• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    從能量和信息理論視角理解單取代烷烴的異構(gòu)化

    2018-04-10 11:24:22鐘愛國李嶸嶸洪琴張杰陳丹
    物理化學(xué)學(xué)報 2018年3期
    關(guān)鍵詞:蘇文物理化學(xué)學(xué)報

    鐘愛國,李嶸嶸,洪琴,張杰,陳丹

    1 lntroduction

    It is widely accepted both by the experimental measurements1and high-level ab initio computations2that branchedalkanehydrocarbonsaregenerally thermodynamically more stable than its straight-chain counterpart. Nevertheless, this phenomenon is somewhat counterintuitive at first glance. In chemistry, steric effects are a consequence of the space required to accommodate the atoms and groups within a molecule, and are often thought to be predominated by repulsive forces arising from overlapping electron densities. In this sense, more branched alkanes normally engender more steric destabilization energy than the normal ones. However, we have just touched upon one side of the“coin”. Simultaneously, there exist some attracting interactions between alky groups, stemming from electron correlation. Thus, inclusion of attractive interactions such as London dispersion forces is indispensable to understand electronic and geometrical structures. Finally, these two forces coexist that makes such a phenomenon a hard nut to crack.

    To provide a unified explanation for this abnormal phenomenon, a surge of interest has been aroused. Schleyer et al. pointed out that intramolecular 1,3-alkyl-alkyl interactions make positive contributions to the molecular stability of hydrocarbons3,4. Nonetheless, this“protobranching” or“prototypical branching” model was severely criticized by Gronert. He5argued that it cannot be rationalized by a through-space model of dispersive London forces. Pitzer and Catalano6have also provided an explanation for the relative stability of branched alkanes based on dispersion interactions.But this argument does not hold because the Hartree-Fock (HF)approach intrinsically has no electron correlation but is able to predict the correct stability trend3. In this regard, the overall stabilization effect does not originate from a simple physical picture.

    In the literature, there are some other orbital-based intramolecular stabilization explanations. Ma and Inagaki7proposed an orbital phase rational and found that σ cross conjugation between two C―H bonds and one C―C bond in an antiperiplanar conformation in branched alkanes results in greater orbital stabilization than straight-chain σ orbital conjugation8. Kemnitz et al. employed natural bond orbital(NBO) analysis9and valence bond theory to argue that10germinal carbon-carbon σ to σ* second-order donor-acceptor orbital interactions account for the branching stability.However, this hyperconjugation model has an inherent drawback since this perturbative type of energy analysis is referenced to a hypothetical localized state that does not analyze/partition the total energy of each molecule.

    The objective of this paper is two-fold. First, we aim to find out the physical differences of mono-substituted linear and branched alkanes alkane derivatives (see Fig.1 for details). It is intuitive that the isomerization from a linear to a branched alkane involves differences in steric energy. Like many concepts in chemistry, actually there is no exact definition of steric effect. Liu has proposed that the Weiz?cker kinetic energy can be employed as a novel definition of steric effect in DFT11,12. This density-based quantification of the steric effect differs from its conventional wavefunction-based counterpart.The latter definition is resulted only from orthogonality and exchange antisymmetry of the wavefunction (the Fermi hole)8.This density-based steric definition is quite in accordance with the early definition by Weisskopf who ascribed the steric repulsion to “kinetic energy pressure”13. In this work, we employ two energy decomposition schemes in Kohn-Sham density functional theory (KS-DFT) to understand the total physical differences between branched and linear alkanes.Isolation of a specific intramolecular interaction is beyond the scope of this paper.

    Fig.1 Schematic representations of mono-substituted alkane derivatives under study.

    Second, other two density-based key quantities from information theory, Shannon entropy and Fisher information are taken into consideration at molecular level to gain insights into the transformation of mono-substituted alkane derivatives.The questions we will address are (i) whether the branched effect is always valid and (ii) what effect(s) dominantly contribute(s) to the validity of this branched effect.

    This paper is mainly laid out as follows. In section 2, we outline the total energy decomposition schemes, followed by computational details. After the results and discussion in section 3, a brief summary is given in section 4.

    2 Theory

    2.1 An outline of the two energy partition schemes

    In conventional KS-DFT, the total energy of a system, Ε[ρ],can be cast in the form of three independent contributions Ts[ρ],Εe[ρ], and Εxc[ρ] (Eq.(1))14,

    where the first term Ts[ρ] signifies the non-interacting one-electron kinetic energy, the second term Εe[ρ] is the electrostatic potential, as shown in Eq.(2), a combination of the nuclear to electron attraction stabilization, Vne[ρ], the classical inter-electronCoulombicrepulsion,J[ρ],andthe nuclear-nuclear repulsion, Vnn, and the last term Εxc[ρ] is a sum of the exchange and correlation energy components.

    Unlike the definition in Eq.(1), Liu12proposed a novel energy partition scheme (Eq.(3)), to unambiguously quantify the omnipresent steric repulsion, as defined by the Weiz?cker kinetic energy, Tw[ρ]

    with

    and

    where Εsand Εqare the steric effect and fermionic quantum effects, respectively. The electrostatic potential Εeis exactly the same as that defined in Eq.(2), ρ(r) is the total electron density distribution, and ?ρ(r) is the first-order derivative. It is worth mentioning that the Weiz?cker kinetic functional is the exact kinetic functional for one-electron atoms and two-electron Hartree-Fock atoms. It has become an essential ingredient in orbital-free DFT15.

