李 白,高廣春,方 琪,李 軍,*
(1.浙江省嘉興市農(nóng)業(yè)科學研究院(所),浙江 嘉興 314016; 2.嘉興學院 醫(yī)學院,浙江 嘉興 314001)
四種蔬菜食用器官提取物對植物組培污染細菌的抑制作用
李 白1,高廣春2,方 琪2,李 軍1,*
(1.浙江省嘉興市農(nóng)業(yè)科學研究院(所),浙江 嘉興 314016; 2.嘉興學院 醫(yī)學院,浙江 嘉興 314001)
以生姜、洋蔥、大蒜和苦瓜的食用器官為提取材料,分別用熱水浸提、水超聲提取、乙醇超聲提取和揮發(fā)油提取的方法獲得植物粗提物,探討這些提取物對組培生產(chǎn)中污染細菌的抑制作用。抑菌試驗結果表明,4種植物粗提物對分離的組培污染細菌均有一定的抑制效果,單種植物提取物不能抑制試驗中所有細菌,不同提取方法獲得的粗提物抑菌效果也有差別。熱水浸提、水超聲提取和乙醇超聲提取方法中,乙醇超聲提取物抑菌效果較好。大蒜和生姜揮發(fā)油對假單胞菌屬(B2)及腸桿菌屬(B11)菌株有顯著抑菌效果,而其他提取方法無顯著效果。最小抑菌濃度(MIC)結果表明,大蒜乙醇超聲提取物MIC值較其他提取物低,生姜和大蒜揮發(fā)油效果較好,其對應的鮮質(zhì)量也較高。這一結果可為植物組培污染菌的防治提供參考。
植物提取物;組織培養(yǎng);細菌;最小抑菌濃度
植物組織培養(yǎng)的污染問題是影響組培生產(chǎn)的最大障礙之一,它直接影響生產(chǎn)成本和珍貴外植體材料的保全。植物組培污染微生物主要為細菌和真菌,其中細菌占50%以上,主要為芽孢桿菌屬和假單胞桿菌屬[1]。為控制細菌污染,除在組織培養(yǎng)操作過程中控制人為及環(huán)境因素外,在培養(yǎng)基中添加抗生素等抑菌劑也是常用的手段。然而,抗生素的藥物殘留及環(huán)境污染問題,尤其是在食用材料組織培養(yǎng)中的添加,一直是極具爭議的問題。
植物源抑菌劑易降解,靶生物不易產(chǎn)生抗性,對人畜等非靶標生物毒性低,符合現(xiàn)代農(nóng)業(yè)發(fā)展要求,在替代抗生素及減少抗生素應用方面具有很大應用價值,近年來成為國內(nèi)外研究的熱點[2-6]。目前,植物源抑菌劑在植物上的應用主要側重于對植物病原真菌的防治,對植物組培污染防治方面的研究較少。崔剛等[7]在國內(nèi)較早采用植物提取液作為抑菌劑,開展開放組培的研究,建立了葡萄莖段的開放組培體系,獲得的組培苗根系較傳統(tǒng)方式發(fā)達。張薪薪[8]比較了5種中草藥提取物對植物組培污染菌的抑制作用,發(fā)現(xiàn)苦參提取物對細菌的抑制作用最強。陳瑞丹等[9]以植物源混合粗提液作為抑菌劑,初步建立了梅花莖段的開放式啟動培養(yǎng)體系。在組培過程中,植物源抑菌劑毒副作用小,抗菌的同時可以確保安全,在控制植物組培污染方面具有較大應用價值[10]。
為研究植物源抑菌劑對植物組培污染細菌的抑制作用,本研究以生姜、洋蔥、大蒜及苦瓜4種蔬菜的食用器官為材料,采用不同的提取方法獲得植物提取物,研究不同植物及不同提取方法獲得的提取物對組培生產(chǎn)中污染細菌的抑制效果,篩選有效的植物源抑菌劑。
1.1 試驗材料
植物組培污染細菌采集自嘉興中瑞生物科技有限公司植物組培間,由本實驗室分離鑒定后,-80 ℃保存,供試細菌菌株見表1。大蒜、苦瓜、生姜、洋蔥于超市采購。
表1植物組培污染細菌
Table1Pollution bacteria in plant tissue culture
編號No.細菌菌屬Bacteriagenera菌株顏色ColorofstrainsB1類芽孢桿菌屬Paenibacillus黃綠色Yellow-greenB2假單胞菌屬Pseudomonas黃綠色Yellow-greenB3不動桿菌屬Acinetobacter黃綠色Yellow-greenB4假單胞菌屬Pseudomonas黃色YellowB5芽孢桿菌屬Bacillus橙色OrangeB6芽孢桿菌屬Bacillus黃綠色Yellow-greenB7寡養(yǎng)單胞菌屬Stenotrophomonas黃綠色Yellow-greenB8芽孢桿菌屬Bacillus黃色YellowB9芽孢桿菌屬Bacillus黃色YellowB10埃希氏菌屬Escherichia黃綠色YellowB11腸桿菌屬Enterobacter黃綠色Yellow-GreenB12假單胞菌屬Pseudomonas黃色Yellow
1.2試驗方法
1.2.1 提取物制備
