attitude using finite-time control technique.International Journal of Control,2009,82(5):822–836.

    [17]H.Du,S.Li,C.Qian.Finite-time attitude tracking control of spacecraft with application to attitude synchronization.IEEE Transaction on Automatic Control,2011,56(11):2711–2717.

    [18]S.Li,H.Liu,S.Ding.As peed control for a PMSM using finite-time feedback control and disturbance compensation.Transactions of the Institute of Measurement and Control,2010,32(2):170–187.

    [19]S.Ding,S.Li,Q.Li.Stability analysis for a second-order continuous finite-time control system subject to a disturbance.Journal of Control Theory and Applications,2009,7(3):271–276.

    [20]Y.Shen.Finite-time control of linear parameter-varying systems with norm-bounded exogenous disturbance.Journal of Control Theory and Applications,2008,6(2):184–188.

    [21]Q.Hu,B.Li,A.Zhang,et al.Finite-time attitude maneuver control of spacecraft under control saturation and misalignment.Control Theory&Applications,2013,30(4):417–424(in Chinese).

    [22]H.Zhang,C.Wang,H.Chen.Finite-time saturated stabilization for a class of nonlinear systems with dynamic feedback.Control Theory&Applications,2013,30(3):355–359(in Chinese).

    [23]B.Jiang,Q.Hu,M.I.Friswell.Fixed-Time attitude control for rigid spacecraft with actuator saturation and faults.IEEE Transactions on Control Systems Technology,2016,24(5):1892–1898.

    [24]Z.Sun,S.Li,X.Zhang.Direct torque control of induction motor based on extended state observer and finite time control scheme.Control Theory&Applications,2014,31(6):748–756.

    [25]S.Ding,S.Li.Stabilization of the attitude of a rigid spacecraft with external disturbances using finite-time control techniques.Aerospace Science and Technology,2009,13(4):256–265.

    [26]Z.Zhu,Y.Xia,M.Fu.Attitude stabilization of rigid spacecraft with finite-time convergence.International Journal of Robust and Nonlinear Control,2011,21(6):686–702.

    [27]Y.Hong,Y.Xu,J.Huang.Finite-time control for robot manipulators.Systems&Control Letters,2002,46(4):185–200.

    [28]S.P.Bhat,D.S.Bernstein.Finite-time stability of homogeneous systems.Proceedings of the American Control Conference,Albuquerque,New Mexico:IEEE,1997:2513–2514.

    [29]Y.Hong,J.Huang,Y.Xu.On an output feedback finite-time stabilization problem.IEEE Transaction on Automatic Control,2001,46(2):305–309.

    [30]S.Yu,X.Yu,B.Shirinzadeh,et al.Continuous finite-time control for robotic manipulators with terminal sliding mode.Automatica,2005,41(11):1957–1964.

    [31]C.Qian,W.Lin.A continuous feedback approach to global strong stabilization of nonlinear systems.IEEE Transactions on Automatic Control,2001,46(7):1061–1079.

    [32]G.Hardy,J.Littlewood,G.Polya.Inequalities.Cambridge:Cambridge University Press,1952.

    [33]J.J.E.Slotine,M.D.D.Benedetto.Hamiltonian adaptive control of spacecraft.IEEE Transaction on Automatic Control,1990,35(7):848–852.

    [34]H.Khalil.Nonlinear Systems.3rded.Upper Saddle River:Prentice Hall,2002:303–334.

    [35]S.Ding,S.Li,Q.Li.Disturbance analysis for continuous finite time control systems.Journal of Control Theory and Applications,2009,7(3):271–276.

    11 April 2016;revised 13 September 2016;accepted 8 October 2016

    DOI10.1007/s11768-017-6057-6

    ?Corresponding author.

    E-mail:haibo.du@hfut.edu.cn.Tel.:+86 18256956759.