    This novel density-based definition of steric effect is totally different from its wavefunction-based counterpart, resulted from the Pauli Exclusion Principle that solely accounts for the electrons possessing the same spin. In this work, these two energy partition schemes will be utilized to analyze the isomerization energy between the linear and branched hydrocarbon derivatives, and its components to find out which component is the predominant term that governs the transformation of an alkane. The new scheme has recently been applied to a couple of systems16-25, among which are bond rotation barriers, cis-effect, anomeric effect, SN2 reaction barriers, water clusters, beryllium bonding interactions, and so on. A key point from these different investigations is that the electrostatic potential is the leading term while other contributions from the steric repulsion and quantum exchange-correlation interactions play minor but nontrivial roles. It is worthwhile to mention that energy partitioning scheme with Weiz?cker functional (in our case Εs[ρ]) as the dominant term was shown elsewhere as well26.

    2.2 Shannon entropy and Fisher information

    In information theory, Shannon entropy SSis defined as the following27:

    where SS(r) is the Shannon entropy density and ρ(r) is the total electron density of a molecular system, satisfying the following condition:

    with Ν as the total number of electrons in the system. In addition, Fisher information, IF, is defined as follows28:

    where iF(r) is the Fisher information density and ?ρ(r) is the density gradient. To calculate the atomic values of Shannon entropy in a molecule, Eq.(11) can be recast as follows:

    where

    with ΩAthe atomic basin of atom A. Bader′s zero-flux partition condition is employed to partition atoms in molecules29. The same is true for Fisher information,

    with

    2.3 Computational details

    All mono-substituted hydrocarbons CnH2n+1―R (n = 3, 4, 5,6; R = OH, OCH3, NH2, NO2, F, Cl, CN, CHO) (see Fig.1 for details) were fully optimized at the M06-2X/6-311+G(d,p)28level of theory. No symmetry constraint was imposed to allow for full variational degrees of freedom. All local minima on the hyper-potential surface were further verified by vibrational frequency calculations (e.g., no imaginary frequency). DFT total energy evaluations and steric energy decomposition calculations were carried out by employing the M06-2X functional with Dunning′s augmented correlation-consistent valence polarized triple-ζ basis set aug-cc-pVTZ (denoted as aVTZ) in NWChem 6.6,30a freely accessible computational chemistry package. Furthermore, a relatively larger basis set aug-cc-pVQZ (aVQZ), was taken into consideration to guarantee the rationalization of our results. M06-2X is superior to B3LYP31,32in many aspects, especially in the description of ubiquitousdispersionforces,irrespectiveofits“over-parameterization”. The tight self-consistent field (SCF)convergence criteria and ultrafine integration grids were employed throughout to rule out numerical problems. Suffice to note that the M06-2X functional gives isomerization energies very close to those predicted by the “gold standard” CCSD(T)in quantum chemistry and experiment.2All MP2 and CCSD(T)computations were executed with the frozen core (FC)technique to reduce the computational cost without compromising the accuracy too much. One more point to mention is that zero-point corrections were not considered in our computations. The linear alkane derivatives are taken as reference so that the isomerization energy is negative in all cases. Unless otherwise stated, all energy differences and its components are in unit of kJ·mol-1.

    Additionally, we employed a multifunctional wavefunction analyzer, Multiwfn33,34to calculate the Shannon entropy and Fisher information at molecular level by utilizing the M06-2X/aVTZ molecular wavefunction as an input file in molden format. To eliminate the numeric instabilities and guarantee the rationalization of our results, we adopted 150 points in radial and 1454 points on spherical surface of Becke′s numerical quadrature.

    3 Results and discussion

    3.1 Validation

    Table 1 exhibits the isomerization energy of a serials of mono-substitutedalkanesC3H7-Rwithboth electron-withdrawing and electron-donating groups R = OH,OCH3, NH2, NO2, F, Cl, CN, and CHO. Here we have chosen two typical density functionals M06-2X and B3LYP. It is well-established that B3LYP inherently fails to depict the dispersion forces which have a far-reaching effect on the molecular stability. In this sense, for comparison we have adopted some B3LYP variants with a portion of empirical dispersion, such as Grimme′s density-independent, atomic pair wise corrections, D3BJ (B3LYP_D3BJ),35the exchange-hole dipole moment (B3LYP_XDM)36theory proposed by Becke andJohnson,andthedispersion-core-potential(B3LYP_DCP)37model, which contains both local and semilocal terms. All the structures both reactants and products were optimized by using each method with Pople′s standard basis set 6-311+G(d,p) while all post-HF optimizations were carried out at the MP2/6-311+G(d,p) level of theory. The aVTZ basis set was employed to obtain more accurate energy differences. An even larger basis set aVQZ was employed to confirm the rationalization of the aVTZ results. The CCSD(T)/aVTZ results were taken as a reference to evaluate the overall performances of HF, MP2 and DFT B3LYP and M06-2X. Two statistical parameters, mean signed error (MSE)and mean absolute error (MAE) were adopted.

    A quick inspection of Table 1 can give rise to some points in order: (i) all the methods under consideration can give a qualitative prediction of the isomerization energies (negative insign), indicating that electron correlation is not the only factor that is responsible for the relative stability of mono-substituted alkanes since HF intrinsically has no electron correlation; (ii)compared with CCSD(T), MP2 and B3LYP_DCP overestimate the isomerization energies while the rest approaches adopted[M06-2X, B3LYP, B3LYP_D3BJ, B3LYP_XDM, and HF]underestimate the data; (iii) dispersion-corrected B3LYP variants improve the energy differences to some extent, with mean absolute errors (MAEs) decreasing from 3.4 kJ·mol-1of B3LYP to 2.2 kJ·mol-1of B3LYP_D3BJ, 2.0 kJ·mol-1of B3LYP_XDM, and 2.3 kJ·mol-1of B3LYP_DCP, respectively;however, they are still far from satisfactory when compared with CCSD(T) and entail more substantial improvement; (iv)compared with the CCSD(T) data, M06-2X has the best performance if combined with the aVTZ basis set. In a nutshell,we have screened a rational and cost-efficient combination of method and basis set M06-2X/aVTZ and it will be employed for further energy decomposition analysis.

