• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Transepithelial Transport of Milk-Derived Peptide QEPV in Vitro and in Vivo

    2017-12-11 09:17:38LIWanruCHENJingCHENGZhicaiSHENPengGAOYangLIXianZHANGShaohui
    食品科學(xué) 2017年23期
    關(guān)鍵詞:舍弗勒乳源單層

    LI Wanru, CHEN Jing, CHENG Zhicai, SHEN Peng, GAO Yang, LI Xi’an, ZHANG Shaohui,3,*

    (1. School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China;2. Zhejiang Panda Dairy Group Co. Ltd., Wenzhou 325800, China;3. SJTU-Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai 200240, China)

    Transepithelial Transport of Milk-Derived Peptide QEPV in Vitro and in Vivo

    LI Wanru1, CHEN Jing1, CHENG Zhicai1, SHEN Peng1, GAO Yang1, LI Xi’an2, ZHANG Shaohui1,3,*

    (1. School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China;2. Zhejiang Panda Dairy Group Co. Ltd., Wenzhou 325800, China;3. SJTU-Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai 200240, China)

    Fermented milk benef i ts human health in many respects. Gln-Glu-Pro-Val (QEPV) is a peptide produced through enzymatic hydrolysis of the milk-derived peptide Gln-Glu-Pro-Val-Leu. QEPV elicits immunomodulatory effects on lymphocytes as a bioactive peptide. In this research, the transepithelial transport of QEPV was investigated in vitro and in vivo by using the Caco-2 cell monolayer model and mouse models. Results showed that QEPV exhibited good stability and it could integrally cross the Caco-2 cell monolayer in vitro. A limited transepithelial transport rate was observed at the concentration of 3.00 mg/mL in the Caco-2 cell monolayer model. Besides, QEPV was not detected in Caco-2 cells by both flow cytometry (FCM) and ultra performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF-MS). Therefore, QEPV could be absorbed as a bioactive peptide via the paracellular pathway in vitro. The in vivo experiments demonstrated that QEPV could be absorbed by mice via gastrointestinal and peritoneal routes. QEPV was less eff i ciently absorbed from the intestine than from the peritoneal cavity.

    bioactive peptide; Caco-2 cell monolayer model; mouse model; transepithelial transport

    Milk proteins serve as important sources of bioactive peptides that provide beneficial effects on human health when they are released during gastrointestinal digestion or food processing; milk proteins also play basic macro- and micro-nutritional roles[1-2]. Milk protein-derived bioactive peptides can help regulate nervous, gastrointestinal,cardiovascular, and immune systems[3-5]. These peptides also exhibit antihypertensive, antidiabetic, antioxidant,immunomodulatory and mineral-binding properties[6-8].Thus, these bioactive peptides have been investigated in terms of scientif i c research and applications, and recently the mechanism research of their functions becomes more and more attractive[9-10].

    Oral delivery is the preferred mode of bioactive peptide administration. The absorption and transport of bioactive peptides across the intestinal epithelium in vivo are essential processes for their proper function. Human colonic adenocarcinoma (Caco-2) cell lines are widely used as in vitro models of small intestinal epithelial cells because these cell lines are functionally similar to fully differentiated enterocytes[11-12]. Differentiated Caco-2 cells are broadly applied to investigate the intestinal absorption and transport of bioactive peptides and peptide drugs. Augustijns et al.[13]used highly sensitive reversedphase high performance liquid chromatography (HPLC) to determine a mixture of fl uorescent marker compounds in the Caco-2 system with programmed wavelength fluorescence detection; they successfully applied this method to assure the quality of Caco-2 monolayers in terms of integrity and P-glycoprotein functionality. Osborne et al.[14]examined the transepithelial transport of β-casomorphin-7 (β-casein[60-66],YPFPGPI (Tyr-Pro-Phe-Pro-Gly-Pro-Ile) and β-CM7) and its metabolites (YP (Tyr-Pro), GPI (Gly-Pro-Ile) and FPGPI(Phe-Pro-Gly-Pro-Ile)) by Caco-2 cells. They found that YP,GPI, FPGFI and β-CM7 could transport across the Caco-2 monolayer. The transport rates of YP and GPI were higher than the other peptides.

    Lactobacillus-fermented milk can promote human health by reducing the risk of chronic diseases or by enhancing natural immune protection[15-16]. In our previous work,one peptide, isolated from the fermented milk produced by Lactobacillus delbrueckii ssp. bulgaricus LB340, was identified as Gln-Glu-Pro-Val-Leu (QEPVL). QEPV, the digestion product of QEPVL, was demonstrated to be resistant to digestion. QEPVL and QEPV could signif i cantly activate lymphocytes and promote lymphocyte proliferation in vitro and in vivo[17]. In present work, the transepithelial transport of QEPV in vitro and in vivo was investigated by using the Caco-2 cell monolayer model and the mouse model.

    1 Materials and Methods

    1.1 Animal, materials and reagents

    Six-week-old male BALB/c mice were purchased from Shanghai Laboratory Animal Center, Chinese Academy Sciences (Shanghai, China) and grown at (25 ± 1) ℃ with 60% relative humidity under controlled lighting from 8:30 to 20:30. Animal experiments were performed in compliance with the protocol approved by the Institutional Animal Care and Use Committee at Shanghai Jiao Tong University (Animal Use License NO. is SYXK (HU) 2013-0052) and conformed to the National Institutes of Health Guide for Care and Use of Laboratory Animals (Publication No. 85-23).

    Synthetic QEPV and fl uorescein isothiocyanate (FTIC)-QEPV peptides were purchased from Top Peptide Co. Ltd.(Shanghai, China). The Caco-2 cell lines were preserved by Cell Resource Center, Shanghai Institutes for Biological Sciences (Shanghai, China) and cultured in Dulbecco’s modified Eagle’s medium (DMEM, KeyGEN BioTECH Co. Ltd. (Nanjing, China)) supplemented with 10% (V/V)fetal bovine serum (FBS, HyClone, Logan, UT, USA) and 1% (m/m) nonessential amino acids (NEAA) were incubated at(37 ± 1) ℃ with 5% CO2and 95% relative humidity in a Thermo 3000 Series incubator.

    Sodium fluorescein China Peptides Corporation(Shanghai, China); trypsin solution KeyGEN BioTECH Co. Ltd. (Nanjing, China); red blood cell lysis buffer Sigma-Aldrich (St. Louis, MO, USA).

    1.2 Instruments and equipments

    3000 Series incubator Thermo Fisher Scientific(Waltham, MA, USA); 3422 Transwell chamber (12-well plate with polycarbonate membrane) Corning Costar Corp(NY, USA); ERS-2 Volt-Ohm meter Merck Millipore(Bedford, MA, USA); Infinite M200 Pro microplate reader Tecan Group Ltd. (M?nnedorf, Switzerland); TDL-40B centrifuge Shanghai Anting Scientif i c Instrument Factory(Shanghai, China); Accuri C6 flow cytometer with CFlow Plus Software BD Biosciences (San Jose, CA, USA); ultra performance liquid chromatography and quadrupole-timeof-flight mass spectrometer (UPLC-Q-TOF-MS) Waters Corporation (Milford, MA, USA).