水超聲提取:取新鮮大蒜鱗莖、苦瓜果實、生姜根莖、洋蔥鱗莖,分別切碎后加適量純水,用閃式提取器處理(80 V,2 min);40 KHz 100 W超聲處理30 min,處理液3 000g離心10 min,沉淀加100 mL純水重復超聲處理30 min,合并上清液;80 ℃濃縮至稠浸膏,稱量,4 ℃保存。
乙醇超聲提?。禾崛》椒ㄍ曁幚恚崛∪軇?0%乙醇。
熱水浸提:取新鮮大蒜鱗莖、苦瓜果實、生姜根莖、洋蔥鱗莖,分別切碎后加適量純水,用閃式提取器處理(80 V,2 min);沸水浴回流提取2 h,處理液3 000g離心10 min,取上清液;80 ℃濃縮至稠浸膏,稱量,4 ℃保存。
揮發(fā)油提?。喝⌒迈r大蒜鱗莖、苦瓜果實、生姜根莖、洋蔥鱗莖,分別切碎后加適量純水,用閃式提取器處理(80 V,2 min);轉入500 mL圓底燒瓶中,利用揮發(fā)油提取裝置,提取收集揮發(fā)油,計量,4 ℃保存。
水超聲提取、乙醇超聲提取及熱水浸提物用純水溶解配置成10%(m/V)抑菌劑,揮發(fā)油用0.5% tween-20配置成1%(V/V)抑菌劑。抑菌劑均用0.22 μm濾膜過濾除菌。提取物種類見表2。
表2提取物種類編號
Table2No. of plant extracts
編號No.植物材料Plantmaterial提取方法Extractionmethod編號No.植物材料Plantmaterial提取方法ExtractionmethodGa1大蒜Garlic水超聲提取UltrasonicwaveextractionwithwaterGi1生姜Ginger水超聲提取UltrasonicwaveextractionwithwaterGa2大蒜Garlic熱水浸提HotwaterextractionGi2生姜Ginger熱水浸提HotwaterextractionGa3大蒜Garlic乙醇超聲提取UltrasonicwaveextractionwithethanolGi3生姜Ginger乙醇超聲提取UltrasonicwaveextractionwithethanolGa4大蒜Garlic揮發(fā)油提取VolatileoilextractionGi4生姜Ginger揮發(fā)油提取VolatileoilextractionOn1洋蔥Onion水超聲提取UltrasonicwaveextractionwithwaterGo1苦瓜Bittergourd水超聲提取UltrasonicwaveextractionwithwaterOn2洋蔥Onion熱水浸提HotwaterextractionGo2苦瓜Bittergourd熱水浸提HotwaterextractionOn3洋蔥Onion乙醇超聲提取UltrasonicwaveextractionwithethanolGo3苦瓜Bittergourd乙醇超聲提取UltrasonicwaveextractionwithethanolOn4洋蔥Onion揮發(fā)油提取VolatileoilextractionGo4苦瓜Bittergourd揮發(fā)油提取Volatileoilextraction
1.2.2 抑菌活性測定
牛津杯法測定抑菌活性:牛津杯規(guī)格Φ7.8 mm×6.0 mm×10.0 mm(外徑×內(nèi)徑×高),121 ℃高壓滅菌,烘干冷卻備用。將組培污染細菌(表1)分別涂布在固體LB培養(yǎng)基表面,每個平皿含有200 μL 106cfu·mL-1測試細菌。將牛津杯放入各個培養(yǎng)基表面,取抑菌劑溶液(表2)200 μL加入牛津杯,30 ℃培養(yǎng)48 h。每組3個重復,測定抑菌圈直徑大小,取平均值。
液體倍比稀釋法測定最低抑菌濃度(minimum inhibition concentration, MIC):將抑菌劑用LB液體培養(yǎng)基分別稀釋成2×、4×、8×、16×、32×、64×濃度,終體積為2 mL,用2 mL LB液體培養(yǎng)基作陽性對照,2 mL 2×稀釋濃度抑菌劑作陰性對照。取對數(shù)生長期污染細菌懸液40 μL加入倍比稀釋培養(yǎng)基及陽性對照培養(yǎng)基,30 ℃、120 r·min-1培養(yǎng)24 h。每組設3個重復,以完全沒有菌生長的最低提取物濃度為最低抑菌濃度(MIC)。
2.1 植物提取物制備
提取物制備結果(表3)表明,生姜、洋蔥、大蒜和苦瓜4種植物中,大蒜粗提浸出物最多,洋蔥提取物次之,生姜提取物最少,大蒜提取物質(zhì)量達到生姜提取物的10倍。乙醇超聲提取方法最好,提取效果好于水超聲提取,浸出物質(zhì)量最大,200 g大蒜樣品通過乙醇超聲提取可獲得55.20 g提取物。揮發(fā)油提取中,大蒜和生姜均獲得少量植物精油,本試驗未從洋蔥和苦瓜中獲得植物精油,其揮發(fā)物溶解于水相中。