    This work was supported by the National Natural Science Foundation of China(Nos.61304007,61673153),the Ph.D.Programs Foundation of Ministry of Education of China(No.20130111120007)and the China Postdoctoral Science Foundation Funded Project(Nos.2012M521217,2014T70584).

    ?2017 South China University of Technology,Academy of Mathematics and Systems Science,CAS,and Springer-Verlag Berlin Heidelberg

    Yusong ZHOUwas born in Dingyuan,Anhui,in 1972.He received his B.Sc.degree from Beijing Institute Of Graphic Communication, Bejing,China,in 1996 and the M.Sc.degree from Hefei University of Technology,Hefei,China,in 2010.From July 2015 to August 2015,he was a visiting researcher at Hefei University of Technology.Heiscurrently an Associate Professor in Anhui Vocational College of Press and Publishing.His research interests include electrical automation,control theory and applications.E-mail:cdadzhou@126.com.

    Wenwu ZHUwas born in Suzhou,Anhui,in 1993.He received his B.Sc.degree in Automatic Control from HeFei University of Technology,Hefei,China,in 2015.He is currently pursuing the M.Sc.degree in the School of Electrical Engineering and Automation,Hefei University Of Technology,Anhui,China.His research interests include nonlinear control,and spacecraft attitude control.E-mail:zhuwenwu003@163.com.

    Haibo DUwas born in Tongcheng,Anhui,in 1982.He received his B.Sc.degree in Mathematics from Anhui Normal University,China,in 2004,and the Ph.D.degree in Automatic Control from Southeast University,China,in 2012.He is currently an Associate Professor in the School of Electrical Engineering and Automation,Hefei University of Technology.His research interests include nonlinear system control,cooperative control of distributed multi-agent systems and spacecraft attitude control.E-mail:haibo.du@hfut.edu.cn.