    1.3 Methods

    1.3.1 The establishment of Caco-2 cell monolayer model

    The Caco-2 cells were seeded into a transwell apparatus at a cell density of 1 × 105cells/mL and cultured in growth medium for 21 d with the medium changed every two days at the fi rst week and changed every day for the last two weeks.The integrity of Caco-2 cell monolayers was monitored by measuring the transepithelial electrical resistance (TEER)using Millicell ERS-2 Volt-Ohm Meter[18]. The control was placed in a transwell apparatus without being seeded with Caco-2 cells.

    Sodium fl uorescein fl ux was measured as an additional control for the monolayer integrity[13]. Briefly, on the Day 21, 0.5 mL of sodium fl uorescein (2.0 mg/mL, diluted with Hank’s Balanced Salt Solution (HBSS)) was added to the apical (AP) side and 1.5 mL of pre-warmed HBSS was added to the basolateral (BL) side. After 90 min of incubation at 37 ℃, the samples from BL side were collected and detected OD value by the multifunctional microplate reader at 490 nm on the UV visible spectrum.

    1.3.2 Transport of QEPV through a Caco-2 cell monolayer

    The lyophilized powder of QEPV peptide was dissolved in double distilled water to the concentrations of 0.01, 0.05, 0.10,0.33 and 0.50 mg/mL for HPLC analysis. The relationship (a typical calibration graph) between the chromatographic peak area and the QEPV concentration was established.

    HPLC analysis: Chromatographic separation was performed on an Agela Venusil MP-C18(2.1 mm × 150 mm,5 μm) at a column temperature of 45 ℃. The mobile phase consisted of solvent A (0.1% formic acid (FA) in water, V/V) and solvent B (0.1% FA in 100% acetonitrile,V/V). The optimized HPLC elution was analyzed in 25 min.The fl ow rate was set at 250 μL/min at 232 nm. The injection volume was 20 μL.

    To the AP side, 0.5 mL of different concentrations of HBSS-diluted QEPV solution (0.2, 0.3, 0.5, 1.0, 2.0, 2.5 and 3.0 mg/mL) were separately added and 1.5 mL of prewarmed HBSS was separately added to the BL side. After 90 min of incubation, 500 μL of the samples from the BL side of the monolayer was collected and detected by HPLC as described above. The concentration of QEPV at the BL side was calculated according to the typical calibration graph previously investigated.

    1.3.3 Flow cytometer analysis of investigating the transport route

    FITC-QEPV was dissolved and diluted with HBSS to a concentration of 2.0 mg/mL. The Caco-2 cells at the logarithmic growth stage were cultured in the FITCQEPV solution for 90 min. The control groups were cultured in the QEPV or FITC solution at the same concentration. Then the Caco-2 cells were washed with phosphate buffered saline (PBS) for three times. The Caco-2 cells were digested by 0.25% (m/m) trypsin solution and immediately centrifuged at 3 000 r/min for 15 min with PBS by TDL-40B centrifuge. The collected Caco-2 cells were detected and analyzed by Accuri C6 flow cytometer with CFlow Plus Software.

    1.3.4 UPLC-Q-TOF-MS analysis of investigating the transport route

    QEPV was dissolved and diluted with HBSS to a concentration of 2.0 mg/mL. The Caco-2 cells at the logarithmic growth stage were cultured with or without QEPV peptide for 90 min. Then the Caco-2 cells were washed with PBS for three times. The Caco-2 cells were digested by 0.25% trypsin(m/m) solution and immediately centrifuged at 3 000 r/min for 15 min with PBS. Red blood cell lysis buffer was added to the Caco-2 cells and centrifuged at 3 000 r/min for 15 min. The supernatant and QEPV standard solution were detected through UPLC-Q-TOF-MS. UPLC-Q-TOF-MS was performed as described previously[17]. In addition, multiple reaction monitoring method was used to conform a highselective isolation of monoisotopic precursor ion.

    UPLC analysis: Chromatographic separation was performed on a CSH C18column (2.1 mm × 100 mm, 1.7 μm)at a column temperature of 45 ℃. The mobile phase consisted of solvent A (0.1% formic acid in water, V/V) and solvent B(0.1% formic acid in acetonitrile, V/V). The optimized UPLC elution condition was set at 99% to 50% solvent A. The fl ow rate was set at 0.4 mL/min. The injection volume was 5 μL.

    Q-TOF-MS analysis: The scan range was m/z 80-1 000.The MS was operated using electrospray ionization (ES+) for positive electrospray modes. The capillary and cone voltages were set at 3.0 and 35.0 kV, respectively. The desolvation gas was set to 600 L/h at 350 ℃.

    1.3.5 Transport study in vivo

    FITC or FITC-QEPV solution (3.0 mg/mL) was prepared with PBS before in vivo experiments. After 12 h of fasting, the six-week-old male BALB/c mice were randomly separated into 5 groups. The first group received the FITC solution through the oral administration of peptides by gavage. The second group received the FITC solution through intraperitoneal injection. The third group received the QEPV solution through the oral administration of peptides by gavage. The fourth group received the FITC-QEPV solution through intraperitoneal injection. The control group received the same volume of PBS without peptide. After 2 h, all blood samples were collected from eyes into the ethylene diamine tetraacetic acid (EDTA) tube. Red blood cell lysis buffer was added to the tube and centrifuged at 3 000 r/min for 15 min.The supernatant immediately detected by Accuri C6 flow cytometer with CFlow Plus Software.

    1.4 Statistical analysis

    All data were expressed as ± s for the three independent experiments performed with SPSS 19.0 software(IBM Corporation, Armonk, NY, USA).

    2 Results and Analyses

    2.1 Verif i cation of Caco-2 cell monolayer model

    The results showed that the TEER on Day 21 was 440.9 Ω·cm2that was between 350 and 750 Ω·cm2, indicating that the model was successfully established and can be selected for permeability measurements[14,19]. On Day 21, the Caco-2 cell monolayers showed that tight junction formed between adjacent cells with the epithelial cells structure and without any phenomenon, such as cavity and apoptosis.Fig. 1 showed that the cells reached confluence with a columnar shape, established desmosomes (a tight junction between cells) and mature microvilli. The cells appeared morphologically differentiated with a polarized distribution of brush border enzymes[20-21].