表3植物粗提物的提取效果
Table3Extraction effect of crude extracts from plants
植物Plants水超聲提取Ultrasonicwaveextractionwithwater提取物質(zhì)量Extractweight/g1mL10%抑菌劑含鮮質(zhì)量Freshweightin1mL10%bacteriostaticagent/g乙醇超聲提取Ultrasonicwaveextractionwithethanol提取物質(zhì)量Extractweight/g1mL10%抑菌劑含鮮質(zhì)量Freshweightin1mL10%bacteriostaticagent/g熱水浸提Hotwaterextraction提取物質(zhì)量Extractweight/g1mL10%抑菌劑含鮮質(zhì)量Freshweightin1mL10%bacteriostaticagent/g揮發(fā)油提取Volatileoilextraction揮發(fā)物體積Volatilevolume/mL1mL1%抑菌劑含鮮質(zhì)量Freshweightin1mL1%bacteriostaticagent/g大蒜Garlic37.420.5355.200.3643.370.461.258.00生姜Ginger3.715.395.483.653.865.180.8511.76洋蔥Onion12.271.6317.711.1315.381.3038.002.63苦瓜Bittergourd5.833.435.293.785.143.8921.004.76
注:熱水浸提、水超聲提取、乙醇超聲提取各樣品鮮質(zhì)量均為200 g,揮發(fā)油提取各樣品鮮質(zhì)量均為1 000 g
Note: Fresh weight of all the samples extracted by hot water extraction, ultrasonic wave extraction with water or ethanol were 200 g, and fresh weight of all the samples extracted by volatile oil were 1 000 g
2.2 提取物抑菌活性
提取物抑菌活性測定時,水超聲提取、乙醇超聲提取及熱水浸提物配制成10%(m/V)濃度,揮發(fā)油配制成1%(V/V)濃度;由于大蒜提取物最多,具有抑菌活性的抑菌劑含鮮質(zhì)量也最低(表3)。4種植物粗提物抑菌活性測定結果(表4)表明,大蒜乙醇超聲提取物、生姜乙醇超聲提取物、洋蔥乙醇超聲、洋蔥熱水浸提物、苦瓜水超聲提取物、苦瓜乙醇超聲提取物對4株芽孢桿菌屬菌株具有較強抑制效果;生姜熱水浸提物、洋蔥乙醇超聲提取物對2株假單胞菌屬菌株具有較強抑制效果;洋蔥提取物、苦瓜超聲提取物、生姜揮發(fā)油、大蒜揮發(fā)油對2株腸桿菌屬菌株具有較強抑菌效果。B1、B2、B3、B7菌株對4種植物提取物敏感性均較低。4種植物中,洋蔥提取物能有效抑制5種細菌生長,包括3種芽孢桿菌屬菌株、1種假假單胞菌、1種腸桿菌。生姜揮發(fā)油、大蒜揮發(fā)油對假單胞菌屬(B2)及腸桿菌屬(B11)細菌有顯著抑菌效果,而其他粗提物的抑菌效果不顯著。圖1為部分植物提取物的抑菌效果。
2.3最低抑菌濃度測定
根據(jù)提取物抑菌活性結果,選取4種植物乙醇超聲提取物及生姜揮發(fā)油、大蒜揮發(fā)油,測定抑制效果較好的細菌菌株的MIC。結果(表5)表明,大蒜和生姜揮發(fā)油的MIC值最低,在稀釋倍數(shù)分別為1 600倍[浸出物0.0625%(V/V),鮮質(zhì)量含量0.5 g·mL-1]和800倍[浸出物0.125%(V/V),鮮質(zhì)量含量1.47 g·mL-1]時,對腸桿菌屬B5仍具有抑菌效果,較低稀釋倍數(shù)下對其他試驗菌株也有一定抑制效果。若以鮮質(zhì)量為參考標準,則大蒜粗提物MIC值較低,稀釋倍數(shù)為40倍(浸出物0.025 g·mL-1,鮮質(zhì)量含量0.12 g·mL-1)和20倍(浸出物0.05 g·mL-1, 鮮質(zhì)量含量0.23 g·mL-1)時,分別對B8、B6和B9具有抑制作用。與揮發(fā)油MIC值相比,生姜、大蒜、洋蔥乙醇超聲提取物的MIC值較高,原因可能是揮發(fā)油提取物樣品的濃縮倍數(shù)高,且揮發(fā)油中含有的化合物抑菌作用較強。比較MIC與抑菌活性試驗結果可知,除洋蔥外,其他抑菌劑MIC與抑菌活性試驗結果較一致,而洋蔥乙醇超聲提取物在抑菌活性試驗中具有較強的抑菌效果,但在MIC試驗中,抑菌效果達不到預期,這可能與培養(yǎng)基的物理形態(tài)改變有關,尚需進一步研究。圖2為Go3提取物對B1菌株最低抑菌濃度的測定。