    Table 1 Total energy difference (in kJ·mol-1) of the isomerization reaction of C3 serials a.

    3.2 Total energy decompositions

    Table 2 shows the total energy difference (?Εtot) νia the conventional and newly proposed energy partition schemes and its components: kinetic energy (?Ts), steric hindrance (?Εs),exchange (?Εx), correlation (?Εc), electrostatic potential (?Εe)and quantum effect (?Εq), which are obtained at the M06-2X/aVTZ level of theory, with the geometries completely optimized at the M06-2X/6-311+G(d,p) level of theory.

    From Table 2, one can readily see that the total energy difference is negative in sign, indicating that the branched alkane derivatives are energetically favorable. Among all the energy components, steric potential (?Εs) and exchangecorrelation potential (exceptions do exist in C3 serials) possess negative values, meaning that they make positive contributions to the total energy difference, while they are largely compensated by the quantum effect (?Εq) and kinetic energy (?Ts), respectively. An intriguing phenomenon has been discovered that for the C3 serials the exchangepotential (?Εx) is larger than the correlation (?Εc) in absolute values and the results are reverse for these two energy components in the rest serials. It is worthwhile to point out that only the total effect of exchange and correlation potential has a physical meaning. Meanwhile, we find that there exists a strong linear relationship between the quantum effect and steric hindrance, with the correlation coefficient R2= 0.99 (Fig.2a),serving as a confirmation of no systematic errors of our computational results. Similar trends have been observed in previous studies21-23.

    Table 2 Total energy difference (?Etot) and its components with kinetic energy (?Ts), steric hindrance (?Es), exchange (?Ex), correlation (?Ec),electrostatic potential (?Ee) and quantum effect (?Eq), evaluated at the M06-2X/aVTZ level a.

    continued Table 2

    continued Table 2

    continued Table 2

    continued Table 2

    Furthermore, we aim to find out if there exists a single energy component that dictates the isomerization of alkane derivatives. To make that happen, in Fig.2(b, c), we have plotted the electrostatic potential (?Εe) and the kinetic energy(?Ts) νs the total energy difference (?Εtot), respectively. The corresponding correlation coefficient R2is only 0.65 and 0.71 while those for the remaining energy components are less than 0.5 and ignored. In a previous work for alkanes without substituents, Εecan be linearly related to Εtot, but that's a special case21.

    Fig.2 Correlations between (a) steric potential and quantum effect (y = -0.98 x + 7.63, R2 = 0.99); (b) total energy difference and electrostatic potential (y = 0.40x - 8.61, R2 = 0.64), and (c) total energy difference and kinetic energy (y = -0.68 x - 0.84, R2 = 0.71), the y axis spans from (b) to (c).

    Up to now, we have revealed that no such a single energy component that governs the isomerization of alkane derivatives, which is reminiscent of the resultant force in nature for such a phenomenon. Furthermore, we want to look into the relative importance of energy components contributing the total energy, thus rendering the so-called “branching effect”. To this end, we have employed a two-variable strategy.

    In Fig.3, we plotted the total energy difference νs the two components: the electrostatic potential (?Εe) and steric hindrance (?Εs), with R2= 0.98. Moreover, we can find out the relative significance of the two energy components νia the coefficients. It is clearly shown that the electrostatic potential plays a predominant role while the steric effect has some minor effect in the transformation of mono-substituted alkane derivatives, with the coefficients 0.33 and 0.04, respectively. In other words, though steric hindrance is engendered due to the branching of alkanes, this portion is overwhelmingly compensated by the electrostatic potential.

    3.3 Shannon entropy and Fisher information

    Having touched upon one side of the coin, the total energy and its components, next we will switch our gear from an information-theoreticviewpointbyanalyzingthe M06-2X/aVTZ wavefunction. Here in this work, suffice to note that our Shannon entropy and Fisher information data are based on the electron probability density, rather than the shape function. From the information theory point of view, Shannon entropy measures the spatial delocalization of the electronic density, and Fisher information measures its sharpness or concentration. They sound to be vastly different measurements but apparently in electronic systems, these two density-based quantities are not absolutely independent. They are strongly correlated to each other, as theoretically proven earlier38and numerically shown39,40. We have plotted the Shannon entropy difference and Fisher information difference in Fig.4 with the correlation coefficient R2= 0.74. Once again, we have verified that Shannon entropy and Fisher information are interrelated as a windfall of this work. The linear correlations of these two quantities can be used an evidence of weak interactions as previously shown in beryllium bonds24, though it is not observed here. We have also plotted the Shannon entropy difference νs the electrostatic potential energy difference ΔΕeor Fisher information difference νs total energy difference ΔΕtotwith the correlation coefficient R2< 0.20. That the total energy difference ΔΕtotdoes not strongly correlate any of these information-theoretic quantities suggests that the branched alkanes effect is of the complex nature.

    Fig.3 A binary fit of total energy difference (?Etot) with electrostatic potential (?Ee) and steric hindrance (?Es).

    Fig.4 Linear correlation between Shannon entropy difference and Fisher information difference.

    4 Concluding remarks

    Isomerization of mono-substituted alkanes from energetic and information-theoretic perspectives was investigated within the KS-DFT framework. To this end, the KS-DFT total energy and a newly proposed energy partitioning scheme were employed as well as Shannon entropy and Fisher information from information theory. We have found that no such a single energy component dictates the transformation of the mono-substituted alkane derivatives. Molecular stability is governed by a resultant force. From the binary fit, we have unraveled that the electrostatic potential and the steric repulsion are responsible for the relative stability of linear and branched alkanes. Moreover, from the regression coefficient, we have shown that the electrostatic potential has played a predominant role while the steric effect has a trivial role. Shannon entropy and Fisher information at molecular level are linearly correlated, which is in line with our previous work.