    Fig. 1 Microstructure of Caco-2 cells on Day 21 imaged by transmission electron microscopy

    The sodium fl uorescein concentration at the BL side was calculated according to the calibration curve of standard sodium fl uorescein concentration and OD490nm. On the Day 21, after 90 min of incubation, the OD490nmof sodium fluorescein at the BL side was 0.066 7 ± 0.003 4 and the concentration of sodium fl uorescein was (0.003 4 ± 0.000 2) mg/mL. The sodium fluorescein flux value was 0.30%/(h·cm2). Augustijns[13]and Raub[22]et al.revealed that when the value was below 0.60%/(h·cm2),the Caco-2 cell monolayer model was successfully established. Other studies reported that the value should be under 0.50%/(h·cm2)[23-24]. The value in the current study was 0.30%/(h·cm2), which was smaller than 0.50%/(h·cm2);this result indicated that sodium fl uorescein could not transit through the Caco-2 cell monolayers. Therefore, Caco-2 cell monolayers were integrated. As such, they could be used for transport analysis.

    2.2 Transprort of QEPV through a Caco-2 cell monolayer

    Fig. 2 Concentrations of QEPV in BL side after 90 min incubation at different original concentrations in AP side

    The relationship (a typical calibration graph) between chromatographic peak area (x) and QEPV concentration(y) was expressed as equation: y =1.331 7 × 10-7x-0.009 4(R2> 0.99). After 90 min of incubation, the QEPV concentration at the BL side was calculated using the chromatographic peak area according to the equation. We successfully quantified the QEPV at the BL side as shown in Fig. 2. The QEPV concentration at the BL side has a good linear relationship with the original concentration(ranging from 0 to 2 mg/mL) at the AP side, indicating that the transport rate was relatively constant. The transport rate increased unregularly with the original concentration (ranging from 2 to 3 mg/mL) of QEPV at the AP side.

    The apparent permeability coefficients of Caco-2 cell monolayers could predict the passive particles transport in humans across the intestinal tract. The rate of peptide transport across the transwell membrane was determined by the apparent permeability coefficients (Papp) as previously described[25-26]. Pappwas calculated as following equation:

    Table 1 Concentration and relative apparent permeability coeff i cients of QEPV at the BL side after 90 min incubation at different original concentrations at the AP side

    The apparent permeability coefficients of QEPV at different original concentrations were calculated as above and the results were shown in Table 1. Grès et al.[27]studied the correlation between oral absorption in humans and the apparent permeability coeff i cients in the Caco-2 cell line and TC-7 clone, determining the threshold value for the apparent permeability coeff i cients as 2 × 10-6cm/s, indicating that the particles whose Pappvalues were greater than 2 × 10-6cm/s could be 100% absorbed by humans. Artursson et al.[21]reported that completely absorbed drugs were found to have high apparent permeability coefficients (> 1 × 10-6cm/s)in Caco-2 cell lines and incompletely absorbed drugs to have low apparent permeability coefficients (< 1 × 10-7cm/s).Table 1 showed that the Pappvalues at different original concentrations were above 1 × 10-6cm/s, predicting that peptide QEPV could be absorbed across the intestinal tract.

    2.3 Transport route of QEPV in Caco-2 cell monolayers model

    Fig. 3 Flow cytometric analysis of Caco-2 cells

    The transport routes of QEPV across the intestinal epithelium include the passive transcellular, passive paracellular, active carrier-mediated transcellular and transcytosis routes. Rapidly and completely absorbed particles through the passive transcellular route are generally lipophilic and can be distributed into the cell membranes.The transcytosis route had been reported to transport certain peptides, but QEPV peptide might not be hydrophobic enough for this route. If QEPV peptide transit was by passive transcellular, active carrier-mediated transcellular or transcytosis route, we could detect QEPV in the Caco-2 cells after incubation with QEPV.

    Fig. 4 UPLC-Q-TOF-MS mass spectra of Caco-2 cells cultured with or without QEPV

    The fl ow cytometry results (Fig. 3) showed there was no differences between the three groups (Caco-2 cell separately incubation with PBS, FITC and FITC-QEPV), indicating that peptide QEPV was not absorbed into the cell or attached to the cell membrane surface. After 90 min of incubation with QEPV peptide, the cell was digested, centrifuged, cracked and detected by UPLC-Q-TOF-MS. As shown in Fig. 4, no signal in the corresponding QEPV time in the Caco-2 cell lines was detected, which indicated QEPV could not transport into the Caco-2 cells.

    A limited transport rate existed according to Fig. 2.Only the passive paracellular and active carrier-mediated transcellular routes were saturable for the limited number of carriers in the Caco-2 cell membranes and micro pores between the tight junction. In another view, QEPV peptide distributed poorly into the cell membranes because of its hydrophilic physico-chemical properties. In conclusion, we could predict that the QEPV peptide might most probably be absorbed by the passive paracellular route.

    Several similar studies had been reported in the recent years. Satake et al.[28]studied the transepithelial transport route of tripeptide Val-Pro-Pro (VPP) using the Caco-2 cell monolayer model. They found that larger numbers of intact VPP could transport through the Caco-2 cell monolayer with the existence of a competitive substrate for transporter PepT1, indicating that the passive paracellular route should be the intestinal absorption pathway and not the active carrier-mediated transcellular route. Quirós et al.[29]reported that the peptide His-Leu-Pro-Leu-Pro (HLPLP) produced by Enterococcus faecalis could be absorbed through the paracellular route using the Caco-2 cell monolayer model.According to the result, QEPV was not absorbed by Caco-2 cells and was predicted to transport by the passive paracellular route. Therefore it was very likely to transport through the intestine into blood circulation in vivo.

    2.4 Transport in vivo

    In our previous work, we found that QEPV peptide could not be broken down in the gastrointestinal environment and showed good stability in buffer[17].

    Fig. 5 Flow cytometric analysis of blood cells from six-week-old BALB/c mice treated by intraperitoneal injection (A) and gavage (B)

    The absorption of QEPV in vivo experiment was carried out using male BALB/c mice, as shown in Fig.5.The QEPV-FITC treated mice by gavage and intraperitoneal injection demonstrated successful transductions into the whole blood cells compared with the untreated control mice.A significant increase was observed in the QEPV-FITC treated through intraperitoneal injection mice compared with by gavage, indicating that the absorption of QEPV through intraperitoneal injection is more effective. The FITC-treated mice via intraperitoneal injection showed an increase in the background fluorescence of the blood cell; this finding indicated that FITC was absorbed through the lymphatic system into the blood. Ho et al.[30]applied fl ow cytometry to examine the in vivo transport of the cell-penetrating peptide Thr-Ala-Thr (TAT) and obtained a similar result; thus, fl ow cytometry is quite useful in the research of peptide transport in vivo and in vitro.

