李升升,余群力,靳義超
?
適宜加熱溫度保持牦牛瘤胃平滑肌加工品質(zhì)和組織結(jié)構(gòu)
李升升1,2,余群力2,靳義超1※
(1. 青海大學(xué)畜牧獸醫(yī)科學(xué)院,西寧 810016;2. 甘肅農(nóng)業(yè)大學(xué)食品科學(xué)與工程學(xué)院,蘭州 730070)
為研究不同溫度對(duì)牦牛平滑肌加工品質(zhì)和組織結(jié)構(gòu)的影響。將牦牛瘤胃平滑肌分別在50、60、70、80、90、100 ℃條件下處理60 min后取樣,考察不同溫度對(duì)牦牛平滑肌蒸煮損失、熱收縮率、剪切力、膠原蛋白含量和微觀結(jié)構(gòu)的影響。結(jié)果表明:隨溫度的升高,牦牛平滑肌的蒸煮損失、熱收縮率、初級(jí)和次級(jí)肌束膜的厚度均顯著增加(<0.05);剪切力、膠原蛋白含量和肌纖維直徑均顯著降低(<0.05);總體表現(xiàn)為牦牛平滑肌的加工品質(zhì)隨溫度的升高而下降,組織結(jié)構(gòu)隨溫度升高而收縮。 80 ℃是平滑肌加工品質(zhì)形成的關(guān)鍵溫度,80 ℃處理60 min牦牛平滑肌的蒸煮損失為31.39%±3.08%、熱收縮率為30.80%±2.15%、剪切力值為86.63 N±8.72 N、膠原蛋白質(zhì)量分?jǐn)?shù)為49.52 mg/g±2.84 mg/g。因此,推薦牦牛瘤胃平滑肌在80~90 ℃范圍內(nèi)熟制具有較好的加工品質(zhì)和組織形態(tài)。研究結(jié)果將為含平滑肌的內(nèi)臟等副產(chǎn)物的精深加工提供參考。
溫度;加工;品質(zhì)控制;組織結(jié)構(gòu);牦牛;瘤胃平滑肌
平滑?。╯mooth muscle)是肌肉組織的一種,廣泛分布于血管壁、胃、腸等內(nèi)臟器官,又稱為“內(nèi)臟肌”。近年來,隨著人們對(duì)動(dòng)物性食品消費(fèi)量的增加,促進(jìn)了畜禽養(yǎng)殖、屠宰、加工業(yè)的發(fā)展,同時(shí)畜禽宰后的副產(chǎn)物數(shù)量也顯著增加。據(jù)報(bào)道[1-2]平滑肌含有豐富的蛋白質(zhì)、脂肪、鈣、磷、鐵、硫胺素、核黃素、尼克酸等,其蛋白質(zhì)真實(shí)消化率和氨基酸評(píng)分與牛肉接近,可見平滑肌在營(yíng)養(yǎng)價(jià)值上與骨骼肌類似。而且,平滑肌還富含膠原蛋白和彈性蛋白,具有特有的質(zhì)構(gòu)和風(fēng)味,因此,從數(shù)量和質(zhì)量上來看,平滑肌具備深度開發(fā)和加工的潛力。
熟制是肉品深加工和開發(fā)的主要工序之一,對(duì)肉品食用和加工品質(zhì)的形成具有重要的影響[3]。熟制過程對(duì)肉品質(zhì)的影響主要是通過熱效應(yīng)造成肌肉結(jié)構(gòu)改變和蛋白變性實(shí)現(xiàn)的。肌肉是由肌內(nèi)膜將若干條肌纖維包裹形成肌束,肌束膜將不同的肌束分開,最后由肌外膜將肌束包裹形成肌肉[4],肌肉中的蛋白主要是肌動(dòng)蛋白、肌球蛋白和膠原蛋白。大量研究報(bào)道表明[5],肌肉受熱收縮造成形狀和微觀結(jié)構(gòu)的變化,與此同時(shí),在熱效應(yīng)作用下蛋白變性后,肌肉的系水力降低造成蒸煮損失增加;同時(shí)由于熱效應(yīng)蛋白受熱收縮使得單位面積上肌纖維的數(shù)量增加使剪切力增加;隨著熱效應(yīng)的繼續(xù)增強(qiáng),肌纖維斷裂使肌肉剪切力值下降。在此過程中膠原蛋白變性成為明膠,明膠具有很強(qiáng)的吸水性,也會(huì)影響肌肉的蒸煮損失和剪切力。對(duì)于不同肌肉變性溫度的研究表明[6-7],肌動(dòng)蛋白開始熱變性溫度約為71 ℃、膠原蛋白約為64 ℃;而肌球蛋白在40~60 ℃基本完成變性過程。因此,選擇在50~100 ℃溫度下研究平滑肌的蒸煮損失、剪切力、膠原蛋白含量和微觀結(jié)構(gòu)的變化。