表4植物提取物的抑菌活性
Table4Antibacterial activity of plant extracts
菌株Bacterialstrains提取物抑菌活性AntibacterialactivityofplantextractsGa1Ga2Ga3Ga4Gi1Gi2Gi3Gi4On1On2On3On4Go1Go2Go3Go4B1-----+---------+B2-------+--------B3----++----+--++-B4-----++--+-------B5--++++++---++++++-----B6-+++---++--+++++++-++---B7----+--++-------B8--++---+++++++--++-B9+--++---+--++-+-++-B10--+-----++++++++++++-++B11---++---++--------B12+---------+++--+--
“-”,抑菌圈直徑<9 mm,不敏感;“+”,抑菌圈直徑9~10 mm,輕度敏感;“++”,抑菌圈直徑10~15 mm,中度敏感;“+++”,抑菌圈直徑15~20 mm,高度敏感;“++++”,抑菌圈直徑>20 mm, 極敏感。
“-”, Diameter of inhibition zone is less than 9 mm, insensitivity; “+”, Diameter of inhibition zone is 9-10 mm, slight sensitive; “++”, Diameter of inhibition zone is 10-15 mm, moderately sensitive; “+++”, Diameter of inhibition zone is 15-20 mm, highly sensitive; “++++”, Diameter of inhibition zone is more than 20 mm, extremely sensitive.
B6、B11及B3為分離到的植物組培污染細菌,詳見表1;On2、Gi4及Go1為植物提取物,詳見表2B6, B11 and B3 were bacteria isolated from plant tissue culture, as shown in Table 1; On2, Gi4 and Go1 were plant extracts, as shown in Table 2圖1 部分植物提取物的抑菌效果Fig.1 Bacteriostatic effect of partial plant extracts
表5提取物對部分菌株的最低抑菌濃度
Table5Minimum inhibitory concentration of plant extracts against to partial bacterial strains g·mL-1
菌株Bacterialstrains植物提取物最低抑菌濃度MinimuminhibitoryconcentrationofplantextractsGa3Ga4Gi3Gi4On3Go3B1—————0.025(0.97)B5—0.000625(0.50)—0.00125(1.47)——B60.05(0.23)0.005(4.00)0.05(>2.59)0.005(>5.88)0.05(>0.65)0.025(0.97)B80.025(0.12)—0.025(1.30)——0.0125(0.49)B90.05(0.23)0.005(4.00)—0.005(5.88)0.05(>0.65)0.025(0.97)B11—0.0025(2.00)—0.005(5.88)——B12—0.005(4.00)——0.05(>0.65)—
Ga4、Gi4最低抑菌濃度為體積比;“—”為未進行試驗;“>”為MIC超過本試驗濃度上限;“( )”內(nèi)數(shù)值為最低抑菌濃度對應的樣品鮮質(zhì)量濃度。
MIC of Ga4 and Gi4 were displayed by volume ratio; “—” indicated experiment was not carried out; “>” indicated MIC was above test concentration limit; Data in “()” was the sample fresh weight concentration corresponded to the MIC.