    3 Conclusion

    In this report, Caco-2 cell monolayer and mouse models were successfully established to investigate the transepithelial transport of QEPV in vitro and in vivo. Morphological characteristics, TEER and sodium fluorescein flux were analyzed to ensure the integrity of the Caco-2 cell monolayer model. We also examined the absorption and transport route of QEPV across the intestinal tract in vitro and in vivo through UPLC-Q-TOF-MS and flow cytometry. The results indicated that QEPV could be absorbed as a bioactive peptide via the paracellular pathway in vitro and QEPV can be absorbed into the blood across the intestinal tract in vivo. The metabolism of QEPV in vivo will be explored in our future work.

    [1] NAGPAL R, BEHARE P, RANA R, et al. Bioactive peptides derived from milk proteins and their health benef i cial potentials: an update[J].Food & Function, 2011, 2(1): 18-27. DOI:10.1039/C0FO00016G.

    [2] MANZANARES P, SALOM J B, GARC TEJEDOR A, et al.Unraveling the mechanisms of action of lactoferrin-derived antihypertensive peptides: ACE inhibition and beyond[J]. Food &Function, 2015, 6(8): 2440-2452. DOI:10.1039/C5FO00580A.

    [3] PATIL P, WADEHRA A, GARG V, et al. Biofunctional properties of milk protein derived bioactive peptides: a review[J]. Asian Journal of Dairy and Food Research, 2015, 34(4): 253-258. DOI:10.18805/ajdfr.v34i4.6873.

    [4] HAQUE E, CHAND R, KAPILA S. Biofunctional properties of bioactive peptides of milk origin[J]. Food Reviews International, 2008,25(1): 28-43. DOI:10.1080/87559120802458198.

    [5] MASOOD R, KHOSRAVIDARANI K. Biopeptides in milk: opiate and antithrombotic ef f ects[J]. Mini Reviews in Medicinal Chemistry,2015, 15(10): 872-877. DOI:10.2174/1389557515666150519104219.

    [6] NONGONIERMA A B, FITZGERALD R J. The scientif i c evidence for the role of milk protein-derived bioactive peptides in humans:a review[J]. Journal of Functional Foods, 2015, 17: 640-656.DOI:10.1016/j.jf f.2015.06.021.

    [7] NONGONIERMA A B, FITZGERALD R J. Strategies for the discovery, identification and validation of milk protein-derived bioactive peptides[J]. Trends in Food Science & Technology, 2016, 50:26-43. DOI:10.1016/j.tifs.2016.01.022.

    [8] PHELAN M, KERINS D. The potential role of milk-derived peptides in cardiovascular disease[J]. Food & Function, 2011, 2(3/4): 153-167.DOI:10.1039/C1FO10017C.

    2018年11月2日,AI《汽車制造業(yè)》技術(shù)服務(wù)“面對(duì)面”活動(dòng)走進(jìn)舍弗勒太倉工廠,受邀專家們圍繞智能制造以及工業(yè)互聯(lián)網(wǎng)應(yīng)用等話題,與舍弗勒太倉工廠的工程技術(shù)人員們進(jìn)行了深入的交流與探討。

    [9] SáNCHEZ-RIVERA L, MARTíNEZ-MAQUEDA D, CRUZHUERTA E, et al. Peptidomics for discovery, bioavailability and monitoring of dairy bioactive peptides[J]. Food Research International,2014, 63: 170-181. DOI:10.1016/j.foodres.2014.01.069.

    [10] KORHONEN H. Milk-derived bioactive peptides: from science to applications[J]. Journal of Functional Foods, 2009, 1(2): 177-187.DOI:10.1016/j.jf f.2009.01.007.

    [11] MUKHOPADHYA A, NORONHA N, BAHAR B, et al. The antiinflammatory potential of a moderately hydrolysed casein and its 5 kDa fraction in vitro and ex vivo models of the gastrointestinal tract[J].Food & Function, 2015, 6(2): 612-621. DOI:10.1039/C4FO00689E.

    [12] ARTURSSON P. Epithelial transport of drugs in cell culture. I: a model for studying the passive dif f usion of drugs over intestinal absorbtive(Caco-2) cells[J]. Journal of Pharmaceutical Sciences, 1990, 79 (6):476-482. DOI:10.1002/jps.2600790604.

    [13] AUGUSTIJNS P, MOLS R. HPLC with programmed wavelength fl uorescence detection for the simultaneous determination of marker compounds of integrity and P-gp functionality in the Caco-2 intestinal absorption model[J]. Journal of Pharmaceutical and Biomedical Analysis, 2004, 34(5): 971-978. DOI:10.1016/j.jpba.2003.11.016.

    [14] OSBORNE S, CHEN W, ADDEPALLI R, et al. In vitro transport and satiety of a beta-lactoglobulin dipeptide and beta-casomorphin-7 and its metabolites[J]. Food & Function, 2014, 5(11): 2706-2718.DOI:10.1039/C4FO00164H.

    [15] QIAN B, XING M, CUI L, et al. Antioxidant, antihypertensive, and immunomodulatory activities of peptide fractions from fermented skim milk with Lactobacillus delbrueckii ssp. bulgaricus LB340[J].Journal of Dairy Research, 2011, 78(1): 72-79. DOI:10.1017/S0022029910000889.

    [16] WAKAI T, YAMAMOTO N. Antihypertensive peptides specific to Lactobacillus helveticus fermented milk[J]. InTech, 2012: 159-172.DOI:10.5772/28695.

    [17] JIEHUI Z, LIULIU M, HAIHONG X, et al. Immunomodulating ef f ects of casein-derived peptides QEPVL and QEPV on lymphocytes in vitro and in vivo[J]. Food & Function, 2014, 5(9): 2061-2069. DOI:10.1039/C3FO60657K.

    [19] DEPREZ S, MILA I, HUNEAU J F, et al. Transport of proanthocyanidin dimer, trimer, and polymer across monolayers of human intestinal epithelial Caco-2 cells[J]. Antioxidants and Redox Signaling, 2004, 3(6): 957-967. DOI:10.1089/152308601317203503.

    [20] HILGERS A R, CONRADI R A, BURTON P S. Caco-2 cell monolayers as a model for drug transport across the intestinal mucosa[J]. Pharmaceutical Research, 1990, 7(9): 902-910.DOI:10.1023/A:1015937605100.

    [21] ARTURSSON P, PALM K, LUTHMAN K. Caco-2 monolayers in experimental and theoretical predictions of drug transport[J].Advanced Drug Delivery Reviews, 2012, 64: 280-289. DOI:10.1016/j.addr.2012.09.005.

    [22] RAUB T J. Signal transduction and glial cell modulation of cultured brain microvessel endothelial cell tight junctions[J]. American Journal of Physiology, 1996, 271(2): C495-C503.

    [23] INGELS F, DEFERME S, DESTEXHE E, et al. Simulated intestinal fluid as transport medium in the Caco-2 cell culture model[J].International journal of pharmaceutics, 2002, 232(1/2): 183-192.DOI:10.1016/S0378-5173(01)00897-3.