    人妻丰满熟妇av一区二区三区| av片东京热男人的天堂| 色在线成人网| 激情视频va一区二区三区| 亚洲欧美激情在线| 欧美成人午夜精品| 黄色成人免费大全| 成熟少妇高潮喷水视频| av超薄肉色丝袜交足视频| 69av精品久久久久久| 国产精品爽爽va在线观看网站 | 精品国产亚洲在线| 久热爱精品视频在线9| 一级毛片女人18水好多| 波多野结衣一区麻豆| 深夜精品福利| 久久香蕉精品热| 精品久久久久久成人av| 操美女的视频在线观看| 成人手机av| av超薄肉色丝袜交足视频| 人成视频在线观看免费观看| 亚洲aⅴ乱码一区二区在线播放 | 天天一区二区日本电影三级 | 淫秽高清视频在线观看| 午夜a级毛片| 欧美午夜高清在线| 亚洲中文av在线| 国产成人精品在线电影| 国产精品精品国产色婷婷| 国产精品免费一区二区三区在线| 久久久久久免费高清国产稀缺| 免费观看精品视频网站| 国产精品野战在线观看| 91在线观看av| 老熟妇乱子伦视频在线观看| 亚洲色图综合在线观看| 久久久久久久久中文| 啦啦啦观看免费观看视频高清 | 天天躁夜夜躁狠狠躁躁| 亚洲成人久久性| 国产精品一区二区精品视频观看| 咕卡用的链子| 精品久久久精品久久久| 91精品国产国语对白视频| 日韩三级视频一区二区三区| 亚洲av成人一区二区三| 伦理电影免费视频| 我的亚洲天堂| 亚洲国产欧美网| 成人永久免费在线观看视频| 夜夜躁狠狠躁天天躁| www国产在线视频色| 国产麻豆成人av免费视频| 18禁黄网站禁片午夜丰满| 国产精品美女特级片免费视频播放器 | 黄频高清免费视频| 岛国视频午夜一区免费看| 色综合站精品国产| 久久中文字幕人妻熟女| 大陆偷拍与自拍| 极品教师在线免费播放| 午夜精品国产一区二区电影| 国产视频一区二区在线看| 亚洲国产中文字幕在线视频| 亚洲免费av在线视频| 亚洲国产欧美一区二区综合| 黄片大片在线免费观看| or卡值多少钱| 日本a在线网址| 国产三级黄色录像| 91成年电影在线观看| 啪啪无遮挡十八禁网站| 真人一进一出gif抽搐免费| 男女下面插进去视频免费观看| 亚洲欧美一区二区三区黑人| 亚洲av成人av| 88av欧美| 午夜福利免费观看在线| 日韩视频一区二区在线观看| 一个人观看的视频www高清免费观看 | 国产午夜精品久久久久久| 黄色女人牲交| 国产高清激情床上av| 女性生殖器流出的白浆| 精品久久久久久久毛片微露脸| 久久亚洲精品不卡| 国产私拍福利视频在线观看| 欧美激情极品国产一区二区三区| 国产午夜精品久久久久久| 18禁美女被吸乳视频| 嫩草影院精品99| 精品乱码久久久久久99久播| 叶爱在线成人免费视频播放| 日本免费a在线| 午夜福利在线观看吧| 高清毛片免费观看视频网站| 桃红色精品国产亚洲av| 免费女性裸体啪啪无遮挡网站| 夜夜爽天天搞| 又大又爽又粗| 男女下面插进去视频免费观看| a级毛片在线看网站| 麻豆av在线久日| 大型av网站在线播放| 国产精华一区二区三区| 国产av又大| 97超级碰碰碰精品色视频在线观看| 很黄的视频免费| √禁漫天堂资源中文www| 淫妇啪啪啪对白视频| 男男h啪啪无遮挡| 国产亚洲精品av在线| 老司机深夜福利视频在线观看| 黄色成人免费大全| 久久人人97超碰香蕉20202| 精品一品国产午夜福利视频| 欧美激情极品国产一区二区三区| 亚洲第一av免费看| 不卡av一区二区三区| 在线观看www视频免费| 久久精品91蜜桃| 久久人人97超碰香蕉20202| 18禁观看日本| 最好的美女福利视频网| 乱人伦中国视频| 欧美午夜高清在线| 亚洲精品一区av在线观看| 亚洲成人精品中文字幕电影| 巨乳人妻的诱惑在线观看| av视频免费观看在线观看| 亚洲精品美女久久av网站| 国产一卡二卡三卡精品| 麻豆久久精品国产亚洲av| 黄网站色视频无遮挡免费观看| 韩国精品一区二区三区| www.