目前,對(duì)于肉品熟制的研究報(bào)道較多,郎玉苗等[8]研究表明煎制牛排的熟制溫度為80 ℃、切片厚度為10 mm和肌纖維走向?yàn)榇怪奔±w維時(shí),牛排具有較好的品質(zhì)。李升升[9]報(bào)道牦牛肉背最長(zhǎng)肌的品質(zhì)隨加熱溫度的升高呈下降趨勢(shì),在80 ℃時(shí)具有較好的感官品質(zhì)。張立彥 等[10]研究得出隨加熱溫度的升高,雞胸肉的肌纖維直徑先減小后增大,肌纖維間隙先變大后變小,肌內(nèi)膜及肌束膜也逐漸遭到破壞。Modzelewska-Kapitula等[11]研究指出不同溫度的蒸汽和干空氣加熱牛肉,隨溫度的升高均使牛肉的蒸煮損失增加。然而,平滑肌熱處理過程中加工品質(zhì)和組織結(jié)構(gòu)變化規(guī)律如何,尚未見相關(guān)報(bào)道。
本文結(jié)合肉品的主要熟制方式,研究50~100 ℃溫度下牦牛平滑肌蒸煮損失、熱收縮率、剪切力、膠原蛋白含量的影響及其組織結(jié)構(gòu)的變化,旨在為平滑肌的加工提供理論依據(jù)和技術(shù)支持。
新鮮牦牛瘤胃:購(gòu)自青海裕泰食品有限公司,選取3~4歲屠宰后的牦牛瘤胃,除去瘤胃內(nèi)容物,用水清洗干凈瘤胃表面,在(3±1)℃條件下,用保溫箱運(yùn)回實(shí)驗(yàn)室進(jìn)行試驗(yàn),在實(shí)驗(yàn)室中除去瘤胃表面的絨毛、黏膜、脂肪,即為牦牛瘤胃平滑肌。
電子稱(JM-B3003型,諸暨市超澤衡器設(shè)備有限公司);卡尺(0~150 mm,上海申韓量具有限公司);質(zhì)構(gòu)儀(CT-3型,美國(guó)布魯克菲爾德工程公司);紫外可見分光光度計(jì)(722N型,上海精密儀器儀表有限公司);顯微鏡(IX71型,日本奧林巴斯株式會(huì)社);電熱恒溫水浴鍋(HH-6型,上海比朗儀器有限公司);輪轉(zhuǎn)式切片機(jī)(RM2235型,上海萊卡儀器有限公司);攤片機(jī)(HI1210型,上海萊卡儀器有限公司);烘片機(jī)(HI1220型,上海萊卡儀器有限公司)。
主要試劑:多聚甲醛(上海生工生物工程股份有限公司);無水乙醇(天津市富宇精細(xì)化工有限公司);二甲苯(天津市富宇精細(xì)化工有限公司);天狼星紅染色液(北京索萊寶科技有限公司)等。
1.3.1 樣品處理
將平滑肌分成(160±10)g的肉塊,隨機(jī)分成6組,每組5個(gè)平行,然后將每組樣品分別放于50、60、70、80、90、100 ℃的水浴鍋中煮制60 min后取出,測(cè)定樣品的蒸煮損失、熱收縮率、剪切力、膠原蛋白含量的變化,并觀察熟制品的組織結(jié)構(gòu)變化。
1.3.2 指標(biāo)測(cè)定方法
1)蒸煮損失的測(cè)定:樣品處理前稱量記為1,熱處理后取出的質(zhì)量記為,蒸煮損失計(jì)算按式(1)計(jì)算。
式中CL為蒸煮損失,%;1為樣品處理前的質(zhì)量,g;為樣品處理后的質(zhì)量,g。
2)熱收縮率的測(cè)定:用最小刻度為1 mm卡尺測(cè)定每個(gè)樣品沿肌纖維方向的長(zhǎng)度,樣品熱處理前的長(zhǎng)度記為1,樣品熱處理后的長(zhǎng)度記為,長(zhǎng)度熱收縮率計(jì)算公式按式(2)計(jì)算。
式中LS為長(zhǎng)度熱收縮率,%;1為樣品熱處理前的長(zhǎng)度,mm;為樣品熱處理后的長(zhǎng)度,mm。
3)剪切力的測(cè)定:采用美國(guó)布魯克菲爾德工程公司CT-3型質(zhì)構(gòu)儀測(cè)定,沿平行于肌纖維方向切取長(zhǎng)×寬為40 mm×10 mm的條形,將2~3條樣品堆疊至樣品的高度為10 mm測(cè)定剪切力,切刀垂直于肌纖維方向切割,剪切速度1.5 mm/s,剪切距離為20 mm。每個(gè)樣品測(cè)定5次,結(jié)果取平均值。
4)膠原蛋白含量的測(cè)定:參考國(guó)標(biāo)GB/T9695.23- 2008肉與肉制品:羥脯氨酸含量的測(cè)定,將測(cè)得的羥脯氨酸含量乘以系數(shù)7.25換算為膠原蛋白含量。
5)平滑肌組織結(jié)構(gòu)的觀察:從每個(gè)煮制后的樣品上切取長(zhǎng)×寬為10 mm×10 mm的塊狀,放入4%多聚甲醛溶液中固定過夜,隨后用30%~100%乙醇進(jìn)行梯度洗脫,之后用二甲苯洗脫2次,隨后用天狼星紅溶液染色。染色后的切片用顯微鏡在10倍物鏡下觀察,拍照,每個(gè)切片在不同視野下拍10張照片,用Image-pro plus軟件測(cè)定肌纖維直徑、初級(jí)肌束膜和次級(jí)肌束膜的厚度。