圖2 Go3提取物對B1菌株最低抑菌濃度測定Fig.2 Determination of minimum inhibitory concentration of Go3 extract against to B1 strain
3.1植物源抑菌劑的優(yōu)勢
植物組織培養(yǎng)中細菌污染主要通過接觸污染,如外植體帶菌、人員操作不當或器械消毒不嚴格等??刂浦参锝M培細菌污染除了定期嚴格的人員、環(huán)境消毒、操作流程的規(guī)范以及選擇無菌的外植體等途徑外,在培養(yǎng)基中添加一定濃度的抗生素,如青霉素、鏈霉素、四環(huán)素及硫酸慶大霉素等也能獲得一定的抑菌效果[11-12]。然而,抗生素殘留、環(huán)境污染、部分抗生素價格昂貴、傷害組培苗等問題一直制約著植物組織培養(yǎng)中抗生素的添加。
與抗生素相比,植物源抑菌劑具有低毒、低殘留、對組培苗傷害小及與環(huán)境相容等優(yōu)勢。王趙玉等[13]研究表明,適當濃度的大蒜素與代森錳鋅均能降低組培試驗污染率,且不會對植物產(chǎn)生不利影響。曾云英等[14]發(fā)現(xiàn)植物源與化學合成的抑菌劑在矮牽牛開放組培中均有良好作用,化學合成抑菌劑較植物源抑菌劑效果強,但對植物傷害較大。據(jù)報道,國內(nèi)外有1 000余種植物被檢測出有殺菌活性,國內(nèi)的研究熱點主要集中在連翹、板藍根、苦參及魚腥草等中草藥植物。本研究以生姜、洋蔥、大蒜和苦瓜為提取材料,4種植物材料相對于中草藥具有低成本及材料易獲取等優(yōu)勢。目前,植物源抑菌劑的應用主要集中在對植物病原真菌的防治,有關植物組培污染細菌防治方面的研究較少,本研究為植物源抑菌劑在植物組培污染細菌防治方面的應用提供了參考。
3.2 四種植物提取物的抑菌活性
據(jù)報道,生姜、洋蔥、大蒜和苦瓜4種植物對多種植物病原菌及細菌具有較好的抑制效果。國淑梅等[15]研究發(fā)現(xiàn),大蒜及生姜提取液對平菇生產(chǎn)中常見的3種芽孢桿菌屬細菌均有抑制作用。楊敏等[16]測定了大蒜、洋蔥和蔥莖揮發(fā)物及提取液對26種主要植物病原真菌和卵菌的抑制活性,發(fā)現(xiàn)大蒜、洋蔥和蔥莖的揮發(fā)物和浸提液具有廣譜抗植物病原真菌和卵菌的活性。文良娟等[17]研究表明,苦瓜70%乙醇提取物對大腸埃希菌、金黃色葡萄球菌及枯草芽孢桿菌的抑制作用明顯。
本研究抑菌試驗結果表明,大蒜乙醇超聲粗提物、大蒜揮發(fā)油和生姜揮發(fā)油對污染菌株具有較好的抑制效果,生姜、洋蔥、苦瓜的乙醇超聲提取物較水超聲提取、熱水浸提法的綜合抑菌效果強。洋蔥粗提物對12個菌株中的9個菌株有抑制效果,抗菌譜較生姜、大蒜、苦瓜提取物廣。不同菌株對不同抑菌劑的敏感程度不同,復配使用可以提高效果[18-19]。本研究結果表明,單種植物抑菌劑對不同菌株抑制作用存在差異,不同植物抑菌劑的抗菌譜存在互補作用,因此,在植物組培中采用單一抑菌劑可能達不到最佳效果,如果將其復配成混合抑菌劑,可以提升抗菌譜范圍,增強抑菌效果。
3.3 提取方法對抑菌活性的影響
不同提取方法對提取物抑菌活性具有顯著影響。穆可云[20]研究了大蒜水提取物、乙醇提取物及酸性水溶液提取物對蠟樣芽孢桿菌的抑制效果,發(fā)現(xiàn)3種提取物都有抑制效果,并且抑菌效果依次增強。溫度穩(wěn)定性試驗結果表明,高溫處理會降低洋蔥粗提物的抑菌能力[21-22]。本研究表明,生姜揮發(fā)油對假單胞菌屬(B2)有抑制效果,而生姜水超聲提取、熱水浸提、乙醇超聲提取粗提物對假單胞菌屬(B2)均無抑制效果,這說明提取方式影響植物抑菌活性物質(zhì)的溶解性或穩(wěn)定性。本試驗中,乙醇超聲提取較熱水浸提、水超聲提取方法更能溶解出抑菌物質(zhì),揮發(fā)油與溶劑提取物具有不同的抑菌譜。聯(lián)合不同方法綜合提取抑菌物質(zhì),可以更大潛力地發(fā)掘植物抑菌物,如溶劑提取同時聯(lián)合揮發(fā)物收集裝置,可獲得更多抑菌活性物質(zhì),其抗菌譜也更廣。
與前人研究相比,本研究中抑菌劑的MIC值偏高[23-24],可能是提取物濃縮過程破壞了部分抑菌物質(zhì),尤其是苦瓜粗提物濃縮后再溶解不完全,沉淀明顯,也可能是本研究的菌株是從被污染組培植物中分離的,這些菌株可能對部分植物源抑菌物不敏感。后續(xù)研究可進一步明確植物源抑菌劑的作用機理,開發(fā)聯(lián)合提取方法,采用復配抑菌劑,將擴大植物抑菌劑的抗菌譜,提升抑菌效果。
[1] 方麗, 王連平, 茹水江, 等. 植物組培過程中污染微生物種類及其季節(jié)性的變化[J]. 浙江農(nóng)業(yè)學報, 2013, 25(2): 284-287.