    (1)Olah, G. A.; Molnur, A. Hydrocarbon Chemistry; Wiley: New York,1995.

    (2)Miao, J.; Hua, S.; Li, S. Chem. Phys. Lett. 2012, 541, 7.doi: 10.1016/j.cplett.2012.05.067

    (3)Wodrich, M. D.; Wannere, C. S.; Mo, Y.; Jarowski, P. D.; Houk, K.N.; Schleyer, P. V. R. Chem. Εur. J. 2007, 13 (27), 7731.doi: 10.1002/chem.200700602

    (4)Allen, T. L. J. Chem. Phys. 1959, 31, 1039. doi: 10.1063/1.1730501

    (5)Gronert, S. Chem. Εur. J. 2009, 15 (21), 5372.doi: 10.1002/chem.200800282

    (6)Pitzer, K. S.; Catalano, E. J. Am. Chem. Soc. 1956, 78, 4844.doi: 10.1021/ja01600a006

    (7)Ma, J.; Inagaki, S. J. Am. Chem. Soc. 2001, 123, 1193.doi: 10.1021/ja003067v

    (9)Badenhoop, J. K.; Weinhold, F. J. Chem. Phys. 1997, 107 (14), 5406.doi: 10.1063/1.475149

    (10)Kemnitz, C. R.; Mackey, J. L.; Loewen, M. J.; Hargrove, J.L.; Lewis, J. L.; Hawkins, W. E.; Nielsen, A. F. Chem. Εur. J.2010, 16 (23), 6942. doi: 10.1002/chem.200902550

    (11)Weizs?cker, C. F. V. Z. Phys. 1935, 96, 431.doi: 10.1007/BF01337700

    (12)Liu, S. B. J. Chem. Phys. 2007, 126, 244103.doi: 10.1063/1.2741244

    (14)Parr, R. G.; Yang, W. Density Functional Theory of Atoms and Molecules; Oxford University Press: Oxford, 1989.

    (15)Chakraborty, D.; Kar, S.; Chattaraj, P. K. Phys. Chem. Chem.Phys. 2015, 17, 31516. doi: 10.1039/C5CP00995B

    (16)Liu, S. B.; Govind, N. J. Phys. Chem. A 2008, 112 (29), 6690.doi: 10.1021/jp800376a

    (17)Liu, S. B.; Govind, N; Pedersen, L.G. J. Chem. Phys. 2008,129 (9), 094104. doi: 10.1063/1.2976767

    (18)U?ur, ?.; Vleeschouwer, F. D.; Tüzün, N.; Aviyente, V.;Geerlings, P.; Liu, S. B.; Ayers, P. W.; DeProft, F. J. Phys.Chem. A 2009, 113 (30), 8704. doi: 10.1021/jp903371b

    (19)Torrent-Sucarrat, M.; Liu, S. B.; DeProft, F. J. Phys. Chem. A 2009, 113 (15), 3698. doi: 10.1021/jp8096583

    (20)Liu, S. B.; Hu, H.; Pedersen, L. G. J. Phys. Chem. A 2010,114, 5913. doi:10.1021/jp101329f

    (21)Tsirelson, V. G.; Stash, A. I.; Liu, S. B. J. Chem. Phys. 2010,133 (11), 114110. doi: 10.1063/1.3492377

    (22)Ess, D. H.; Liu, S. B.; DeProft, F. J. Phys. Chem. A 2010, 114,12952. doi: 10.1021/jp108577g

    (23)Zhao, D. B.; Rong, C. Y.; Jenkins, S.; Kirk, R. S.; Yin, D. L.;Liu, S. B. Acta Phys. -Chim. Sin. 2013, 29 (1), 43. [趙東波,榮春英, 蘇曼, 蘇文, 尹篤林, 劉述斌. 物理化學(xué)學(xué)報,2013, 29 (1), 43.] doi: 10.3866/PKU.WHXB201211121

    (24)Wang, Y. J.; Zhao, D. B.; Rong, C. Y.; Liu, S. B. Acta Phys. -Chim.Sin. 2013, 29 (10), 2173. [王友娟, 趙東波, 榮春英, 劉述斌. 物理化學(xué)學(xué)報, 2013, 29 (10), 2173.]doi: 10.3866/PKU.WHXB201308272

    (25)Zhong, A. G.; Chen, D.; Li, R. R. Chem. Phys. Lett. 2015,633, 265. doi: 10.1016/j.cplett.2015.06.007

    (26)Deb, B. M; Chattaraj, P. K. Phys. Reν. A 1989, 39, 1696.doi: 10.1103/PhysRevA.39.1696

    (27)Shannon, C. E. Bell Syst. Tech. J. 1948, 27, 379.doi: 10.1002/bltj.1948.27.issue-3

    (28)Fisher, R. A. Proc. Camb. Philos. Soc. 1925, 22, 700.doi: 10.1017/S0305004100009580

    (29)Bader, R. F. W. Atoms in Molecules: A Quantum Theory;Oxford University Press: Oxford, 1990.

    (30)Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215.doi: 10.1007/s00214-007-0310-x

    (31)Valiev, M.; Bylaska, E. J.; Govind, N.; Kowalski, K.;Straatsma,T. P.; van Dam, H. J. J.; Wang, D.; Nieplocha, J.;Apra, E.; Windus, T. L.; et al. Comput. Phys. Commun. 2010,181, 1477. doi: 10.1016/j.cpc.2010.04.018

    (32)Becke, A. D. J. Chem. Phys. 1993, 98, 1372.doi: 10.1063/1.464304

    (33)Lee, C.; Yang, W.; Parr, R. G. Phys. Reν. B 1988, 37, 785.doi: 10.1103/PhysRevB.37.785

    (34)Lu, T.; Chen, F. J. Comput. Chem. 2012, 33 (5), 580.doi: 10.1002/jcc.22885

    (35)Lu, T. Multiwfn, Version 3.3; A Multifunctional Wavefunction Analyzer, 2016, http://multiwfn.codeplex.com (accessed Sep 18, 2016).

