耿雅麗,田平,羅燕文,華燦楓,陶詩煜,田靖,倪迎冬
(南京農(nóng)業(yè)大學,農(nóng)業(yè)部動物生理生化重點開放實驗室,江蘇 南京 210095)
高精料對泌乳奶山羊瘤胃上皮氧化應激和膽固醇代謝的影響
耿雅麗,田平,羅燕文,華燦楓,陶詩煜,田靖,倪迎冬*
(南京農(nóng)業(yè)大學,農(nóng)業(yè)部動物生理生化重點開放實驗室,江蘇 南京 210095)
為了研究長期或短期飼喂高精料日糧對泌乳期奶山羊瘤胃上皮組織氧化應激和膽固醇代謝的影響,實驗選用17只健康的經(jīng)產(chǎn)泌乳中期關中奶山羊,隨機分為3組:飼喂低精料組(對照組,LC,n=5);長期飼喂高精料組(HL,n=7),19周飼喂期;短期飼喂高精料組(HS,n=5),4周飼喂期。實驗結束后采集瘤胃組織,用PBS反復清洗,于液氮中速凍后置于-80 ℃冰箱保存。結果顯示,與對照組相比,HL和HS組山羊瘤胃上皮組織中細胞周期相關基因CDK2和CDK4 mRNA表達水平顯著升高(Plt;0.05),且HS組p-ERK1/2蛋白表達顯著升高(Plt;0.05),但GPR41和GPR43蛋白表達無顯著變化(Pgt;0.05);HL和HS組山羊瘤胃上皮組織促細胞凋亡基因Casepase9 mRNA表達顯著升高(Plt;0.05),HS組抗凋亡Bcl-2/BaxmRNA表達比例呈下降趨勢(0.05lt;Plt;0.1);HS組瘤胃上皮組織中抗氧化酶CAT和總抗氧化能力T-AOC顯著升高(Plt;0.05),HL組CAT含量和SOD酶活性顯著升高(Plt;0.05),但總抗氧化能力T-AOC無顯著差異(Pgt;0.05);HS組瘤胃上皮組織中膽固醇含量下降達顯著水平(Plt;0.05),且HL組呈下降趨勢(0.05lt;Plt;0.1),膽固醇?;D移酶ACAT1和ACAT2基因表達顯著上調(Plt;0.05),HS組瘤胃上皮組織中膽固醇的含量與ACAT1和ACAT2 mRNA的表達呈顯著的負強相關(P=0.0067,r=-0.8208;P=0.0100,r=-0.7980)。與對照組比較,HS和HL組瘤胃上皮組織中VFA轉運相關基因AE2、DRA、NHE2、NHE3和νH+ATPasemRNA表達顯著升高(Plt;0.05),NHE2蛋白表達升高但未達顯著差異水平(Pgt;0.05)。與HL組相比,HS組山羊瘤胃上皮組織中總抗氧化能力T-AOC顯著升高(Plt;0.05);且膽固醇含量顯著下降(Plt;0.05)。以上結果說明,短期飼喂高精料日糧可加快泌乳期奶山羊瘤胃上皮組織的更新,提高組織總抗氧化能力;而長期飼喂高精料日糧未引起細胞增殖相關蛋白和總抗氧化能力的顯著變化;飼喂高精料日糧可以加快瘤胃上皮組織對VFA的轉運。此外,飼喂高精料日糧引起瘤胃上皮組織內膽固醇含量降低,膽固醇?;D移酶基因表達的顯著上調,提示其對瘤胃上皮組織更新的潛在影響。
高精料;瘤胃上皮;氧化應激;膽固醇;山羊
為提高反芻動物的生產(chǎn)性能,常給泌乳反芻動物飼喂高精料日糧來滿足其高產(chǎn)乳的能量需求。然而,高精料日糧易引起瘤胃異常發(fā)酵,有害代謝產(chǎn)物蓄積,導致亞急性瘤胃酸中毒(subacute ruminal acids, SARA),甚至誘發(fā)乳房炎、蹄葉炎和子宮內膜炎等臨床常見疾病[1]。瘤胃是反芻動物特有的器官,并且是反芻動物消化代謝和營養(yǎng)吸收最重要的場所之一。瘤胃上皮吸收瘤胃發(fā)酵產(chǎn)生的能量、營養(yǎng)物質,其生長發(fā)育情況直接影響反芻動物的生產(chǎn)性能[2]。在正常生理狀態(tài)下,反芻動物瘤胃上皮組織產(chǎn)生自由基,同時也產(chǎn)生或從食物中直接獲得抵抗自由基的抗氧化物質,以抵抗自由基對細胞的氧化損傷,抗氧化指標能反映瘤胃上皮組織自由基代謝的變化。G蛋白偶聯(lián)受體是一種與三聚體G蛋白偶聯(lián)的細胞表面受體。GPR41和GPR43是目前已知的兩種特異性短鏈脂肪酸受體[3],在瘤胃上皮組織中廣泛表達[4]。