    [24] AUGUSTIJNS P, ANNAERT P, HEYLEN P, et al. Drug absorption studies of prodrug esters using the Caco-2 model: evaluation of ester hydrolysis and transepithelial transport[J]. International Journal of Pharmaceutics, 1998, 166(1): 45-53. DOI:10.1016/S0378-5173(98)00013-1.

    [25] MORENO F J, RUBIO L A, OLANO A, et al. Uptake of 2S albumin allergens, Ber e 1 and Ses i 1, across human intestinal epithelial Caco-2 cell monolayers[J]. Journal of Agricultural and Food Chemistry, 2006,54(22): 8631-8639. DOI:10.1021/jf061760h.

    [26] ANTUNES F, ANDRADE F, FRANCISCA A, et al. Establishment of a triple co-culture in vitro cell models to study intestinal absorption of peptide drugs[J]. European Journal of Pharmaceutics and Biopharmaceutics, 2013, 83(3): 427-435. DOI:10.1016/j.ejpb.2012.10.003.

    [27] GRèS M C, JULIAN B, BOURRI M, et al. Correlation between oral drug absorption in humans, and apparent drug permeability in TC-7 cells, a human epithelial intestinal cell line: comparison with the parental Caco-2 cell line[J]. Pharmaceutical Research, 1998, 15(5):726-733. DOI:10.1023/A:1011919003030.

    [28] SATAKE M, ENJOH M, NAKAMURA Y, et al. Transepithelial transport of the bioactive tripeptide, Val-Pro-Pro, in human intestinal Caco-2 cell monolayers[J]. Bioscience, Biotechnology, and Biochemistry, 2002, 66(2): 378-384. DOI:10.1271/bbb.66.378.

    [29] QUIRóS A, DáVALOS A, LASUNCIóN M A, et al. Bioavailability of the antihypertensive peptide LHLPLP: transepithelial flux of HLPLP[J]. International Dairy Journal, 2008, 18(3): 279-286.DOI:10.1016/j.idairyj.2007.09.006.

    [30] HO A, SCHWARZE S R, MERMELSTEIN S J, et al. Synthetic protein transduction domains: enhanced transduction potential in vitro and in vivo[J]. Cancer Research, 2001, 61(2): 474-477.

    乳源生物活性肽QEPV體內(nèi)外的吸收轉(zhuǎn)運(yùn)

    李婉如1,陳 靜1,程志才1,沈 鵬1,高 揚(yáng)1,李錫安2,張少輝1,3,*
    (1.上海交通大學(xué)農(nóng)業(yè)與生物學(xué)院,上海 200240;2.浙江熊貓乳業(yè)集團(tuán)股份有限公司,浙江 溫州 325800;3.上海交通大學(xué)陸伯勛食品安全研究中心,上海 200240)

    發(fā)酵乳作為一種長壽食品備受關(guān)注。多肽Gln-Glu-Pro-Val(QEPV)是一種來源于發(fā)酵乳,具有免疫調(diào)節(jié)作用的生物活性肽。通過Caco-2細(xì)胞單層膜模型及小鼠模型,研究乳源性生物活性肽QEPV在體外和體內(nèi)的轉(zhuǎn)運(yùn)吸收情況。結(jié)果表明:乳源性生物活性肽QEPV具有非常好的穩(wěn)定性,且能夠穿過由Caco-2細(xì)胞形成的轉(zhuǎn)運(yùn)模型,但當(dāng)QEPV質(zhì)量濃度高于3.00 mg/mL時(shí)穿膜速率趨于穩(wěn)定。流式細(xì)胞術(shù)和超高效液相色譜-四極桿飛行時(shí)間質(zhì)譜結(jié)果表明Caco-2細(xì)胞不能吸收QEPV,由于QEPV是不具有空間結(jié)構(gòu)的小肽,可以初步推測出QEPV主要通過胞旁轉(zhuǎn)運(yùn)方式透過Caco-2細(xì)胞單層膜模型的結(jié)論。同時(shí),QEPV可以經(jīng)過腹腔注射和灌胃方式被小鼠吸收,但腸道吸收效率較差,腹腔吸收效率較好。

    生物活性肽;Caco-2細(xì)胞單層膜模型;小鼠模型;轉(zhuǎn)運(yùn)吸收

    Q516

    A

    1002-6630(2017)23-0224-07

    2016-09-07

    浙江輝肽生命健康科技有限公司支持項(xiàng)目

    李婉如(1993—),女,碩士研究生,研究方向?yàn)槿槠房茖W(xué)。E-mail:varo729@sjtu.edu.cn

    10.7506/spkx1002-6630-201723036

    LI Wanru, CHEN Jing, CHENG Zhicai, et al. Transepithelial transport of milk-derived peptide QEPV in vitro and in vivo[J].食品科學(xué), 2017, 38(23): 224-230.

    10.7506/spkx1002-6630-201723036. http://www.spkx.net.cn

    LI Wanru, CHEN Jing, CHENG Zhicai, et al. Transepithelial transport of milk-derived peptide QEPV in vitro and in vivo[J]. Food Science,2017, 38(23): 224-230. (in English with Chinese abstract) DOI:10.7506/spkx1002-6630-201723036. http://www.spkx.net.cn