采用SPSS17.0軟件對(duì)數(shù)據(jù)進(jìn)行方差分析(ANOVA),各處理平均數(shù)間采用Duncan多重比較法進(jìn)行差異顯著性分析,差異顯著水平為=0.05,極顯著水平為=0.01。
蒸煮損失是肉品在蒸煮過程中因水分和其他可溶性物質(zhì)的流失而引起的質(zhì)量減少,在一定程度上反映肉品的系水力[12-13]。由圖1不同溫度處理對(duì)牦牛平滑肌蒸煮損失的影響可知,隨著處理溫度的升高,牦牛平滑肌的蒸煮損失呈顯著增加的趨勢(shì),在50~60 ℃和80~100 ℃范圍內(nèi),蒸煮損失增加但差異不顯著(>0.05);在60~80 ℃范圍內(nèi),平滑肌的蒸煮損失顯著增加(<0.05);總體來看,牦牛平滑肌的蒸煮損失從50 ℃時(shí)的9.93%±1.71%增加到100 ℃時(shí)的34.93%±3.06%,增加了251.76%。這與郎玉苗等[8]和李升升[9]的報(bào)道指出隨溫度的升高,牛排和牦牛肉的蒸煮損失增加是一致的。肌肉中的主要蛋白是肌動(dòng)蛋白、肌球蛋白和膠原蛋白,蛋白受熱會(huì)變性,蛋白變性后系水力降低導(dǎo)致蒸煮損失增加[14-16]。Brunton等[7]報(bào)道肌動(dòng)蛋白開始熱變性溫度為71 ℃;膠原蛋的變性溫度約為64 ℃;肌球蛋白在40~60 ℃基本完成變性過程。從試驗(yàn)結(jié)果也可以看出,當(dāng)溫度超過60 ℃時(shí)平滑肌的蒸煮損失就顯著增加,80 ℃之后蒸煮損失的增加減緩,也就是說在60~80 ℃范圍內(nèi),牦牛瘤胃平滑肌隨溫度升高蒸煮損失增加的主要原因是肌肉中蛋白質(zhì)變性。綜上可見,80 ℃是平滑肌中的肌動(dòng)蛋白、膠原蛋白和肌球蛋白等蛋白變性的關(guān)鍵溫度。
注:不同字母代表差異顯著(P<0.05),下同。
肌肉受熱會(huì)收縮,導(dǎo)致其體積變小,熱收縮率就是反映肌肉受熱收縮程度的指標(biāo)。由圖2知,隨著溫度的升高,牦牛平滑肌順著肌纖維方向的收縮率顯著增加(<0.05),且在60~100 ℃范圍內(nèi)基本呈直線增加趨勢(shì)。在50~100 ℃的范圍內(nèi),平滑肌的收縮率從10.18%± 0.64%增加到41.41%±1.64%,增加了306.78%。這與李升升[9]報(bào)道牦牛肉在不同溫度下的熱收縮率變化規(guī)律一致。平滑肌是具有很大收縮性的肌肉,肌肉中的肌纖維蛋白和膠原蛋白會(huì)受熱收縮[17],導(dǎo)致其熱收縮率增加,此變化趨勢(shì)與平滑肌蒸煮損失隨溫度變化基本一致。
圖2 不同溫度處理對(duì)牦牛平滑肌熱收縮率的影響
剪切力是肉品嫩度的反映,嫩度的大小直接影響產(chǎn)品的食用和加工品質(zhì)。平滑肌是存在于胃、腸等內(nèi)臟中,這些部位的平滑肌厚度不一,對(duì)評(píng)價(jià)不同處理間剪切力的差異造成影響,為了便于比較,本試驗(yàn)將2~3條樣品堆疊至樣品高度10 mm進(jìn)行測(cè)定;不同層之間的樣品會(huì)產(chǎn)生彎曲、摩擦作用而對(duì)樣品剪切力由一定的影響,在試驗(yàn)過程中通過多次測(cè)量抵消因樣品的不同而造成的誤差。由圖3可知,隨著處理溫度的升高,牦牛平滑肌的剪切力值呈顯著減小的趨勢(shì)(<0.05),在60~100 ℃范圍內(nèi)基本呈直線減少趨勢(shì)??傮w來看,剪切力值由50 ℃時(shí)的116.62 N±0.78 N,減小到100 ℃時(shí)61.74 N±1.67 N,降低了47.06%。這與Modzelewska-Kapitula等[11]報(bào)道隨溫度的升高,干空氣加熱牛肉的剪切力值增加不一致。對(duì)肌肉而言,一方面,受熱會(huì)造成肌原纖維和膠原蛋白收縮失水,肌纖維變粗,單位橫截面上的肌纖維密度增加,使剪切力值升高[18-20];另一方面,膠原蛋白受熱變性成為明膠,明膠的剪切力值較小使肉品嫩度增大[21];此外,溫度升高會(huì)導(dǎo)致肌纖維斷裂導(dǎo)致其剪切力值下降。總體來看,在50~60 ℃,剪切力值差異不顯著可能是由于平滑肌肌纖維的收縮和膠原蛋白的膨脹相互抵消,60~100 ℃剪切力值顯著減小是平滑肌膠原蛋白吸水膨脹和肌纖維受熱斷裂引起的。從咀嚼的角度來看剪切力值越小,越容易咀嚼,所以加熱溫度越高平滑肌的品質(zhì)越好,結(jié)合蛋白質(zhì)變性的溫度,平滑肌的熟制溫度在80~100 ℃較好。