自偷自拍.com| 色在线成人网| 一级毛片高清免费大全| 九色亚洲精品在线播放| 老司机在亚洲福利影院| 一边摸一边抽搐一进一出视频| 动漫黄色视频在线观看| 精品国产超薄肉色丝袜足j| 神马国产精品三级电影在线观看 | 国产麻豆69| 欧美中文综合在线视频| 中文字幕最新亚洲高清| 热re99久久国产66热| 麻豆一二三区av精品| 国产亚洲精品一区二区www| 中文字幕精品免费在线观看视频| 手机成人av网站| 久久香蕉精品热| 自线自在国产av| 亚洲国产精品sss在线观看| 在线观看免费视频网站a站| 久久久水蜜桃国产精品网| 久久精品人人爽人人爽视色| 欧美日韩亚洲综合一区二区三区_| 又大又爽又粗| 欧美丝袜亚洲另类 | 日本精品一区二区三区蜜桃| 免费在线观看完整版高清| 亚洲av电影在线进入| 99国产综合亚洲精品| 免费看十八禁软件| 嫁个100分男人电影在线观看| 十分钟在线观看高清视频www| 可以免费在线观看a视频的电影网站| 人妻久久中文字幕网| 我的亚洲天堂| 少妇熟女aⅴ在线视频| 欧美 亚洲 国产 日韩一| 亚洲va日本ⅴa欧美va伊人久久| 麻豆久久精品国产亚洲av| 欧美在线黄色| 国产精品久久久av美女十八| 亚洲国产精品sss在线观看| 国产精品二区激情视频| 日韩av在线大香蕉| 亚洲免费av在线视频| 久久青草综合色| 亚洲av五月六月丁香网| 91成人精品电影| or卡值多少钱| 久久久国产成人免费| 在线播放国产精品三级| 色婷婷久久久亚洲欧美| 亚洲美女黄片视频| 天天添夜夜摸| 一级作爱视频免费观看| 精品第一国产精品| 搞女人的毛片| 丝袜在线中文字幕| 99热只有精品国产| 最近最新免费中文字幕在线| 国产亚洲欧美98| 午夜日韩欧美国产| 国产亚洲精品久久久久久毛片| 久久狼人影院| 99国产综合亚洲精品| 好男人在线观看高清免费视频 | 99久久综合精品五月天人人| 国内精品久久久久精免费| 老熟妇乱子伦视频在线观看| 丁香欧美五月| 亚洲狠狠婷婷综合久久图片| 波多野结衣一区麻豆| 成人18禁在线播放| 成人国产综合亚洲| 99国产极品粉嫩在线观看| 美女午夜性视频免费| 久久中文字幕一级| 国产精品秋霞免费鲁丝片| 一级毛片女人18水好多| 黄网站色视频无遮挡免费观看| av在线播放免费不卡| 亚洲av第一区精品v没综合| 精品一区二区三区四区五区乱码| 高潮久久久久久久久久久不卡| 亚洲精品中文字幕在线视频| 精品一品国产午夜福利视频| 欧美日韩中文字幕国产精品一区二区三区 | 狠狠狠狠99中文字幕| 久久精品成人免费网站| 中文字幕色久视频| 99久久99久久久精品蜜桃| 大型黄色视频在线免费观看| 国产一区二区在线av高清观看| 禁无遮挡网站| 色尼玛亚洲综合影院| 激情在线观看视频在线高清| 国产野战对白在线观看| 女性生殖器流出的白浆| 久久久国产成人免费| 国产激情欧美一区二区| 久久精品91蜜桃| 亚洲第一青青草原| 这个男人来自地球电影免费观看| 免费久久久久久久精品成人欧美视频| 欧美国产精品va在线观看不卡| 最好的美女福利视频网| 亚洲中文av在线| av福利片在线| 麻豆一二三区av精品| 一进一出抽搐gif免费好疼| 