細胞外信號調節(jié)激酶(ERK)分為ERK1和ERK2,統(tǒng)稱為ERK1/2。ERK1/2被激活后磷酸化進入細胞核作用于E1k-1,c-myc,c-fos,c-jun,ATF和AP-1等轉錄因子,促進與細胞增殖和分化相關基因的轉錄與表達。有研究顯示,GPR41和43與ERK共同參與對細胞增殖、分化及發(fā)育的調節(jié)過程[5-6]。瘤胃發(fā)酵的主要產(chǎn)物是揮發(fā)性脂肪酸(volatile fatty acid, VFA),主要包括乙酸,丙酸和丁酸。VFAs經(jīng)瘤胃上皮吸收可以滿足反芻動物50%~70%的能量需要[7]。瘤胃內的VFA主要以自由擴散和載體轉運的方式被吸收,在上皮細胞中介導VFA轉運的載體主要包括鈉氫交換蛋白(Na+/H+exchanger, NHE)、單羧酸轉運蛋白(monocarboxylate transporter, MCT)和陰離子交換蛋白(anion exchanger protein, AE)等[8-9]。
膽固醇是細胞膜的重要組成成分,也是合成膽汁酸和多種甾醇類激素的前體,在動物機體中具有重要的生理功能。有研究發(fā)現(xiàn),細胞內膽固醇或其代謝物與DNA合成激發(fā)有關,其合成途徑中的許多產(chǎn)物也對維持細胞正常功能起十分重要的作用,包括膜結構與功能的完整性、細胞信號傳導、某些蛋白質合成,以及細胞周期進程的調控等[10]。正常情況下細胞通過自身合成獲得內源性膽固醇, 通過攝取低密度脂蛋白(low density lipoprotein, LDL)獲取外源性膽固醇, 同時也不斷向細胞外排出膽固醇, 使細胞膽固醇處于嚴格的動態(tài)平衡之中, 膽固醇過高或過低都將影響細胞的功能[11]。反芻動物瘤胃上皮細胞利用瘤胃內的VFAs合成膽固醇,避免了VFAs在瘤胃內的蓄積,降低瘤胃酸中毒的風險。已有研究表明,SARA易感牛和SARA耐受牛的瘤胃上皮吸收VFA的速率無明顯差異,但與SARA易感牛相比,SARA耐受牛瘤胃上皮細胞膽固醇合成相關基因的表達水平顯著升高[12],且膽固醇的含量與反芻動物瘤胃上皮組織的通透性、炎癥及增殖密切相關[13-14]。
反芻動物飼喂高精料易使瘤胃內微生物菌群發(fā)生改變,瘤胃代謝紊亂,VFA總量增加,瘤胃液pH降低,脂多糖(lipopolysaccharide, LPS)含量升高等[15-16],這會導致瘤胃乳頭變大數(shù)量增多,同時瘤胃上皮的轉運功能也受影響。目前,有關高精料日糧對瘤胃上皮功能的影響研究多集中于短期實驗,而長期飼喂的影響研究尚未見報道。因此本研究以泌乳期奶山羊為模型,旨在研究長期飼喂高精料對瘤胃上皮組織VFA轉運和膽固醇代謝的影響及相關調節(jié)機制。
1.1試劑與儀器
試劑:TRIzol Reagent(購自上海英俊生物技術有限公司);SYBR Premix(購自Biotool公司)。
儀器:Ex TaqTM(購自Takara 公司);冷凍離心機(Allegra TM64R,BECKMAN COULTERTM,USA);組織勻漿器;PCR儀(STRATAGENE,USA);酶標儀(Synergy2,Biotek,USA);NanoDrop TM1000 (Thermo Scientific,USA)。
1.2試驗動物與飼養(yǎng)
試驗于2015年4月27日開始選用健康的經(jīng)產(chǎn)泌乳期關中奶山羊17只,體重與泌乳量相近,隨機分為低精料日糧組(精粗比35∶65,n=10)和長期飼喂高精料日糧組(精粗比65∶35,n=7)。飼喂15周后,將對照組羊分為2組,一組繼續(xù)飼喂低精料日糧作為實驗對照組(LC,精粗比35∶65,n=5),另一組飼喂高精料日糧,飼喂期為4周,作為高精料日糧短期飼喂組(HS,精粗比65∶35,n=5)。長期飼喂高精料日糧組飼喂期為19周(HL,精粗比65∶35,n=7)。
1.3樣品采集、處理與分析測定