膠原蛋白是一種重要的肌肉組織成分,在維持肌肉結(jié)構(gòu)、柔韌性、強(qiáng)度、肌肉質(zhì)地等方面起著重要作用[22-24]。飼養(yǎng)年齡不同,肌肉中膠原蛋白的交聯(lián)度不同,對(duì)肉品影響也不同,本試驗(yàn)中的原材料是選擇同一牧場(chǎng),相同飼養(yǎng)條件下的3~4歲牦牛,樣品中膠原蛋白的交聯(lián)程度基本相同,且本試驗(yàn)重點(diǎn)考慮的是平滑肌中的的膠原蛋白的熱變性對(duì)其品質(zhì)的影響,故從膠原蛋白總體含量上的變化說明膠原蛋白的變性程度。由圖4不同溫度處理對(duì)牦牛平滑肌膠原蛋白含量的影響可以看出,隨著處理溫度的升高,牦牛平滑肌中膠原蛋白的含量顯著降低(<0.05),尤其是在60~90 ℃范圍內(nèi)牦牛平滑肌膠原蛋白含量呈直線下降趨勢(shì),這與Brunton等[7]報(bào)道膠原蛋在64 ℃附近變性一致;總體來看,在50~100℃范圍內(nèi)牦牛平滑肌膠原蛋白含量從72.87±1.97 mg/g 降低到 30.98±1.91 mg/g,降低了57.49%。這與Sanford 和Sylvia[25]報(bào)道的牛肉中膠原蛋白含量隨溫度升高而降低一致。平滑肌中的膠原蛋白分為可溶性和不可溶性,可溶性膠原蛋白溶于水中導(dǎo)致膠原蛋白含量減少;不溶性膠原蛋白隨溫度升高變成明膠,明膠吸水膨脹造成膠原蛋白含量相對(duì)減少[26-27]。
圖3 不同溫度處理對(duì)牦牛平滑肌剪切力的影響
圖4 不同溫度處理對(duì)牦牛平滑肌膠原蛋白含量的影響
對(duì)不同溫度處理后牦牛平滑肌的組織結(jié)構(gòu)變化進(jìn)行了觀察,結(jié)果如圖5所示;對(duì)肌纖維直徑,初級(jí)肌束膜和次級(jí)肌束膜厚度的統(tǒng)計(jì)見表1。由圖5可知,隨處理溫度的升高,牦牛平滑肌肌纖維和肌束膜間的間隙從大到??;平滑肌肌纖維的直徑由大到??;而平滑肌初級(jí)和次級(jí)肌束膜厚度由小到大。表1的統(tǒng)計(jì)結(jié)果進(jìn)一步表明,隨溫度增加平滑肌肌纖維的直徑顯著減小(<0.05),由50 ℃時(shí)的131.13m減小到100 ℃的78.13m,降低了40.42%;肌束膜的厚度顯著增加(<0.05),初級(jí)肌束膜由50 ℃時(shí)的8.50m增加到100 ℃的34.56m,增加了306.59%,次級(jí)肌束膜由50 ℃時(shí)的38.13m減小到100 ℃的61.28m,增加了60.71%。肌肉組織是由肌束膜包裹肌纖維而形成的,在50和60 ℃時(shí),平滑肌肌纖維和肌束膜受熱收縮,造成肌纖維直徑減小[28-29],而肌束膜主要由膠原蛋白構(gòu)成,膠原蛋白受熱吸收膨脹抵消了受熱收縮,造成肌束膜增加,同時(shí)由于肌纖維和肌束膜的收縮速率不同,造成肌纖維和肌束膜之間出現(xiàn)間隙,但由于肌束膜的膨脹造成其間隙減小。至70 ℃以后,肌纖維和肌束膜受熱影響加劇,進(jìn)一步加劇了肌纖維的收縮和肌束膜的膨脹,結(jié)果表現(xiàn)為肌纖維直徑顯著減小,初級(jí)和次級(jí)肌束膜的厚度顯著增加[30-31]。80 ℃時(shí)平滑肌的肌纖維和肌束膜間的間隙減小至基本消失,說明平滑肌的肌束膜膨脹已基本填充至肌纖維之間,牦牛平滑肌在熱效應(yīng)下的組織結(jié)構(gòu)基本形成。
注:A、B、C、D、E、F分別代表50、60、70、80、90、100 ℃條件下加熱60min平滑肌組織結(jié)構(gòu)的變化;MF代表肌纖維,PP代表初級(jí)肌束膜,SP代表次級(jí)肌束膜。
表1 不同溫度處理后牦牛平滑肌肌纖維直徑,初級(jí)和次級(jí)肌束膜厚度的變化