成熟少妇高潮喷水视频| 欧美大码av| 国产一级毛片七仙女欲春2 | 99在线人妻在线中文字幕| 国产精华一区二区三区| 久久久久久久久免费视频了| 亚洲成人久久性| 国产午夜精品久久久久久| 国产极品粉嫩免费观看在线| 色综合婷婷激情| 精品人妻1区二区| 亚洲精品中文字幕一二三四区| 成年女人毛片免费观看观看9| 国产伦一二天堂av在线观看| 午夜影院日韩av| 黄色视频,在线免费观看| 女警被强在线播放| 丝袜美足系列| 国产精品久久久久久亚洲av鲁大| 亚洲av日韩精品久久久久久密| 一区在线观看完整版| 一级毛片精品| 亚洲全国av大片| 亚洲中文av在线| 老司机午夜十八禁免费视频| 精品久久久精品久久久| 97人妻精品一区二区三区麻豆 | av有码第一页| 亚洲人成伊人成综合网2020| 丝袜美足系列| 亚洲少妇的诱惑av| 99国产综合亚洲精品| 婷婷丁香在线五月| 欧美日韩瑟瑟在线播放| 久久狼人影院| 日韩大码丰满熟妇| 50天的宝宝边吃奶边哭怎么回事| 亚洲一区二区三区色噜噜| 国产精品自产拍在线观看55亚洲| 国产国语露脸激情在线看| 欧美绝顶高潮抽搐喷水| av在线播放免费不卡| 最近最新免费中文字幕在线| 免费久久久久久久精品成人欧美视频| 亚洲欧美激情在线| 啦啦啦 在线观看视频| 久久香蕉激情| 亚洲国产日韩欧美精品在线观看 | 黄色a级毛片大全视频| 免费在线观看影片大全网站| 大陆偷拍与自拍| 给我免费播放毛片高清在线观看| 亚洲在线自拍视频| 999久久久国产精品视频| 97人妻精品一区二区三区麻豆 | 大型黄色视频在线免费观看| 亚洲av日韩精品久久久久久密| 精品一区二区三区四区五区乱码| 精品卡一卡二卡四卡免费| 国产精品影院久久| 午夜亚洲福利在线播放| 精品无人区乱码1区二区| netflix在线观看网站| 麻豆久久精品国产亚洲av| 91精品三级在线观看| 中文字幕人妻熟女乱码| 国产成人免费无遮挡视频| 日本免费一区二区三区高清不卡 | 成人18禁在线播放| 一二三四在线观看免费中文在| 男女做爰动态图高潮gif福利片 | 午夜老司机福利片| 韩国av一区二区三区四区| 日韩成人在线观看一区二区三区| 一个人免费在线观看的高清视频| 日韩一卡2卡3卡4卡2021年| 好看av亚洲va欧美ⅴa在| 日本五十路高清| 亚洲精品中文字幕一二三四区| 精品国产一区二区久久| 在线播放国产精品三级| 亚洲午夜精品一区,二区,三区| 身体一侧抽搐| 欧美黑人欧美精品刺激| 黄片大片在线免费观看| 夜夜躁狠狠躁天天躁| 日本免费一区二区三区高清不卡 | 亚洲成国产人片在线观看| 成人国产综合亚洲| 国产精品久久久人人做人人爽| 中国美女看黄片| 久久国产精品人妻蜜桃| 一区二区三区高清视频在线| 国产精品爽爽va在线观看网站 | 天堂动漫精品| 日本撒尿小便嘘嘘汇集6| 女性被躁到高潮视频| 99热只有精品国产| 热99re8久久精品国产| 超碰成人久久| 久久中文看片网| 精品一区二区三区四区五区乱码| 欧美日韩瑟瑟在线播放| 亚洲视频免费观看视频| 精品欧美国产一区二区三| 国产熟女xx| 一进一出好大好爽视频| 久9热在线精品视频| netflix在线观看网站| 一进一出好大好爽视频| 三级毛片av免费| 美女国产高潮福利片在线看| 他把我摸到了高潮在线观看| 美女 人体艺术 gogo| 欧美精品亚洲一区二区| 啦啦啦 在线观看视频| 一卡2卡三卡四卡精品乱码亚洲| av免费在线观看网站| 国产三级黄色录像| 欧美一级毛片孕妇| 在线观看www视频免费| 