1.3.1樣品的采集 采取瘤胃組織,迅速用磷酸緩沖鹽溶液(phosphate buffer saline, PBS)反復清洗,剪碎后立即置于液氮中速凍保存,采樣結束后放于-80 ℃冰箱保存。
1.3.2樣品總RNA的提取和cDNA的制備 稱取100 mg左右的瘤胃組織,用Trizol方法提取總的RNA,每個樣品每次取2 μL,用Nano Drop分光光度計檢測RNA濃度(260/280=1.8~2.0),2%瓊脂糖凝膠電泳驗證RNA質量,-70 ℃保存?zhèn)溆?。反轉錄酶體系及Tap酶為Promega產(chǎn)品。引物采用Primer 5.0軟件設計,由上海捷瑞生物工程有限公司合成,引物見表1。PCR的反應條件為95 ℃預變性3 min, 95 ℃變性30 s, 64 ℃退火20 s, 72 ℃延伸20 s,共40個循環(huán)。實時熒光定量分析采用2-△△CT法,以內標基因GAPDH為參照,計算目的基因轉錄的相對量,通過以下公式計算出每一個樣本的△△CT值,最后每一個樣本值以2-△△CT表示,x表示任意一個樣本,公式如下:△△CT=(CT.目的基因-CT.內參基因)x-(CT.目的基因-CT.內參基因)control。
1.3.3組織總蛋白提取 蛋白酶抑制劑混合片(Roche,4693132001)購于上海羅氏;BCA蛋白測定試劑盒(Thermo,23225)購于生興;NC膜(PALL,T91375)購于巴傲得;發(fā)光檢測試劑盒(Thermo,NC15080或34076)購于生興。
表1 目的基因引物序列Table 1 The primer sequences of the target genes
F:上游引物 Forward primer; R:下游引物 Reverse primer.GAPDH: 甘油醛-3-磷酸脫氫酶 Glyceraldehyde 3 phosphate dehydrogenase;CDK1: 細胞周期蛋白依賴性激酶 1 Cyclin-dependent kinase 1;CDK2: 細胞周期蛋白依賴性激酶 2 Cyclin-dependent kinase 2;CDK4: 細胞周期蛋白依賴性激酶 4 Cyclin-dependent kinase 4;CDK6: 細胞周期蛋白依賴性激酶 6 Cyclin-dependent kinase 6;DRA: SCFA-/HCO3-轉運載體 Downregulated in adenoma;PAT1: 陰離子轉運載體 1 Putative anion transporter, isform 1;AE2: 陰離子轉運載體 2 Anion exchanger 2;NHE1: Na+/H+交換蛋白 1 Na+/H+exchanger 1;NHE2: Na+/H+交換蛋白 2 Na+/H+exchanger 2;NHE3: Na+/H+交換蛋白 3 Na+/H+exchanger 3;νH+ATPase: 空泡型H+ATP酶 Vacuolar H+ATPase subunit B;HMGCR: 3-羥-3-甲戊二酰輔酶A還原酶 3-hydroxy-3-methylglutaryl-CoA reductase;LDLR: 低密度脂蛋白受體 Low density lipoprotein receptor;ACAT1: 乙酰輔酶a膽固醇?;D移酶 1 Acetyl-CoA cholesterol acyltransferase 1;ACAT2: 乙酰輔酶a膽固醇酰基轉移酶 2 Acetoacetyl-CoA thiolase 2;ABCA1:ATP結合盒轉運蛋白 1 ATP-binding cassette transporters 1;Casepase9:含半胱氨酸的天冬氨酸蛋白水解酶9 Cysteinyl aspartate specific proteinase 9;Bcl-2: B細胞淋巴瘤2 B-cell lymphoma 2;Bax: B細胞淋巴瘤2相關X蛋白 Bcl-2-associated X protein.