熟制是肉品深加工和開發(fā)的主要工序之一,對(duì)肉品食用和加工品質(zhì)的形成具有重要的影響[3]。熟制過程對(duì)肉品質(zhì)的影響主要是通過熱效應(yīng)造成肌肉結(jié)構(gòu)改變和蛋白變性實(shí)現(xiàn)的。熱變性是衡量肌肉組織不同組分在熱效應(yīng)下變性的主要方式,國(guó)內(nèi)外已有大量的報(bào)道[6-7],報(bào)道表明不同來源的肌肉中肌動(dòng)蛋白開始熱變形溫度為71 ℃,膠原蛋白約64 ℃,肌球蛋白在40~60 ℃完成變性過程,且絕大部分肌肉在80℃附近完全變性。熱處理的目的就是要是肌肉變性能好的被人體消化吸收,而在此過程中結(jié)合剪切力、蒸煮損失等品質(zhì)的變化便于更好的控制熱處理溫度。從試驗(yàn)結(jié)果來看60~80 ℃是平滑肌蛋白質(zhì)變性和品質(zhì)形成的關(guān)鍵溫度范圍,當(dāng)溫度超過80 ℃后品質(zhì)基本形成,可以得出80 ℃為平滑肌品質(zhì)形成的關(guān)鍵溫度,90~100 ℃之間平滑肌的加工品質(zhì)變化差異不顯著(>0.05),同時(shí)考慮到工業(yè)化生產(chǎn)過程中溫度控制和減少能源消耗,故得出平滑肌在80~90 ℃的范圍內(nèi)加工品質(zhì)較好。
隨處理溫度的升高,牦牛平滑肌的蒸煮損失和熱收縮率顯著增加(<0.05);剪切力和膠原蛋白含量顯著降低(<0.05)。隨處理溫度的增加,牦牛平滑肌的肌纖維直徑減小,初級(jí)和次級(jí)肌束膜的厚度增加。綜合各品質(zhì)指標(biāo)變化可知,在50~60 ℃和90~100 ℃范圍內(nèi),牦牛平滑肌的品質(zhì)變化較小,60~90 ℃范圍內(nèi),牦牛平滑肌的品質(zhì)變化較大,且80 ℃是牦牛平滑肌品質(zhì)形成的關(guān)鍵溫度。綜上所述,推薦牦牛平滑肌在80~90 ℃范圍內(nèi)熟制具有較好的加工品質(zhì)和組織形態(tài)。在平滑肌產(chǎn)品的加工和開發(fā)時(shí),需結(jié)合產(chǎn)品定位消費(fèi)群體,合理選擇熟制溫度。
[1] 高菲菲,牛胃平滑肌加工特性研究[D]. 南京:南京農(nóng)業(yè)大學(xué),2012. Gao Feifei. Study on Processing Functionalities of Beef Tripe Smooth Muscle[D]. Nanjing: Nanjing Agricultural University, 2012. (in Chinese with English abstract)
[2] Abdulatef M A, Tetsuo N, Michio M. Impact of transglutaminase on the textural, physicochemical, and structural properties of chicken skeletal, smooth, and cardiac muscles[J]. Meat Science, 2009, 83(l): 759-767.
[3] Yancey J W S, Wharton M D, Apple J K. Cookery method and end-point temperature can affect the Warner-Bratzler shear force, cooking loss, and internal cooked color of beef longissimus steaks[J]. Meat Science, 2011, 88(1): 1-7.
[4] 夏秀芳,李芳菲,王博,等. 冰溫保鮮對(duì)牛肉肌原纖維蛋白結(jié)構(gòu)和功能特性的影響[J]. 中國(guó)食品學(xué)報(bào),2015,15(9):54-60. Xia Xiufang, Li Fangfei, Wang Bo, et al. Effect of controlled freezing point storage on the structural and functional properties of beef myofibrillar protein[J]. Journal of Chinese Institute of Food Science and Technology, 2015, 15(9): 54-60. (in Chinese with English abstract)