FANG L, WANG L P, RU S J, et al. Varieties and seasonal characters of pollution microflora in plant tissue culture[J].ActaAgriculturaeZhejiangensis, 2013, 25(2): 284-287. (in Chinese with English abstract)
[2] 錢昆, 周濤. 植物源天然防腐劑應用和機理研究的最新進展[J]. 中國食品添加劑, 2006 (5): 100-103.
QIAN K, ZHOU T. Advanced research on the application and mechanisms of natural food preservatives[J].ChinaFoodAdditives, 2006 (5): 100-103. (in Chinese with English abstract)
[3] SIDANA J, ROHILLA R K, ROY N, et al. Antibacterial sideroxylonals and loxophlebal A fromEucalyptusloxophlebafoliage[J].Fitoterapia, 2010, 81(7): 878-883.
[4] LUO W, ZHAO M M, YANG B, et al. Antioxidant and antiproliferative capacities of phenolics purified fromPhyllanthusemblicaL. fruit[J].FoodChemistry, 2011, 126(1): 277-282.
[5] 李少華. 細辛對番茄早疫病菌的抑制作用及其活性成分的分離[J]. 中國農(nóng)業(yè)大學學報, 2011, 16(3): 67-71.
LI S H. Antifungal activities and active compounds of the extracts fromAsarumhimalaicumagainstAlternariasolani[J].JournalofChinaAgriculturalUniversity, 2011, 16(3): 67-71. (in Chinese with English abstract)
[6] 魯曉晴, 王莎莎, 邱真真, 等. 一種新型復方中草藥消毒劑的性能研究[J]. 中國消毒學雜志, 2013, 30(10): 907-909.
LU X Q, WANG S S, QIU Z Z, et al. Research on the performance of a compound Chinese herbs disinfectant[J].ChineseJournalofDisinfection, 2013, 30(10): 907-909. (in Chinese with English abstract)
[7] 崔剛, 單文修, 秦旭, 等. 植物開放式組織培養(yǎng)研究初探[J]. 山東農(nóng)業(yè)大學學報(自然科學版), 2004, 35(4): 529-533.
CUI G, SHAN W X, QIN X, et al. The preliminary study on plant open-tissue-culture[J].JournalofShandongAgriculturalUniversity(NaturalScience), 2004, 35(4): 529-533. (in Chinese with English abstract)
[8] 張薪薪. 抑菌劑篩選及對組培污染防治的初步研究[D]. 大連: 遼寧師范大學, 2006.
ZHANG X X. Screening of bacteriostatic agents and preliminary study on the prevention and control of tissue culture pollution [D]. Dalian: Liaoning Normal University, 2006. (in Chinese with English abstract)
[9] 陳瑞丹, 孫文薇. 梅花品種‘淡豐后’莖段開放式啟動培養(yǎng)的初步研究[J]. 北京林業(yè)大學學報, 2007, 29(增刊1): 30-34.