    (36)Grimme, S.; Ehrlich, S.; Goerigk, L. J. Comput. Chem. 2011,32, 1456. doi: 10.1002/jcc.21759

    (37)Becke, A. D.; Johnson, E. R. J. Chem. Phys. 2005, 122,154104. doi: 10.1021/acs.chemrev.5b00533

    (38)He?elmann, A. J. Chem. Phys. 2009, 130 (8), 084104.doi: 10.1063/1.3077939

    (39)Liu, S. B. J. Chem. Phys. 2007, 126, 191107.doi: 10.1063/1.2741244

    (40)Rong, C. Y.; Lu, T.; Liu, S. B. J. Chem. Phys. 2014, 140 (2),024109. doi: 10.1063/1.4860969

    猜你喜歡
    蘇文物理化學(xué)學(xué)報
    遲到了
    物理化學(xué)課程教學(xué)改革探索
    云南化工(2021年9期)2021-12-21 07:44:16
    物理化學(xué)課堂教學(xué)改進的探索
    云南化工(2021年6期)2021-12-21 07:31:42
    致敬學(xué)報40年
    Chemical Concepts from Density Functional Theory
    學(xué)報簡介
    學(xué)報簡介
    《深空探測學(xué)報》
    Origin of the cis-Effect:a Density Functional Theory Study of Doubly Substituted Ethylenes
    背負(fù)陽光
    交换朋友夫妻互换小说| 日韩欧美一区视频在线观看 | av福利片在线观看| 精品久久久久久久久亚洲| 七月丁香在线播放| 国产综合精华液| 在线 av 中文字幕| 免费少妇av软件| 免费av不卡在线播放| 国产极品天堂在线| 日韩三级伦理在线观看| 日韩亚洲欧美综合| 亚洲国产精品国产精品| 亚洲成人av在线免费| 久久精品国产自在天天线| 欧美性感艳星| a级毛色黄片| 少妇的逼水好多| 国产成人精品无人区| 一本—道久久a久久精品蜜桃钙片| 91久久精品国产一区二区成人| 久久99热6这里只有精品| 成人午夜精彩视频在线观看| 亚洲精品视频女| 又粗又硬又长又爽又黄的视频| 国产在视频线精品| 国产免费又黄又爽又色| 天天操日日干夜夜撸| 成人国产av品久久久| 久久久久精品性色| a级一级毛片免费在线观看| 成人毛片60女人毛片免费| 国产成人91sexporn| 91精品伊人久久大香线蕉| 欧美丝袜亚洲另类| 国产精品.久久久| 日本午夜av视频| 噜噜噜噜噜久久久久久91| 狂野欧美激情性bbbbbb| 亚洲无线观看免费| av免费观看日本| 青青草视频在线视频观看| 青春草国产在线视频| 国产成人午夜福利电影在线观看| 少妇人妻一区二区三区视频| 久久 成人 亚洲| 亚洲国产成人一精品久久久| 久久女婷五月综合色啪小说| 成人国产av品久久久| 自线自在国产av| 黄色一级大片看看| 七月丁香在线播放| 在现免费观看毛片| a级一级毛片免费在线观看| 欧美+日韩+精品| 久久久久久久久久久久大奶| 亚洲自偷自拍三级| 精品一区二区三区视频在线| 午夜视频国产福利| 亚洲天堂av无毛| 校园人妻丝袜中文字幕| 乱人伦中国视频| 五月开心婷婷网| 久久精品国产自在天天线| 卡戴珊不雅视频在线播放| 亚洲美女搞黄在线观看| 欧美区成人在线视频| 七月丁香在线播放| 国产精品熟女久久久久浪| 国产色爽女视频免费观看| 午夜福利在线观看免费完整高清在| 我的女老师完整版在线观看| 人妻少妇偷人精品九色| 麻豆成人av视频| 国产真实伦视频高清在线观看| 一级毛片久久久久久久久女| 黑人巨大精品欧美一区二区蜜桃 | 国产伦理片在线播放av一区| 亚洲熟女精品中文字幕| 国模一区二区三区四区视频| 大又大粗又爽又黄少妇毛片口| 国产免费一级a男人的天堂| 国产亚洲欧美精品永久| 韩国高清视频一区二区三区| 精品人妻熟女毛片av久久网站| 久久99蜜桃精品久久| 黄色怎么调成土黄色| 亚洲国产欧美日韩在线播放 | 高清欧美精品videossex| 在线观看一区二区三区激情| 男人舔奶头视频| 免费大片18禁| 婷婷色av中文字幕| 久久鲁丝午夜福利片| 欧美bdsm另类| 国产精品嫩草影院av在线观看| 成年女人在线观看亚洲视频| 91aial.com中文字幕在线观看| 久久青草综合色| 久久久久久久国产电影| 老司机影院毛片| 日日撸夜夜添| 一本久久精品| 少妇被粗大的猛进出69影院 | 久久久欧美国产精品| 男人舔奶头视频| 国产综合精华液| 在线亚洲精品国产二区图片欧美 | 99久久中文字幕三级久久日本| 一二三四中文在线观看免费高清| 国产成人精品一,二区| 高清午夜精品一区二区三区| 成人18禁高潮啪啪吃奶动态图 | 国产91av在线免费观看| 国产有黄有色有爽视频| 黑人猛操日本美女一级片| 日韩一区二区三区影片| 熟女av电影| av播播在线观看一区| xxx大片免费视频| 麻豆成人午夜福利视频| 午夜免费男女啪啪视频观看| 视频区图区小说| 亚洲国产最新在线播放| 国产免费又黄又爽又色| 国产永久视频网站| av在线播放精品| 免费看av在线观看网站| 久久久国产精品麻豆| 国产欧美日韩综合在线一区二区 | 免费看不卡的av| 亚洲一区二区三区欧美精品| 91精品伊人久久大香线蕉| 少妇精品久久久久久久| 国产精品福利在线免费观看| 婷婷色综合www| 人妻 亚洲 视频| a级毛片在线看网站| 在线观看国产h片| 亚洲av综合色区一区| 精品酒店卫生间| www.色视频.com| 国内精品宾馆在线| 尾随美女入室| 最近最新中文字幕免费大全7| 乱系列少妇在线播放| 欧美激情国产日韩精品一区| 国产精品人妻久久久影院| 亚洲欧美日韩另类电影网站| 久久鲁丝午夜福利片| 丰满人妻一区二区三区视频av| av女优亚洲男人天堂| 亚洲精华国产精华液的使用体验| 十分钟在线观看高清视频www | 精品国产露脸久久av麻豆| 欧美精品国产亚洲| 男人狂女人下面高潮的视频| 国产免费一级a男人的天堂| 99九九线精品视频在线观看视频| 国产一区有黄有色的免费视频| a级毛片在线看网站| 久久久久久久精品精品| 国产日韩欧美在线精品| 亚洲激情五月婷婷啪啪| 午夜福利影视在线免费观看| 国产精品99久久久久久久久| 国产亚洲91精品色在线| 欧美 日韩 精品 国产| 国产有黄有色有爽视频| 国产日韩一区二区三区精品不卡 | av专区在线播放| 国产真实伦视频高清在线观看| 亚洲国产最新在线播放| 在线精品无人区一区二区三| 国产成人免费观看mmmm| 在线观看www视频免费| 女性生殖器流出的白浆| 亚洲精品国产成人久久av| 三上悠亚av全集在线观看 | 妹子高潮喷水视频| 大话2 男鬼变身卡| 美女福利国产在线| 日韩在线高清观看一区二区三区| 少妇人妻 视频| 欧美日韩av久久| 99国产精品免费福利视频| 丰满人妻一区二区三区视频av| 国产中年淑女户外野战色| 亚洲在久久综合| 亚洲自偷自拍三级| 大片免费播放器 马上看| 精品久久久噜噜| 国产亚洲5aaaaa淫片| 精品少妇内射三级| 97超碰精品成人国产| 一区在线观看完整版| 久久国内精品自在自线图片| 女人久久www免费人成看片| 一级毛片 在线播放| 国产精品熟女久久久久浪| 欧美人与善性xxx| 日韩大片免费观看网站| 在线亚洲精品国产二区图片欧美 | 国产亚洲午夜精品一区二区久久| 特大巨黑吊av在线直播| 这个男人来自地球电影免费观看 | 极品少妇高潮喷水抽搐| 欧美日韩在线观看h| 春色校园在线视频观看| 国产精品一区二区三区四区免费观看| 久久影院123| 亚洲精品一区蜜桃| 日本av免费视频播放| 99久久精品国产国产毛片| 高清视频免费观看一区二区| 日本猛色少妇xxxxx猛交久久| 国产精品蜜桃在线观看| av网站免费在线观看视频| 免费观看无遮挡的男女| 中文资源天堂在线| 国产精品人妻久久久影院| 亚洲国产欧美日韩在线播放 | 久热久热在线精品观看| 日韩av在线免费看完整版不卡| 国产免费一区二区三区四区乱码| 一个人看视频在线观看www免费| 大码成人一级视频| av在线app专区| 亚洲精品,欧美精品| 欧美 亚洲 国产 日韩一| 国产成人午夜福利电影在线观看| 大片电影免费在线观看免费| videos熟女内射| 午夜av观看不卡| 亚洲av免费高清在线观看| 日韩,欧美,国产一区二区三区| 在线观看三级黄色| 十八禁高潮呻吟视频 | av黄色大香蕉| 黄片无遮挡物在线观看| 国产精品一区www在线观看| 国产精品一区二区在线观看99| 亚洲精品国产成人久久av| 中文字幕人妻熟人妻熟丝袜美| 自拍偷自拍亚洲精品老妇| 99久国产av精品国产电影| 国产在线免费精品| 久久午夜综合久久蜜桃| 秋霞伦理黄片| 在线观看三级黄色| 老女人水多毛片| 欧美日韩精品成人综合77777| av女优亚洲男人天堂| av天堂中文字幕网| 啦啦啦视频在线资源免费观看| 久热这里只有精品99| 亚洲伊人久久精品综合| 中文字幕免费在线视频6| 2022亚洲国产成人精品| 亚洲人与动物交配视频| 我的老师免费观看完整版| 午夜福利视频精品| www.av在线官网国产| 国国产精品蜜臀av免费| 亚洲第一av免费看| 色吧在线观看| 极品少妇高潮喷水抽搐| 日本wwww免费看| 国产精品一二三区在线看| 人妻夜夜爽99麻豆av| 美女福利国产在线| 国产成人精品福利久久| 