從-80 ℃冰箱取出瘤胃組織,稱取100 mg左右,按1∶10(w∶v)加入冰浴的RIPA總蛋白裂解液;用勻漿器勻漿組織冰上靜置10 min后,12000 r/min離心,4 ℃,20 min,取上清。用BCA試劑盒測定蛋白濃度,將蛋白統(tǒng)一用蛋白裂解液稀釋至合適的濃度,變性,-80 ℃冰箱儲存。上樣量60 μg,分離膠10%,濃縮膠4%,電泳,轉印至硝酸纖維膜上,之后室溫封閉2 h,接著一抗4 ℃孵育過夜,1×TBST洗膜5 min 6次,再用二抗室溫孵育2 h,1×TBST洗膜5 min 6次,最后,用pierce發(fā)光試劑盒和Versa DocTM imaging system成像系統(tǒng),檢測蛋白條帶,并用Quantity One software軟件進行數(shù)據(jù)統(tǒng)計分析。
1.3.4抗氧化能力的測定 所有瘤胃上皮組織抗氧化能力測定試劑盒均購自南京建成生物工程研究所,包括總抗氧化能力(total anti-oxidative capacity, T-AOC)測定試劑盒(貨號:A015);超氧化物歧化酶(superoxide dismutase, SOD)測定試劑盒(貨號:A001-3);過氧化氫酶(catalase, CAT)測定試劑盒(貨號:A007-1)。
1.3.5總膽固醇的測定 瘤胃上皮組織總膽固醇的測定采用組織細胞甘油三酯酶法測定試劑盒(貨號:E1013),購自北京普利萊基因技術有限公司。
1.4數(shù)據(jù)統(tǒng)計與分析
采用SPSS 17.0軟件對試驗數(shù)據(jù)進行ANOVA方差分析,結果用平均值±標準誤(mean±SEM)表示,Plt;0.05表示差異顯著,Plt;0.01表示差異極顯著。
2.1飼喂高精料日糧對山羊瘤胃上皮細胞周期與功能狀態(tài)的影響
如圖1所示,與對照組相比,HL和HS組山羊瘤胃上皮組織細胞增殖相關基因CDK2和CDK4 mRNA表達顯著升高(Plt;0.05)(圖1A),HS組ERK1/2蛋白磷酸化水平顯著升高(Plt;0.05),但各組間GPR41和GPR43蛋白表達無顯著變化(圖1B)。
圖1 高精料日糧對瘤胃上皮細胞周期相關基因與蛋白表達的影響 Fig.1 Effects of high concentrate diets on cell cycle of ruminal epithelium A: 細胞周期相關基因mRNA of the cell cycle; B: 增殖相關蛋白Protein of the proliferation。LC:低精料對照組Low concentrate diet control group; HL:高精料長期組Long-term feeding high concentrate diet group; HS:高精料短期組Short-term feeding high concentrate diet group。不同小寫字母表示差異顯著(Plt;0.05),相同或無字母表示差異不顯著(Pgt;0.05),#表示有趨勢(0.05lt;Plt;0.1)。下同。Different small letters mean significant difference (Plt;0.05), and the same or no letter mean no significant difference (Pgt;0.05),# means tendency (0.05lt;Plt;0.1). The same below.