国产一区二区三区在线臀色熟女| 午夜福利成人在线免费观看| 精品不卡国产一区二区三区| 午夜福利免费观看在线| 欧美日韩亚洲国产一区二区在线观看| 亚洲三区欧美一区| 欧美日韩亚洲综合一区二区三区_| 日韩欧美国产在线观看| 国产男靠女视频免费网站| 亚洲五月婷婷丁香| 免费在线观看视频国产中文字幕亚洲| 精品国产美女av久久久久小说| 99香蕉大伊视频| 欧美精品啪啪一区二区三区| 美女高潮到喷水免费观看| 亚洲第一电影网av| 97碰自拍视频| 一级片免费观看大全| 丝袜美足系列| 丰满的人妻完整版| 国产成人欧美在线观看| 高潮久久久久久久久久久不卡| av电影中文网址| 欧美中文综合在线视频| 激情视频va一区二区三区| 亚洲七黄色美女视频| 亚洲av成人一区二区三| 国产亚洲精品av在线| 无遮挡黄片免费观看| 一级片免费观看大全| 可以在线观看毛片的网站| avwww免费| 香蕉国产在线看| 熟妇人妻久久中文字幕3abv| www.999成人在线观看| 人妻久久中文字幕网| 天天躁夜夜躁狠狠躁躁| av网站免费在线观看视频| 真人做人爱边吃奶动态| 国产高清激情床上av| 国产成人av教育| 亚洲熟妇熟女久久| 非洲黑人性xxxx精品又粗又长| 一二三四在线观看免费中文在| 91成年电影在线观看| 国内久久婷婷六月综合欲色啪| 亚洲精品中文字幕在线视频| 国产成人精品无人区| 窝窝影院91人妻| 午夜免费观看网址| 人妻久久中文字幕网| 欧美亚洲日本最大视频资源| 国产高清有码在线观看视频 | 久久精品亚洲熟妇少妇任你| 免费高清视频大片| 大码成人一级视频| 12—13女人毛片做爰片一| 变态另类丝袜制服| 可以免费在线观看a视频的电影网站| 一级黄色大片毛片| 91成年电影在线观看| 欧美成狂野欧美在线观看| 搞女人的毛片| 久热这里只有精品99| 免费不卡黄色视频| 一级黄色大片毛片| 国产伦人伦偷精品视频| svipshipincom国产片| 日本五十路高清| 亚洲精品久久国产高清桃花| 国产熟女xx| 欧美日本中文国产一区发布| 日本撒尿小便嘘嘘汇集6| 一级黄色大片毛片| 国内毛片毛片毛片毛片毛片| 国产在线精品亚洲第一网站| 男人舔女人下体高潮全视频| 99香蕉大伊视频| 亚洲中文字幕日韩| 亚洲av熟女| 在线观看舔阴道视频| 欧美激情极品国产一区二区三区| 正在播放国产对白刺激| av中文乱码字幕在线| 大香蕉久久成人网| 黄色成人免费大全| 久久人妻福利社区极品人妻图片| 亚洲精品av麻豆狂野| 精品久久久久久久久久免费视频| 国产精品免费视频内射| 国产伦人伦偷精品视频| 精品高清国产在线一区| 女生性感内裤真人,穿戴方法视频| 中文字幕最新亚洲高清| 国产xxxxx性猛交| 国产精品秋霞免费鲁丝片| 国产欧美日韩一区二区三区在线| 啪啪无遮挡十八禁网站| 在线观看舔阴道视频| 国产三级黄色录像| 制服人妻中文乱码| 久久狼人影院| 欧美丝袜亚洲另类 | 黑人操中国人逼视频| 变态另类丝袜制服| 伦理电影免费视频| 亚洲国产看品久久| 性少妇av在线| 日韩免费av在线播放| 麻豆国产av国片精品| 亚洲三区欧美一区| 18美女黄网站色大片免费观看| 亚洲午夜精品一区,二区,三区| 日日干狠狠操夜夜爽| 中文字幕精品免费在线观看视频| АⅤ资源中文在线天堂| 亚洲欧洲精品一区二区精品久久久| 欧美在线黄色| 亚洲免费av在线视频| 乱人伦中国视频| 三级毛片av免费| 悠悠久久av| 欧美成狂野欧美在线观看| 精品一区二区三区视频在线观看免费| 亚洲五月天丁香| 