CHEN W D, SUN W W. Preliminary studies on the poen initiation culture ofPrunusmume‘Dan Fenghou’[J].JournalofBeijingForestryUniversity, 2007, 29(Supp.1): 30-34. (in Chinese with English abstract)
[10] 戴聰杰, 林培慶. 白花敗醬草乙醇提取液的抑菌作用及其穩(wěn)定性研究[J]. 食品與機械, 2011, 27(6): 157-159.
DAI C J, LIN P Q. Study on antimicrobial actions and stability ofPatriniavillosacharantia extractive[J].Food&Machinery, 2011, 27(6): 157-159. (in Chinese with English abstract)
[11] 陳云風, 吳玉婷. 抗生素在植物組織培養(yǎng)中抑制污染應用研究[J]. 宜春學院學報, 2014, 36(3): 102-104.
CHEN Y F, WU Y T. Studying antibiotics in prevention of contaminiation during plant tissue culture[J].JournalofYichunCollege, 2014, 36(3): 102-104. (in Chinese with English abstract)
[12] 王志成, 劉明稀, 易自力. 殺菌劑防治植物組織培養(yǎng)污染的初步研究[J]. 長沙電力學院學報(自然科學版), 2004, 19(1): 82-84.
WANG Z C, LIU M X, YI Z L. Preliminary study on controlling contamination of plant tissue culture by bacteriocide[J].JournalofChangshaUniversityofElectricPower(NaturalScience), 2004, 19(1): 82-84. (in Chinese with English abstract)
[13] 王趙玉, 張健雄, 戶新宇, 等. 抑菌劑在開放式植物組織培養(yǎng)中的應用研究[J]. 北方園藝, 2012 (18): 125-127.
WANG Z Y, ZAHGN J X, HU X Y, et al. Application study on antibacterial agents in open plant tissue culture[J].NorthernHorticulture, 2012 (18): 125-127. (in Chinese with English abstract)
[14] 曾云英, 萬強, 馬存琛. 抑菌劑及接種條件在矮牽牛開放式快速繁殖中的效果[J]. 江蘇農(nóng)業(yè)科學, 2016, 44(5): 79-80.
ZENG Y Y, WAN Q, MA C S. Effects of bacteriostatic agents and inoculation conditions on open rapid propagation ofPetuniahybrid[J].JiangsuAgriculturalSciences, 2016, 44(5): 79-80. (in Chinese with English abstract)
[15] 國淑梅, 牛貞福, 黃賢舉, 等. 大蒜、生姜提取液對平菇上3種芽孢桿菌的抑制作用及其對平菇生長的影響[J]. 中國植保導刊, 2015, 35(2): 17-20.
GUO S M, NIU Z F, HUANG X J, et al. Inhibition of garlic and ginger extracts against 3Bacillusbacteria of oyster mushroom and effect on mushroom growth[J].ChinaPlantProtection, 2015, 35(2): 17-20. (in Chinese with English abstract)
[16] 楊敏, 梅馨月, 廖靜靜, 等. 三種蔥屬作物揮發(fā)物和提取液對植物病原真菌和卵菌的抑菌活性[J]. 植物保護, 2013, 39(3): 36-44.
YANG M, MEI X Y, LIAO J J, et al. Antimicrobial activity of volatiles and extracts of 3Alliumcrops to plant pathogenic fungi and oomycetes[J].PlantProtection, 2013, 39(3): 36-44. (in Chinese with English abstract)
[17] 文良娟, 張元春, 李英軍, 等. 苦瓜提取物的抑菌活性研究[J]. 食品工業(yè), 2009 (4):33-35.
WEN L J, ZHANG Y C, LI Y J, et al. Study on the antimicrobial activities ofMomordicaCharantiaL.[J].TheFoodIndustry, 2009 (4): 33-35. (in Chinese with English abstract)
[18] 孔慶芳, 程科萍, 王長嫻, 等. 四種復方抑菌劑抑菌效果及毒性初步探討[J]. 中華醫(yī)院感染學雜志, 2016, 26(23): 5385-5386.
KONG Q F, CHENG K P, WANG C X, et al. Preliminary study of antibacterial effects and toxicity of four kinds of compound antibacterial agents[J].ChineseJournalofNosocomiology, 2016, 26(23): 5385-5386. (in Chinese with English abstract)
[19] 潘曉倩, 張順亮, 喬曉玲, 等. 復配抑菌劑對兩種腐敗菌抑制效果評價[J]. 中國食物與營養(yǎng), 2015, 21(9): 48-52.