2.2飼喂高精料日糧對山羊瘤胃上皮細胞凋亡和抗氧化能力的影響
由圖2可知,與對照組相比,HL和HS組山羊瘤胃上皮組織細胞凋亡相關基因Caspase9 mRNA表達水平顯著升高(Plt;0.05),HS組Bcl-2/Bax基因表達比例呈下降趨勢(P=0.08)(圖2A);HS組瘤胃上皮組織中抗氧化酶CAT和總抗氧化能力T-AOC顯著升高(Plt;0.05),HL組CAT含量和SOD酶活性顯著升高(Plt;0.05),但總抗氧化能力T-AOC無顯著差異(Pgt;0.05)(圖2B~D)。與HL組相比,HS組山羊瘤胃上皮組織中總抗氧化能力T-AOC顯著升高(Plt;0.05)(圖2D)。
2.3飼喂高精料日糧對山羊瘤胃上皮組織膽固醇代謝的影響
由圖3可知,與對照組相比,HS組山羊瘤胃上皮組織中膽固醇含量顯著下降(Plt;0.05)(圖3A),HL組膽固醇含量呈下降趨勢(P=0.06),與HL組相比,HS組山羊瘤胃上皮組織中膽固醇含量顯著下降(Plt;0.05)(圖3A);HL和HS組瘤胃上皮組織中膽固醇代謝相關基因ACAT1和ACAT2 mRNA表達顯著升高(Plt;0.05)(圖3B);且HS組瘤胃上皮組織中膽固醇的含量與ACAT1和ACAT2 mRNA的表達呈顯著的負強相關(P=0.0067,r=-0.8208;P=0.0100,r=-0.7980)(圖3C)。
圖2 高精料日糧對山羊瘤胃上皮組織細胞凋亡和抗氧化能力的影響 Fig.2 Effects of high concentrate diets on cell apoptosis and antioxidant ability of ruminal epithelium
圖3 高精料日糧對山羊瘤胃上皮組織中膽固醇代謝的影響Fig.3 Effects of high concentrate diets on the cholesterol metabolism in ruminal epithelium
2.4飼喂高精料日糧對山羊瘤胃上皮組織VFA 轉運相關基因和蛋白表達的影響
如圖4所示,與對照LC組相比,HL和HS組山羊瘤胃上皮組織中VFA轉運相關基因AE2、DRA、NHE2、NHE3和νH+ATPasemRNA表達水平均顯著升高(Plt;0.05)(圖4A),但NHE2蛋白表達無顯著差異(圖4B)。
3.1飼喂高精料日糧對山羊瘤胃上皮細胞周期與功能狀態(tài)的影響
瘤胃上皮細胞數(shù)量增多是通過加快細胞的有絲分裂來完成的,細胞從一次有絲分裂結束開始到下一次有絲分裂完成所經(jīng)歷的整個有序過程稱為細胞周期。細胞周期受兩個蛋白家族的調控:細胞周期蛋白(Cyclin)家族和細胞周期蛋白依賴性激酶(cyclin-dependent kinase,CDK)家族。Cyclin D/CDK4/6和Cyclin E/CDK2復合物調控細胞從G1進入S期[19]。有研究表明,山羊日糧精料含量從10%提高到35%時,瘤胃上皮中CDK和Cyclin基因mRNA的表達水平顯著升高[18]。同樣,本實驗結果顯示,飼喂高精料日糧顯著上調瘤胃上皮組織中CDK2和CDK4 mRNA的表達。GPR41和GPR43是VFAs特異性受體,其中丙酸和丁酸與GPR41和GPR43結合的能力強于乙酸。GPR41可以通過組蛋白乙?;饔谜{節(jié)細胞的增殖、凋亡以及細胞周期,丙酸可以激活ERK通路參與調節(jié)細胞活力[20]。本研究結果顯示,65%精料飼喂泌乳期奶山羊4或19周,瘤胃液中乙酸、丙酸、丁酸和VFA的總量沒有發(fā)生顯著變化[21],且瘤胃上皮組織的VFAs特異性受體GPR41和GPR43未被激活。HS組磷酸化ERK1/2蛋白表達水平顯著升高,提示短期飼喂高精料日糧可促進瘤胃上皮組織細胞的增殖,但其增殖可能不是G蛋白偶聯(lián)通路介導的。
機體都具有清除體內生物活性物質的抗氧化防御系統(tǒng)[22],機體防御系統(tǒng)的抗氧化能力的強弱與健康程度存在著密切聯(lián)系。季節(jié)和日糧均可影響山羊瘤胃組織的抗氧化能力[23]。血液和組織中SOD、GSH-PX(谷胱甘肽過氧化物酶,glutathione peroxidase)、CAT、MDA和T-AOC是反映機體氧化/抗氧化狀態(tài)的重要參數(shù)。抗氧化劑能有效調控機體的氧化應激與細胞凋亡,保障機體細胞內外環(huán)境的穩(wěn)定和生理機能正常[24]。而在細胞凋亡過程中,Bcl-2是細胞凋亡的負調控因子,可保護細胞免于凋亡;Bax是促凋亡因子,Bcl-2/Bax比值可反映細胞凋亡狀態(tài)。本研究結果表明,短期飼喂高精料日糧可提高山羊瘤胃上皮組織的抗氧化能力,同時伴隨細胞凋亡的增加,提示更高的細胞更新速率,這與其高泌乳性能相一致。然而,長期飼喂高精料對瘤胃上皮組織的細胞凋亡和總抗氧化能力無顯著影響,其原因可能與機體應激狀態(tài)的改變有關。高精料因其快速發(fā)酵引起瘤胃內VFAs累積,導致SARA的發(fā)生。從而推測,SARA長期存在威脅機體健康,并最終降低泌乳反芻動物的生產(chǎn)性能。