    *通信作者:張少輝(1965—),男,研究員,博士,研究方向?yàn)槿槠房茖W(xué)。E-mail:shaohuizhang@sjtu.edu.cn

    猜你喜歡
    舍弗勒乳源單層
    二維四角TiC單層片上的析氫反應(yīng)研究
    分子催化(2022年1期)2022-11-02 07:10:16
    舍弗勒貿(mào)易(上海)有限公司
    東方紅
    寶藏(2020年2期)2020-10-15 02:22:42
    舍弗勒貿(mào)易(上海)有限公司
    舍弗勒貿(mào)易(上海)有限公司
    舍弗勒貿(mào)易(上海)有限公司
    基于PLC控制的立式單層包帶機(jī)的應(yīng)用
    電子制作(2019年15期)2019-08-27 01:12:04
    漁舟唱晚
    寶藏(2019年5期)2019-06-21 01:23:22
    侗族情
    寶藏(2019年2期)2019-03-20 05:20:46
    單層小波分解下圖像行列壓縮感知選擇算法
    美女免费视频网站| 两个人视频免费观看高清| 久久亚洲精品不卡| 色吧在线观看| 亚洲熟妇熟女久久| 露出奶头的视频| 深爱激情五月婷婷| 啪啪无遮挡十八禁网站| 最后的刺客免费高清国语| 久久久色成人| 成年免费大片在线观看| 国产69精品久久久久777片| 亚洲成人久久爱视频| 麻豆成人午夜福利视频| 女警被强在线播放| 国内精品久久久久久久电影| 99久久精品国产亚洲精品| 欧美3d第一页| 亚洲第一欧美日韩一区二区三区| 国产精品久久电影中文字幕| 精品久久久久久久久久久久久| 国内精品久久久久精免费| 成人精品一区二区免费| 在线十欧美十亚洲十日本专区| 亚洲成人免费电影在线观看| 久久久久久九九精品二区国产| 久久精品国产亚洲av香蕉五月| 亚洲熟妇熟女久久| 在线观看免费午夜福利视频| 在线国产一区二区在线| 波多野结衣高清无吗| 99在线人妻在线中文字幕| 国产精品嫩草影院av在线观看 | 九九久久精品国产亚洲av麻豆| 欧美一区二区亚洲| 在线看三级毛片| 日日摸夜夜添夜夜添小说| 精品一区二区三区视频在线观看免费| 亚洲国产欧洲综合997久久,| 1024手机看黄色片| 日韩大尺度精品在线看网址| 国产精品综合久久久久久久免费| 丰满人妻一区二区三区视频av | 天天添夜夜摸| 变态另类丝袜制服| 成人鲁丝片一二三区免费| 国产三级黄色录像| 国产一级毛片七仙女欲春2| 亚洲男人的天堂狠狠| 免费在线观看成人毛片| 亚洲国产精品成人综合色| 国产一区二区三区视频了| 国产精品野战在线观看| 两个人看的免费小视频| 精品国内亚洲2022精品成人| 老司机午夜十八禁免费视频| 色播亚洲综合网| 成年人黄色毛片网站| 一级黄片播放器| 亚洲精品乱码久久久v下载方式 | 国产免费av片在线观看野外av| 国产欧美日韩精品亚洲av| 国产黄色小视频在线观看| 一本久久中文字幕| av片东京热男人的天堂| svipshipincom国产片| 色综合婷婷激情| 欧美最新免费一区二区三区 | 欧美黑人欧美精品刺激| 可以在线观看的亚洲视频| 可以在线观看毛片的网站| 两个人的视频大全免费| 亚洲av电影在线进入| 51国产日韩欧美| 99久久精品一区二区三区| 人妻夜夜爽99麻豆av| 亚洲内射少妇av| 最近在线观看免费完整版| 国内精品久久久久精免费| 1000部很黄的大片| 中文字幕熟女人妻在线| 亚洲第一欧美日韩一区二区三区| 欧美区成人在线视频| 国产乱人伦免费视频| 91av网一区二区| 制服丝袜大香蕉在线| x7x7x7水蜜桃| 内射极品少妇av片p| 亚洲真实伦在线观看| 最近视频中文字幕2019在线8| 精品无人区乱码1区二区| 天堂av国产一区二区熟女人妻| 好男人电影高清在线观看| 亚洲国产欧美人成| 亚洲欧美精品综合久久99| 亚洲va日本ⅴa欧美va伊人久久| 欧美av亚洲av综合av国产av| 99久久无色码亚洲精品果冻| 国产高清三级在线| 人妻夜夜爽99麻豆av| 女生性感内裤真人,穿戴方法视频| 国产成人aa在线观看| 波多野结衣巨乳人妻| 婷婷精品国产亚洲av在线| 久久久精品欧美日韩精品| 97超级碰碰碰精品色视频在线观看| 18+在线观看网站| 人人妻,人人澡人人爽秒播| 国产精品精品国产色婷婷| 色视频www国产| 国产成+人综合+亚洲专区| 午夜福利欧美成人| 免费观看的影片在线观看| 精品国内亚洲2022精品成人| 国产真实伦视频高清在线观看 | 久久久国产精品麻豆| 日本黄色片子视频| av福利片在线观看| 日本精品一区二区三区蜜桃| 久久久久性生活片| 国产精品一区二区三区四区免费观看 | 亚洲av电影在线进入| 首页视频小说图片口味搜索| h日本视频在线播放| 国产伦精品一区二区三区视频9 | 一区二区三区激情视频| 久久久国产精品麻豆| 首页视频小说图片口味搜索| 成年版毛片免费区| 麻豆国产97在线/欧美| 亚洲人成伊人成综合网2020| 欧美不卡视频在线免费观看| 深夜精品福利| 99久久精品国产亚洲精品| 欧美精品啪啪一区二区三区| 十八禁网站免费在线| 三级毛片av免费| 亚洲一区二区三区不卡视频| 国产91精品成人一区二区三区| 国产精品嫩草影院av在线观看 | 夜夜夜夜夜久久久久| 天天一区二区日本电影三级| 亚洲av免费在线观看| 欧美日韩一级在线毛片| 久久久久国产精品人妻aⅴ院| 久久这里只有精品中国| 男人的好看免费观看在线视频| 一级毛片女人18水好多| 一级a爱片免费观看的视频| 久久亚洲真实| 国产伦精品一区二区三区四那| 午夜福利在线在线| 亚洲黑人精品在线| 黑人欧美特级aaaaaa片| 日本与韩国留学比较| 岛国在线免费视频观看| 国产成人a区在线观看| 大型黄色视频在线免费观看| 亚洲精品影视一区二区三区av| 国产在线精品亚洲第一网站| 欧美av亚洲av综合av国产av| 99在线视频只有这里精品首页| 国产伦在线观看视频一区| 婷婷六月久久综合丁香| 亚洲人成伊人成综合网2020| 亚洲 欧美 日韩 在线 免费| 少妇裸体淫交视频免费看高清| 高清在线国产一区| ponron亚洲| 乱人视频在线观看| 两个人看的免费小视频| 国产精品影院久久| 美女cb高潮喷水在线观看| 亚洲欧美日韩高清在线视频| 欧美在线黄色| 日韩有码中文字幕| 