[5] Van Wezemael L, De Smet S, Ueland ?, et al. Relationships between sensory evaluations of beef tenderness, shear force measurements and consumer characteristics[J]. Meat Science, 2014, 97(3): 310-315.
[6] Stabursvik E, Martens H. Thermal denaturation of proteins in post-rigor muscle tissue as studied by differential scanning calorimetry[J]. Journal of the Science of Food and Agriculture, 1980, 31(10): 1034-1042.
[7] Brunton N P, Lyng J G, Zhang L, et al. The use of dielectric properties and other physical analyses for assessing protein denaturation in beef biceps femoris muscle during cooking from 5 to 85 ℃[J]. Meat Science, 2006, 72(2): 236-244.
[8] 郎玉苗,謝鵬,李敬,等. 熟制溫度及切割方式對(duì)牛排食用品質(zhì)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(1):317-325. Lang Yumiao, Xie Peng, Li Jing, et al. Effect of cooking final temterature and cutting method on eating quality of pan-fried steak[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(1): 317-325. (in Chinese with English abstract)
[9] 李升升. 熱處理對(duì)牦牛肉品質(zhì)的影響及其相關(guān)性分析[J].食品與機(jī)械,2016,32(4):207-210. Li Shengsheng. Quality changes and correlation of yak meat under heat treatment[J]. Food & Machinery, 2016, 32(4): 207-210. (in Chinese with English abstract)
[10] 張立彥,吳兵,包麗坤. 加熱對(duì)三黃雞胸肉嫩度、質(zhì)構(gòu)及微觀結(jié)構(gòu)的影響[J]. 華南理工大學(xué)學(xué)報(bào)(自然科學(xué)版),2012,40(8):116-121. Zhang Liyan, Wu Bing, Bao Likun. Effect of heating on tenderness, texture and microstructure of sanhuang chincken breast meat[J]. Journal of South China University of Technology (Natural Science Edition), 2012, 40(8): 116-121. (in Chinese with English abstract)
[11] Modzelewska-Kapitu?a M, D?browska E, Jankowska B, et al. The effect of muscle, cooking method and final internal temperature on quality parameters of beef roast[J]. Meat Science, 2012, 91(2): 195-202.