人人澡人人妻人| 久久国产精品男人的天堂亚洲 | 深夜a级毛片| 亚洲欧美一区二区三区国产| 午夜福利网站1000一区二区三区| 免费观看的影片在线观看| 伦理电影大哥的女人| 亚洲情色 制服丝袜| 秋霞伦理黄片| 日韩av免费高清视频| 中文在线观看免费www的网站| 日本午夜av视频| 亚洲精品第二区| 久久99一区二区三区| 好男人视频免费观看在线| 麻豆成人av视频| 多毛熟女@视频| 欧美精品高潮呻吟av久久| 少妇人妻 视频| 一级av片app| 2022亚洲国产成人精品| 少妇熟女欧美另类| 久久久午夜欧美精品| 国产片特级美女逼逼视频| 精品国产露脸久久av麻豆| 日日爽夜夜爽网站| 欧美激情极品国产一区二区三区 | 一本色道久久久久久精品综合| 久久久久久久大尺度免费视频| 男人舔奶头视频| 成年人午夜在线观看视频| 老司机影院毛片| 日日摸夜夜添夜夜爱| 亚洲,欧美,日韩| 亚洲精品国产色婷婷电影| 美女中出高潮动态图| 最近最新中文字幕免费大全7| 内地一区二区视频在线| av福利片在线| 香蕉精品网在线| 欧美亚洲 丝袜 人妻 在线| 黄色视频在线播放观看不卡| 亚洲精品aⅴ在线观看| 春色校园在线视频观看| 精品熟女少妇av免费看| 国产精品熟女久久久久浪| 国产av码专区亚洲av| 国产精品久久久久久av不卡| 亚洲经典国产精华液单| 精品卡一卡二卡四卡免费| 伊人久久精品亚洲午夜| 国精品久久久久久国模美| 人人妻人人爽人人添夜夜欢视频 | 亚洲三级黄色毛片| av又黄又爽大尺度在线免费看| 中文字幕人妻熟人妻熟丝袜美| 人人妻人人澡人人看| 国产精品久久久久久久久免| 精品久久久久久久久亚洲| 妹子高潮喷水视频| 哪个播放器可以免费观看大片| 建设人人有责人人尽责人人享有的| 亚洲激情五月婷婷啪啪| 少妇熟女欧美另类| 国产精品偷伦视频观看了| 最近的中文字幕免费完整| 纵有疾风起免费观看全集完整版| 曰老女人黄片| 久久久亚洲精品成人影院| 国产精品久久久久久精品电影小说| 亚洲欧美精品自产自拍| 精品一区二区三区视频在线| a级毛片在线看网站| 亚洲欧美中文字幕日韩二区| 交换朋友夫妻互换小说| 狂野欧美激情性bbbbbb| 日产精品乱码卡一卡2卡三| 国产黄色视频一区二区在线观看| 日韩av在线免费看完整版不卡| 精品人妻熟女av久视频| a级毛片在线看网站| 黄色视频在线播放观看不卡| 亚洲精品视频女| 久久精品夜色国产| 国产黄频视频在线观看| 丝袜在线中文字幕| 人人妻人人澡人人看| 蜜桃久久精品国产亚洲av| 国内揄拍国产精品人妻在线| 亚洲国产色片| 久久99一区二区三区| av不卡在线播放| av天堂中文字幕网| 国产精品久久久久成人av| 肉色欧美久久久久久久蜜桃| 五月天丁香电影| 在线看a的网站| 在现免费观看毛片| a级毛片在线看网站| 51国产日韩欧美| 天天躁夜夜躁狠狠久久av| 国产美女午夜福利| 亚洲真实伦在线观看| 国产视频内射| 日韩中字成人| 九九爱精品视频在线观看| 搡女人真爽免费视频火全软件| 成年av动漫网址| 草草在线视频免费看| 自线自在国产av| 亚洲国产av新网站| 国产色爽女视频免费观看| 日韩中文字幕视频在线看片| 亚洲三级黄色毛片| 亚洲欧洲精品一区二区精品久久久 | 国产黄频视频在线观看| 99久久精品国产国产毛片| 成人美女网站在线观看视频| 国产在视频线精品| 妹子高潮喷水视频| 日本免费在线观看一区| 日本猛色少妇xxxxx猛交久久| 极品少妇高潮喷水抽搐| av免费观看日本| 久久人人爽人人片av| 精品熟女少妇av免费看| 黑人猛操日本美女一级片| 中文乱码字字幕精品一区二区三区| 久久女婷五月综合色啪小说| 中国国产av一级| 日韩电影二区| 菩萨蛮人人尽说江南好唐韦庄| 三上悠亚av全集在线观看 | 毛片一级片免费看久久久久| h视频一区二区三区| 桃花免费在线播放| 超碰97精品在线观看| 男的添女的下面高潮视频| 国产在视频线精品| 欧美激情极品国产一区二区三区 | 黄色欧美视频在线观看| 色婷婷av一区二区三区视频| 亚洲人与动物交配视频| 亚洲欧美一区二区三区黑人 | 国产中年淑女户外野战色| 欧美日韩一区二区视频在线观看视频在线| 亚洲精品久久午夜乱码| av专区在线播放| 久久精品久久久久久噜噜老黄| 亚洲人与动物交配视频| 欧美日韩综合久久久久久| 国产男女内射视频| 国产日韩欧美亚洲二区| 欧美日韩视频精品一区| 午夜激情福利司机影院| 男女啪啪激烈高潮av片| 亚洲va在线va天堂va国产| 九草在线视频观看| 国产高清国产精品国产三级| 国产成人精品一,二区| 99久久精品热视频| 免费看av在线观看网站| 国内少妇人妻偷人精品xxx网站| 一级毛片我不卡| 九草在线视频观看| 一级毛片久久久久久久久女| 两个人免费观看高清视频 | 亚洲精品一区蜜桃| 69精品国产乱码久久久| 国产日韩欧美视频二区| 亚洲av欧美aⅴ国产| 秋霞在线观看毛片| 