男男h啪啪无遮挡| 亚洲成人国产一区在线观看| 国产片内射在线| 欧美午夜高清在线| 法律面前人人平等表现在哪些方面| 男人舔女人下体高潮全视频| 亚洲成a人片在线一区二区| 亚洲欧美日韩另类电影网站| 亚洲一码二码三码区别大吗| 女人爽到高潮嗷嗷叫在线视频| 成人免费观看视频高清| 免费在线观看日本一区| 亚洲视频免费观看视频| 黄色丝袜av网址大全| 欧美黑人精品巨大| 国产亚洲欧美精品永久| 男人舔女人的私密视频| 这个男人来自地球电影免费观看| 欧美激情久久久久久爽电影 | 美国免费a级毛片| 日韩视频一区二区在线观看| 久久久久久久久免费视频了| 免费在线观看完整版高清| 午夜久久久久精精品| 丁香欧美五月| 后天国语完整版免费观看| 999精品在线视频| 99精品久久久久人妻精品| 日韩免费av在线播放| 美女 人体艺术 gogo| 国产欧美日韩一区二区三区在线| 久久香蕉激情| 成人国产一区最新在线观看| 国产欧美日韩综合在线一区二区| 成人国产一区最新在线观看| 三级毛片av免费| 每晚都被弄得嗷嗷叫到高潮| 一个人观看的视频www高清免费观看 | 国产高清有码在线观看视频 | 中文字幕人妻丝袜一区二区| 黄色a级毛片大全视频| 18禁国产床啪视频网站| 九色国产91popny在线| 日韩欧美三级三区| 欧美大码av| 婷婷六月久久综合丁香| 国产片内射在线| 国产精品久久久久久精品电影 | 亚洲一区高清亚洲精品| 涩涩av久久男人的天堂| 好男人在线观看高清免费视频 | 999久久久国产精品视频| 色精品久久人妻99蜜桃| av免费在线观看网站| 大香蕉久久成人网| 亚洲精品在线美女| 亚洲色图 男人天堂 中文字幕| 夜夜看夜夜爽夜夜摸| 日韩大码丰满熟妇| 国产午夜福利久久久久久| 别揉我奶头~嗯~啊~动态视频| 999久久久国产精品视频| 国产精品秋霞免费鲁丝片| av中文乱码字幕在线| 成人三级做爰电影| 精品国产美女av久久久久小说| 伦理电影免费视频| 一进一出好大好爽视频| 国产aⅴ精品一区二区三区波| 亚洲熟妇中文字幕五十中出| 人人澡人人妻人| 久久精品人人爽人人爽视色| 黑人操中国人逼视频| 午夜亚洲福利在线播放| 日韩精品中文字幕看吧| 国产成人精品久久二区二区91| 激情在线观看视频在线高清| 国产成年人精品一区二区| 色尼玛亚洲综合影院| 精品国产美女av久久久久小说| 久久伊人香网站| 日本 av在线| 国产片内射在线| 国产成年人精品一区二区| 一级毛片高清免费大全| 中文字幕另类日韩欧美亚洲嫩草| 丁香六月欧美| 久久精品影院6| 麻豆一二三区av精品| 欧美激情高清一区二区三区| 岛国在线观看网站| 久久精品91无色码中文字幕| 在线观看www视频免费| 操出白浆在线播放| 国产野战对白在线观看| 亚洲精品国产一区二区精华液| 18禁国产床啪视频网站| 亚洲 欧美一区二区三区| 久久久久久大精品| 日韩国内少妇激情av| 一级片免费观看大全| 精品国产超薄肉色丝袜足j| 日韩有码中文字幕| 一级a爱片免费观看的视频| 欧美另类亚洲清纯唯美| 欧美激情 高清一区二区三区| 久久青草综合色| 丝袜美腿诱惑在线| 亚洲色图av天堂| 两性夫妻黄色片| 日韩精品青青久久久久久| 欧美中文日本在线观看视频| 男女做爰动态图高潮gif福利片 | 成人特级黄色片久久久久久久| 亚洲色图 男人天堂 中文字幕| 亚洲伊人色综图| 操出白浆在线播放| 国产xxxxx性猛交| 九色国产91popny在线| 成人亚洲精品一区在线观看| 欧美性长视频在线观看| 午夜免费激情av|