[12] 魏超昆,劉敦華,劉關(guān)瑞. 吊掛時(shí)間對(duì)蛋雞與肉雞宰后肌肉品質(zhì)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(8):286-292. Wei Chaokun, Liu Dunhua, Liu Guanrui. Effect of shackling time on muscle quality of post-slaughter of layer and broiler[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(8): 286-292. (in Chinese with English abstract)
[13] 薛山,賀稚非,李洪軍. 伊拉兔宰后肌糖原變化及其與兔肉品質(zhì)的相關(guān)性[J]. 中國(guó)農(nóng)業(yè)科學(xué),2014,47(4):814-822. Xue Shan, He Zhifei, Li Hongjun. Variation of muscle glycogen of IRA rabbit after slaughter and its correlation with changes of rabbit meat quality[J]. Scientia Agricultura Sinica, 2014, 47(4): 814-822. (in Chinese with English abstract)
[14] In-kwon H, Young-seung L. Textural properties and water- holding capacity of broiler breast meat cooked to various internal endpoint temperatures[J]. Food Science, 2012, 21(5): 1497-1499.
[15] Li Chao, Wang Daoying, Dong Han, et al. Effects of different cooking regimes on the microstructure and tenderness of duck breast muscle[J]. Journal of Food Agriculture and Environment, 2013, 93(8): 1979-1985.
[16] Brunton N P, Lyng J G, Zhang L, et al. The use of dielectric properties and other physical analyses for assessing protein denaturation in beef biceps femoris muscle during cooking from 5 to 85 ℃[J]. Meat Science, 2006, 72(2): 236-244.
[17] Lin Yungkai, Lin Tungyung, Su Houpin. Extraction and characterization of telopeptide-poor collagen from porcine lung[J]. Food Chemistry, 2011, 124(4): 1583-1588.
[18] Lorenzen C L, Taylor J F, Neely T R, et al. Beef customer satisfaction: Trained sensory panel ratings and Warner-Bratzler shear force values[J]. Journal of Animal Science, 2003, 81: 143-149.
[19] Bayraktaroglu A G, Kahraman T. Effect of muscle stretching on meat quality of biceps femoris from beef[J]. Meat science, 2011, 88(3): 580-583.
[20] Yulong Bao, Per E. Relationship between oxygen concentration, shear force and protein oxidation in modified atmosphere packaged pork[J]. Meat Science, 2015, 110: 174-179.
[21] Gudmundsson M, Hafsteinsson H. Gelatin from cod skins as affected by chemical treatments[J]. Journal of Food Science, 1997, 62(1): 37-39.
[22] Fang S H, Nishimura T, Takahashi K. Relationship between development of intramuscular connective tissue and toughness of pork during growth of pigs[J]. Journal of Animal Science, 1999, 77(1): 120-130.
[23] Powell T H, Hunt M C, Dikeman M E. Enzymatic assay to determine collagen thermal denaturation and solubilization[J]. Meat Science, 2000, 54(4): 307-311.
[24] De Huidobro F R, Miguel E, Blázquez B, et al. A comparison between two methods (Warner–Bratzler and texture profile analysis) for testing either raw meat or cooked meat[J]. Meat Science, 2005, 69(3): 527-536.
[25] Sanford J R, Sylvia c. Determination of collagen in raw and cooked beef from two muscles by alkali-insoluble, autoclave- soluble nitrogen and by hydroxyproline content[J]. Agricultural and Food Chemistry, 1962, 10(1): 40-42.
[26] Anton F, Madalina G A, Mihaela B, et al. Collagen hydrolysate based collagen/hydroxyapatite composite materials[J]. Journal of Molecular Structure, 2013, 1037(4): 154-159.
[27] Lepetit J. A theoretical approach to the relationships between collagen content, collagen cross-links and meat tenderness[J]. Meat Science, 2007,76(1): 147–159.
[28] Roldán M, Antequera T, Pérez-Palacios T, et al. Effect of added phosphate and type of cooking method on physico-chemical and sensory features of cooked lamb loins[J]. Meat Science, 2014, 97(1): 69-75.
[29] Hopkins D, Thompson J. Factors contributing to proteolysis and disruption of myofibrillar proteins and the impact on tenderisation in beef and sheep meat[J]. Australian Journal of Agricultural Research, 2002, 53(2): 149-166.
[30] Matthew D, Shoulders, Ronald T Raines. Collagen structure and stability[J]. Annual Review of Biochemistry, 2009, 78(3): 929-958.