亚洲人成网站在线播放欧美日韩| 久久香蕉国产精品| 国内久久婷婷六月综合欲色啪| 亚洲中文字幕一区二区三区有码在线看| 丰满乱子伦码专区| av黄色大香蕉| 无遮挡黄片免费观看| 中亚洲国语对白在线视频| 国产精品电影一区二区三区| 国产真人三级小视频在线观看| 欧美成人a在线观看| 国内精品久久久久精免费| 村上凉子中文字幕在线| 久久久色成人| 欧美日韩精品网址| 变态另类丝袜制服| 日韩欧美国产在线观看| 国产精品综合久久久久久久免费| 国产精品久久视频播放| 蜜桃久久精品国产亚洲av| 亚洲av二区三区四区| 国内精品美女久久久久久| www日本黄色视频网| 免费无遮挡裸体视频| 成人一区二区视频在线观看| 成年女人毛片免费观看观看9| 精品日产1卡2卡| 麻豆国产av国片精品| 好男人在线观看高清免费视频| 国内精品久久久久久久电影| 欧美中文日本在线观看视频| 国产精品 欧美亚洲| 免费看光身美女| 精品久久久久久,| 舔av片在线| 女警被强在线播放| 精品久久久久久久人妻蜜臀av| 精品人妻偷拍中文字幕| 亚洲国产欧洲综合997久久,| 俺也久久电影网| 色综合站精品国产| tocl精华| 99热精品在线国产| 精品一区二区三区人妻视频| 少妇的逼好多水| 99精品久久久久人妻精品| 欧美绝顶高潮抽搐喷水| 亚洲国产欧美人成| 国产成人av激情在线播放| 日本与韩国留学比较| 日本一二三区视频观看| 又黄又爽又免费观看的视频| 久久精品综合一区二区三区| 精品久久久久久成人av| 国产爱豆传媒在线观看| 日本a在线网址| 日本撒尿小便嘘嘘汇集6| 亚洲成人久久爱视频| 人妻久久中文字幕网| 国产单亲对白刺激| 欧美成狂野欧美在线观看| 男女之事视频高清在线观看| www.色视频.com| 精品国产亚洲在线| 身体一侧抽搐| 三级国产精品欧美在线观看| 国产成人系列免费观看| 黄色视频,在线免费观看| 中文字幕精品亚洲无线码一区| 日韩欧美在线乱码| 嫩草影视91久久| 天天添夜夜摸| 女人被狂操c到高潮| 国产精品乱码一区二三区的特点| 亚洲美女黄片视频| 狠狠狠狠99中文字幕| 日韩欧美在线二视频| 一级黄色大片毛片| 黄片小视频在线播放| 欧美色视频一区免费| 窝窝影院91人妻| 在线观看av片永久免费下载| 一本久久中文字幕| 亚洲午夜理论影院| 一级a爱片免费观看的视频| 国产伦人伦偷精品视频| 三级毛片av免费| 熟女人妻精品中文字幕| 欧美色视频一区免费| 午夜精品在线福利| 亚洲成人久久爱视频| 午夜精品在线福利| 1024手机看黄色片| 国产成人aa在线观看| 很黄的视频免费| 麻豆一二三区av精品| 一个人看的www免费观看视频| 午夜a级毛片| 中亚洲国语对白在线视频| 天堂影院成人在线观看| 久久精品91蜜桃| 亚洲国产欧洲综合997久久,| 可以在线观看的亚洲视频| 欧美乱色亚洲激情| avwww免费| 性色avwww在线观看| 成人一区二区视频在线观看| 此物有八面人人有两片| 深爱激情五月婷婷| 法律面前人人平等表现在哪些方面| 国产精品亚洲一级av第二区| 天堂动漫精品| 国产精品嫩草影院av在线观看 | 国产伦在线观看视频一区| 久久久久亚洲av毛片大全| 99在线人妻在线中文字幕| 中文字幕精品亚洲无线码一区| 国产伦一二天堂av在线观看| 中文字幕人成人乱码亚洲影| 国产精品久久视频播放| 亚洲欧美日韩高清在线视频| 日韩欧美国产一区二区入口| 香蕉丝袜av| 日本在线视频免费播放| 国产极品精品免费视频能看的| 欧美一区二区国产精品久久精品| 美女高潮的动态| 欧美最新免费一区二区三区 | 国产三级在线视频| 国产精品久久久久久人妻精品电影| 99久久成人亚洲精品观看| 欧美不卡视频在线免费观看| 久久精品夜夜夜夜夜久久蜜豆| 午夜福利欧美成人| 国产高清有码在线观看视频| 日本一本二区三区精品| 女人高潮潮喷娇喘18禁视频| 欧美成人一区二区免费高清观看| a级一级毛片免费在线观看| 欧美av亚洲av综合av国产av| 桃红色精品国产亚洲av| netflix在线观看网站| 男人舔女人下体高潮全视频| 精品久久久久久久末码| 久99久视频精品免费| 首页视频小说图片口味搜索| 日本三级黄在线观看| 国内精品久久久久精免费| 国产精品乱码一区二三区的特点| 九九在线视频观看精品| 国产国拍精品亚洲av在线观看 | www国产在线视频色| 黄色成人免费大全| 国产成人福利小说| 亚洲精品456在线播放app | 国产中年淑女户外野战色| 免费看光身美女| 国产精品一区二区三区四区久久| xxxwww97欧美| 欧美最新免费一区二区三区 | 人人妻人人澡欧美一区二区| 亚洲精华国产精华精| 99久久精品一区二区三区| 美女免费视频网站| 久久久色成人| 在线观看免费视频日本深夜| 最新中文字幕久久久久| 日韩欧美在线二视频| 少妇丰满av| 欧美成人免费av一区二区三区| 亚洲美女黄片视频| 蜜桃亚洲精品一区二区三区| eeuss影院久久| 免费看日本二区| 国产野战对白在线观看| xxxwww97欧美| 精品人妻1区二区| 三级毛片av免费| 亚洲专区中文字幕在线| 亚洲成人久久爱视频| av在线蜜桃| 高清毛片免费观看视频网站| 中文亚洲av片在线观看爽| 一个人观看的视频www高清免费观看| 韩国av一区二区三区四区| 国产一区二区激情短视频| 99热精品在线国产| 琪琪午夜伦伦电影理论片6080| 久久伊人香网站| 每晚都被弄得嗷嗷叫到高潮| 九色成人免费人妻av| 国产美女午夜福利| 99热这里只有是精品50| 亚洲国产高清在线一区二区三| 一区福利在线观看| 国内毛片毛片毛片毛片毛片| 毛片女人毛片| 人妻久久中文字幕网| 国产探花极品一区二区| 无遮挡黄片免费观看| 女生性感内裤真人,穿戴方法视频| 一级黄片播放器| 欧美日韩精品网址| 琪琪午夜伦伦电影理论片6080| 内地一区二区视频在线| av在线蜜桃| 欧美zozozo另类| 国产伦精品一区二区三区四那| 亚洲片人在线观看| 午夜激情欧美在线| 欧美区成人在线视频| 超碰av人人做人人爽久久 | 精品一区二区三区视频在线观看免费| 午夜亚洲福利在线播放| 高潮久久久久久久久久久不卡| 少妇丰满av| x7x7x7水蜜桃| 亚洲精品一区av在线观看| 成年免费大片在线观看| 丁香欧美五月| svipshipincom国产片| 色综合亚洲欧美另类图片| 