26uuu在线亚洲综合色| 国产在线一区二区三区精| 黑人高潮一二区| 99久久精品一区二区三区| 偷拍熟女少妇极品色| 免费大片黄手机在线观看| 最后的刺客免费高清国语| 国产女主播在线喷水免费视频网站| 少妇熟女欧美另类| 视频区图区小说| 亚洲国产毛片av蜜桃av| 搡老乐熟女国产| 国产在线视频一区二区| 婷婷色综合www| 天天躁夜夜躁狠狠久久av| 国产无遮挡羞羞视频在线观看| 人人妻人人澡人人看| 久久久久久久亚洲中文字幕| 中国国产av一级| 五月开心婷婷网| 大香蕉97超碰在线| 久久99精品国语久久久| 久久精品国产a三级三级三级| 自拍欧美九色日韩亚洲蝌蚪91 | 国产一级毛片在线| 日韩不卡一区二区三区视频在线| 国产色爽女视频免费观看| 欧美少妇被猛烈插入视频| 久久av网站| 久久国产亚洲av麻豆专区| 日本-黄色视频高清免费观看| 国产成人aa在线观看| 少妇人妻一区二区三区视频| 在线观看人妻少妇| 日韩强制内射视频| 国产黄片美女视频| 国产精品一区www在线观看| 午夜av观看不卡| 精品人妻一区二区三区麻豆| 丰满乱子伦码专区| 欧美激情极品国产一区二区三区 | 99久久综合免费| 永久免费av网站大全| 欧美3d第一页| 亚洲一级一片aⅴ在线观看| 日韩一区二区视频免费看| 亚洲精品久久午夜乱码| 肉色欧美久久久久久久蜜桃| 99热这里只有是精品在线观看| 一区二区av电影网| 中文字幕久久专区| 国产综合精华液| 精品国产一区二区三区久久久樱花| 熟女人妻精品中文字幕| 69精品国产乱码久久久| 欧美一级a爱片免费观看看| 狂野欧美激情性xxxx在线观看| 五月开心婷婷网| 在线 av 中文字幕| 免费观看a级毛片全部| 国产高清三级在线| 一级毛片久久久久久久久女| 国产有黄有色有爽视频| 建设人人有责人人尽责人人享有的| 亚洲国产av新网站| 另类亚洲欧美激情| 久久韩国三级中文字幕| 22中文网久久字幕| 久久久久久人妻| 高清av免费在线| 国产一区二区三区综合在线观看 | 好男人视频免费观看在线| 久久久久久久久久久久大奶| 成年av动漫网址| 精品少妇久久久久久888优播| 国产男女超爽视频在线观看| 狂野欧美激情性bbbbbb| 日本wwww免费看| a级一级毛片免费在线观看| 中文字幕av电影在线播放| 国产成人精品无人区| 91精品国产九色| 777米奇影视久久| 精品少妇黑人巨大在线播放| 热99国产精品久久久久久7| 91aial.com中文字幕在线观看| 中文在线观看免费www的网站| 久久久久人妻精品一区果冻| 大陆偷拍与自拍| 国产乱来视频区| www.色视频.com| kizo精华| 国产在视频线精品| 国产午夜精品久久久久久一区二区三区| 国产在线一区二区三区精| 伦理电影免费视频| 最近中文字幕2019免费版| 老司机影院成人| 欧美日韩精品成人综合77777| 精品一区二区三卡| 黄色毛片三级朝国网站 | 中文字幕亚洲精品专区| 日本猛色少妇xxxxx猛交久久| av有码第一页| a 毛片基地| 久久精品国产自在天天线| h视频一区二区三区| 午夜福利视频精品| 亚洲精品视频女| 极品少妇高潮喷水抽搐| 久久人人爽av亚洲精品天堂| 制服丝袜香蕉在线| 在线亚洲精品国产二区图片欧美 | 在线免费观看不下载黄p国产| 菩萨蛮人人尽说江南好唐韦庄| kizo精华| 美女cb高潮喷水在线观看| 欧美日韩视频精品一区| 日韩电影二区| 精品少妇内射三级| av在线观看视频网站免费| 又黄又爽又刺激的免费视频.| 日本爱情动作片www.在线观看| 两个人的视频大全免费| 免费黄网站久久成人精品| av一本久久久久| 精品国产一区二区三区久久久樱花| 丰满饥渴人妻一区二区三| xxx大片免费视频| 国产精品一区二区三区四区免费观看| 日韩 亚洲 欧美在线| 色婷婷av一区二区三区视频| 人人妻人人爽人人添夜夜欢视频 | 欧美日韩综合久久久久久| 色视频www国产| 欧美精品国产亚洲| 看十八女毛片水多多多| 人妻系列 视频| 亚洲一级一片aⅴ在线观看| 日本黄色日本黄色录像| 简卡轻食公司| 国产成人91sexporn| 欧美激情国产日韩精品一区| 亚洲欧美中文字幕日韩二区| 国产一区二区在线观看av| 人妻一区二区av| 国产片特级美女逼逼视频| 一区二区av电影网| 午夜福利,免费看| 五月天丁香电影| 国产伦精品一区二区三区视频9| 日日摸夜夜添夜夜添av毛片| 毛片一级片免费看久久久久| 免费人妻精品一区二区三区视频| 日本欧美视频一区| 日日摸夜夜添夜夜爱| 最新的欧美精品一区二区| 成人美女网站在线观看视频| 久久韩国三级中文字幕| 一区二区三区精品91| 国产成人精品一,二区| 91精品国产国语对白视频| 欧美精品一区二区大全| 欧美成人精品欧美一级黄| av一本久久久久| 欧美xxⅹ黑人| 老熟女久久久| 偷拍熟女少妇极品色| 伊人亚洲综合成人网| 老女人水多毛片| 久久国产亚洲av麻豆专区|