[31] Cross H R, Carpenter Z L, Smith G C. Effects of intramuscular collagen and elastin on bovine muscle tenderness[J]. Journal of Food Science, 1973, 38(6): 998-1003.
李升升,余群力,靳義超.適宜加熱溫度保持牦牛瘤胃平滑肌加工品質(zhì)和組織結(jié)構(gòu)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(23):300-305. doi:10.11975/j.issn.1002-6819.2017.23.039 http://www.tcsae.org
Li Shengsheng, Yu Qunli, Jin Yichao. Maintaining processing quality and histological structure of yak rumen smooth muscle by proper heating temperature[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(23): 300-305. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.23.039 http://www.tcsae.org
Maintaining processing quality and histological structure of yak rumen smooth muscle by proper heating temperature
Li Shengsheng1,2, Yu Qunli2, Jin Yichao1※
(1.810016,; 2.730070,)
Smooth muscle is a category of muscle tissue, and is widely distributed in blood vessels, stomach, intestines and other internal organs. Smooth muscle has wealthy nutritional value, special flavor and texture. Smooth muscle included in animal organs can be cooked to special dishes in lots of Asian countries. However, smooth muscle is treated as by-product and little as valuable muscle compared to skeletal muscle. In order to meet consumers’ demand for new valuable food resource and high edible quality, we investigated the processing quality and histological structure change of yak rumen smooth muscle under different temperatures. The yak rumens were picked from a commercial abattoir, and the yaks were aged 36-38 months, had the same feeding background, and were slaughtered by conventional slaughtering method. The rumens were obtained, vacuum packaged and transported to the laboratory at (3±1) ℃. The smooth muscle was obtained after removing the villi, mucosa and fat. The yak rumen smooth muscle was cooked at 50, 60, 70, 80, 90, 100 °C for 60 min, respectively. And the cooking loss, heat shrinkage rate, Warner-Bratzler shear force (WBSF), collagen content and histological structure of yak rumen smooth muscle were evaluated. The results showed that cooking temperature had significant effect on WBSF, cooking loss, heat shrink rate, collagen content and histological structure. As the increasing of cooking temperature, the cooking loss value and heat shrinkage rate significantly increased (<0.05); the initial cooking loss value of yak rumen smooth muscle was 9.93%±1.71% and then increased to 34.93%±3.06%; the heat shrinkage rate increased by 306.78%, from 10.18%±0.64% to 41.41%±1.64%. However, WBSF and collagen content significantly decreased (<0.05) with the increase of cooking temperature; the value of WBSF from (116.62±0.78) N to (61.74±1.67) N; the content of collagen decreased by 57.49%, from (72.87±1.97) to (30.98±1.91) mg/g. The histological structure indicated that with the increasing of cooking temperature, the muscle fiber diameter of yak rumen smooth muscle and the crack between smooth muscle fiber changed from big to small, but the thickness of the primary and secondary perimysium changed from small to big. The muscle fiber diameter of the yak smooth muscle decreased from (131.13±13.94)m to (78.13±6.51)m; but the thickness of the primary and secondary perimysium increased by 306.59% and 60.71%, respectively. From the quality and structure change of yak rumen smooth muscle under different temperatures, the yak rumen smooth muscle processing quality decreased with the increase of temperature, and the histological structure shrank with the increase of temperature. In order to satisfy the needs of consumers, food industry and institute should pay more attention to cooking temperature, and should choose suitable cooking style to different products which focuse on different consumers. In summary, we suggest the yak rumen smooth muscle is cooked at 80-90 ℃ for 60 min, and the product will have satisfying processing quality and shape. The result will provide technical reference for the processing of by-products which include smooth muscle.
temperature; processing; quality control; histological structure; yak; rumen smooth muscle
10.11975/j.issn.1002-6819.2017.23.039
TS251.5
A
1002-6819(2017)-23-0300-06
2017-08-23
2017-11-08
國(guó)家自然科學(xué)基金資助項(xiàng)目(31701625);國(guó)家肉牛牦牛產(chǎn)業(yè)技術(shù)體系資助(CARS-38);藏牦牛品質(zhì)雜交利用及特色產(chǎn)品開發(fā)技術(shù)研究資助(2014-HZ-806)
李升升,山西臨汾人,博士生,助理研究員,主要研究方向?yàn)樾螽a(chǎn)品科學(xué)與工程。Email:lishsh123@163.com
靳義超,研究員,主要研究方向?yàn)樾螽a(chǎn)品加工。 Email:jinyichao88@163.com