精品99又大又爽又粗少妇毛片 | 嫁个100分男人电影在线观看| 国产精品 欧美亚洲| 成人特级黄色片久久久久久久| 中文字幕人成人乱码亚洲影| 亚洲精品美女久久久久99蜜臀| 18禁在线播放成人免费| 麻豆国产av国片精品| 国产色爽女视频免费观看| 成人av一区二区三区在线看| 搡女人真爽免费视频火全软件 | 99riav亚洲国产免费| 国产熟女xx| 精品乱码久久久久久99久播| 99久久综合精品五月天人人| 亚洲 国产 在线| 亚洲五月婷婷丁香| 亚洲一区二区三区不卡视频| 一二三四社区在线视频社区8| 一卡2卡三卡四卡精品乱码亚洲| 好男人电影高清在线观看| 日韩欧美精品免费久久 | 午夜两性在线视频| 亚洲欧美一区二区三区黑人| 国产激情偷乱视频一区二区| 九九久久精品国产亚洲av麻豆| 国产精品亚洲av一区麻豆| 国产高潮美女av| 国产精华一区二区三区| 成人高潮视频无遮挡免费网站| 岛国视频午夜一区免费看| 美女 人体艺术 gogo| 久久香蕉精品热| 亚洲激情在线av| 成人鲁丝片一二三区免费| 久久精品国产综合久久久| 亚洲av成人不卡在线观看播放网| 日本精品一区二区三区蜜桃| 亚洲国产色片| 99精品在免费线老司机午夜| 久久久久久九九精品二区国产| 亚洲熟妇中文字幕五十中出| 国产97色在线日韩免费| 亚洲av二区三区四区| 看片在线看免费视频| 天堂动漫精品| 一区二区三区国产精品乱码| 日本a在线网址| 老司机在亚洲福利影院| 亚洲成av人片免费观看| 亚洲精品在线观看二区| 精品99又大又爽又粗少妇毛片 | 国产午夜精品久久久久久一区二区三区 | 好看av亚洲va欧美ⅴa在| 岛国在线免费视频观看| 亚洲成人免费电影在线观看| 51国产日韩欧美| 无遮挡黄片免费观看| 国产成人啪精品午夜网站| 精品乱码久久久久久99久播| 麻豆一二三区av精品| 观看美女的网站| 一个人看的www免费观看视频| 禁无遮挡网站| 久久久久亚洲av毛片大全| 欧美一级毛片孕妇| 黄色女人牲交| 可以在线观看毛片的网站| 欧美性感艳星| 在线观看66精品国产| 欧美色视频一区免费| 午夜免费成人在线视频| 精品午夜福利视频在线观看一区| 久久精品国产清高在天天线| 99精品在免费线老司机午夜| 性色av乱码一区二区三区2| 白带黄色成豆腐渣| 亚洲av免费高清在线观看| 波多野结衣高清无吗| 精品日产1卡2卡| 免费电影在线观看免费观看| 免费在线观看日本一区| 俄罗斯特黄特色一大片| 国产乱人伦免费视频| 国产亚洲av嫩草精品影院| 亚洲av成人不卡在线观看播放网| 99久久综合精品五月天人人| 18禁国产床啪视频网站| 麻豆一二三区av精品| 欧美在线黄色| 真实男女啪啪啪动态图| 嫩草影院精品99| 老熟妇乱子伦视频在线观看| 99在线视频只有这里精品首页| 国产三级在线视频| 尤物成人国产欧美一区二区三区| 国产亚洲欧美在线一区二区| 又黄又爽又免费观看的视频| 一本一本综合久久| 国产午夜精品久久久久久一区二区三区 | 搞女人的毛片| 午夜老司机福利剧场| 国产午夜福利久久久久久| 亚洲最大成人手机在线| 婷婷精品国产亚洲av在线| 91麻豆av在线| 波多野结衣高清作品| 国产亚洲精品一区二区www| 色精品久久人妻99蜜桃| 老熟妇仑乱视频hdxx| 中出人妻视频一区二区| 草草在线视频免费看| 99精品在免费线老司机午夜| 天美传媒精品一区二区| 动漫黄色视频在线观看| 欧美丝袜亚洲另类 | 麻豆久久精品国产亚洲av| 桃色一区二区三区在线观看| 99久久精品热视频| 小蜜桃在线观看免费完整版高清| 91久久精品国产一区二区成人 | 观看美女的网站| 久久香蕉精品热| 免费在线观看成人毛片| 国产精品久久久久久精品电影| 久久久精品大字幕| 免费大片18禁| 亚洲专区国产一区二区| 欧美日韩福利视频一区二区| 啦啦啦免费观看视频1| 亚洲在线观看片| 免费看美女性在线毛片视频| 麻豆成人av在线观看| 精品熟女少妇八av免费久了| 搡老岳熟女国产| 级片在线观看| 亚洲性夜色夜夜综合| 日本成人三级电影网站| 无人区码免费观看不卡| 黄色女人牲交| 中文字幕av在线有码专区| 日韩av在线大香蕉| 国产高潮美女av| 成人亚洲精品av一区二区| 天堂动漫精品| 老司机深夜福利视频在线观看| 国产亚洲av嫩草精品影院| 午夜福利18| 日韩欧美国产在线观看| 亚洲狠狠婷婷综合久久图片| 免费av不卡在线播放| 中文字幕精品亚洲无线码一区| 婷婷六月久久综合丁香| 精品久久久久久久人妻蜜臀av| 欧美在线一区亚洲| 亚洲专区中文字幕在线| 欧美国产日韩亚洲一区| 精品久久久久久久毛片微露脸| 久久国产精品影院| 18禁黄网站禁片午夜丰满| 久久99热这里只有精品18| 国产精品野战在线观看| 久久天躁狠狠躁夜夜2o2o| 99国产极品粉嫩在线观看| 久久人妻av系列| 听说在线观看完整版免费高清| 在线观看66精品国产| 99久久精品国产亚洲精品| 99热只有精品国产| 少妇熟女aⅴ在线视频| 欧美日韩一级在线毛片| 久久99热这里只有精品18| 欧美日本视频| 十八禁人妻一区二区| 少妇人妻一区二区三区视频| 啦啦啦韩国在线观看视频| 欧美成人a在线观看| 国产av在哪里看| 精品一区二区三区av网在线观看| 成人午夜高清在线视频| 欧美+亚洲+日韩+国产| 中文在线观看免费www的网站| 国产精品 欧美亚洲| 精品久久久久久久毛片微露脸| 亚洲成人免费电影在线观看| 国产精品久久久久久久久免 | 日本免费a在线| 每晚都被弄得嗷嗷叫到高潮| 国产久久久一区二区三区| 99国产综合亚洲精品| 三级国产精品欧美在线观看| 亚洲不卡免费看| or卡值多少钱| 亚洲中文字幕一区二区三区有码在线看| 午夜福利成人在线免费观看| 一个人免费在线观看的高清视频| 精品国产亚洲在线| 亚洲avbb在线观看| 久久久精品欧美日韩精品| 国产极品精品免费视频能看的| 成人亚洲精品av一区二区| 国产一区二区三区在线臀色熟女| 999久久久精品免费观看国产| 亚洲avbb在线观看| 乱人视频在线观看| 人妻夜夜爽99麻豆av| 国产精品永久免费网站| 亚洲av一区综合| av在线蜜桃| 高清在线国产一区| 性色av乱码一区二区三区2| 日韩人妻高清精品专区| 国产高清videossex| 狠狠狠狠99中文字幕| 神马国产精品三级电影在线观看| 久久久精品大字幕| 亚洲精品影视一区二区三区av|