PAN X Q, ZHANG S L, QIAO X L, et al. Evaluation on bacteriostatic effect of compound bacteriostatic agent on two spoilage bacteria[J].FoodandNutritioninChina, 2015, 21(9): 48-52. (in Chinese with English abstract)
[20] 穆可云. 大蒜提取物對蠟樣芽孢桿菌的抑制研究[D]. 廣州: 華南理工大學, 2013.
MU K Y. Studies on the inhibitory effect ofAlliumsativumextracts againstBacilluscereus[D]. Guangzhou: South China University of Technology, 2013. (in Chinese with English abstract)
[21] 賀菊萍, 隋玉杰, 陳學紅, 等. 洋蔥醇提物抑菌效果及其熱穩(wěn)定性研究[J]. 食品工業(yè)科技, 2010 (12): 153-155.
HE J P, SUI Y J, CHEN X H, et al. Study on bacteriostasis and thermal stability ofAlliumcepaL. ethanol extract[J].ScienceandTechnologyofFoodIndustry, 2010 (12): 153-155. (in Chinese with English abstract)
[22] 郭繼平. 洋蔥原汁抑菌活性的研究[J]. 中國調(diào)味品, 2012, 37(12): 21-23.
GUO J P. Study on antibacterial activity of raw onion juice[J].ChinaCondiment, 2012, 37(12): 21-23. (in Chinese with English abstract)
[23] 張平平, 劉金福, 王昌祿, 等. 苦瓜提取物的抑菌活性研究[J]. 天然產(chǎn)物研究與開發(fā), 2008 (20): 721-724.
ZHANG P P, LIU J F, WANG C L, et al. Study on the antimicrobial activities of the extracts fromMomordicacharantiaL.[J].NaturalProductResearchandDevelopment, 2008 (20): 721-724. (in Chinese with English abstract)
[24] 林標聲, 張婷婷, 沈紹新. 蒜、姜、辣椒乙醇提取物抑菌活性的研究[J]. 龍巖學院學報, 2009, 27(5): 85-88.
LIN B S, ZHANG T T, SHEN S X. Research on antimicrobial activities of ethanol extracts from ginger, garlic and hot pepper[J].JournalofLongyanUniversity, 2009, 27(5): 85-88. (in Chinese with English abstract)
(責任編輯侯春曉)
Inhibitionoffourvegetableedibleorganextractsonbacterialcontaminationinplanttissueculture
LI Bai1, GAO Guangchun2, FANG Qi2, LI Jun1,*
(1.JiaxingAcademyofAgriculturalSciences,Jiaxing314016,China; 2.SchoolofMedicineScience,JiaxingUniversity,Jiaxing314001,China)
Plant extracts were obtained from four vegetable edible organs including ginger rhizome, onion bulb, garlic bulb and bitter gourd fruit. The extraction methods were hot water extraction, ultrasonic wave extraction with water, ultrasonic wave extraction with ethanol, volatile oil extraction. Inhibition of these extracts on bacterial contamination in the production of tissue culture were discussed. The results showed that the crude extracts from the four plants had inhibition on the bacteria while single plant extracts could not inhibit all the bacteria. Crude extracts obtained by different extraction methods had different antimicrobial effects. Ultrasonic wave extraction with ethanol had the best antibacterial effect among the three solvent extraction methods. The essential oil from garlic and ginger could significantly inhibitPseudomonas(B2) andEnterobacter(B11), and other extracts had no significant inhibition. Minimum inhibitory concentration results showed that the MIC value of crude extract from garlic using ultrasonic wave extraction with ethanol was lower than those of other extracts, ginger and garlic essential oil had low MIC value and higher fresh weight. This research could provide references for the prevention and control of bacterial contamination in plant tissue culture.
plant extracts; plant tissue culture; bacteria; minimum inhibitory concentration
李白, 高廣春, 方琪, 等. 四種蔬菜食用器官提取物對植物組培污染細菌的抑制作用[J]. 浙江農(nóng)業(yè)學報, 2017, 29(11): 1854-1861.
10.3969/j.issn.1004-1524.2017.11.11
2017-05-19
嘉興市科技計劃項目(2016BY26005)
李白(1986—),男,浙江溫州人,碩士,農(nóng)藝師,主要從事植物生物技術研究。E-mail: libaia@yeah.net
*通信作者,李軍,E-mail: lijunjx1@163.com
S188
A
1004-1524(2017)11-1854-08