3.2飼喂高精料日糧對山羊瘤胃上皮組織膽固醇代謝的影響
膽固醇是細胞膜的重要組成成分,且是多種激素的合成前體物,絕大多數(shù)組織能合成膽固醇。正常情況下,組織中膽固醇的合成受到嚴格的調控,從而使膽固醇的含量不致過多蓄積或缺乏。反芻動物瘤胃上皮組織利用瘤胃發(fā)酵產(chǎn)生的VFAs,合成膽固醇從而減少瘤胃VFA的蓄積。β-羥-β-甲基戊二酸單酰輔酶α還原酶(3-hydroxy-3-methyl-glutaryl-CoA reductase,HMGCR)是膽固醇合成的限速酶。低密度脂蛋白受體(low density lipoprotein receptor,LDLR)將膽固醇轉運入細胞進行生物轉化。ATP結合盒轉運蛋白(ATP-binding cassette transporters,ABCA1)調節(jié)細胞內的膽固醇流出細胞膜[25]。膽固醇?;D移酶(Acetyl-CoA cholesterol acyltransferase,ACAT)是細胞內已知的唯一一個催化游離膽固醇與長鏈脂肪酸連接形成膽固醇酯的酶[26-27]。干奶期奶牛采食高精料日糧后,瘤胃上皮組織中膽固醇代謝相關的基因表達呈動態(tài)變化[28]。本研究結果表明,與LC組相比,HL和HS組瘤胃上皮組織中ACAT1和ACAT2基因表達顯著上調,組織中膽固醇含量顯著下降。瘤胃組織內膽固醇含量的降低提示對其功能的潛在不利影響。
3.3飼喂高精料日糧對山羊瘤胃上皮組織VFA轉運的影響
瘤胃上皮吸收VFA為動物機體提供能量,同時伴有質子的吸收保證了瘤胃內環(huán)境和pH的穩(wěn)態(tài)。瘤胃上皮組織中NHE在Na+的吸收和維持瘤胃上皮細胞內的pH起著重要的作用[29]。DRA,PAT1和AE2的主要功能是將碳酸氫鹽從上皮細胞運出同時將游離的VFA轉運進入瘤胃上皮,在VFA吸收過程中起到中和酸的作用。飼喂一定比例的精料日糧既可增強瘤胃的發(fā)酵功能又可以增加VFA的吸收。高精料在瘤胃內發(fā)酵產(chǎn)生大量的VFA,瘤胃上皮對VFA的吸收增加。為了避免瘤胃細胞內因質子過量積累而引起pH下降,NHE3的表達水平會升高,從而加快瘤胃上皮細胞的Na+和H+交換,將細胞內過多的H+排出細胞[30]。本實驗結果與此相一致,HL和HS組維持山羊瘤胃上皮細胞pH相關基因(NHE2,NHE3和νH+ATPase)的mRNA表達水平顯著升高,且與VFA轉運相關基因(DRA,AE2)的mRNA表達水平顯著升高。結果提示,飼喂高精料日糧可以加快泌乳期奶山羊瘤胃上皮組織對VFA的轉運,但與飼喂時間長短無關。
短期飼喂高精料日糧可加快泌乳期奶山羊瘤胃上皮組織的更新,提高組織氧化應激能力;而長期飼喂高精料日糧未引起細胞增殖相關蛋白和總抗氧化能力的顯著變化;飼喂高精料日糧可以加快瘤胃上皮組織對VFA的轉運。此外,飼喂高精料日糧引起瘤胃上皮組織內膽固醇含量降低,膽固醇?;D移酶基因表達顯著上調,提示其對瘤胃上皮組織更新的潛在影響。
References:
[1] Bondzio A, Gabler C, Badewien-Rentzsch B,etal. Identification of differentially expressed proteins in ruminal epithelium in response to a concentrate-supplemented diet. American Journal of Physiology-Gastrointestinal and Liver Physiology, 2011, 301(2): G260-268.
[2] Lu J H, Liu J, Lu W,etal. Effects of dietary energy levels on cell cycle of ruminal epithelium in goats. Jiangsu Agricultural Science, 2014, 42(6): 145-149.
盧勁曄, 劉靜, 盧煒, 等. 日糧能量水平對山羊瘤胃上皮細胞周期的影響. 江蘇農(nóng)業(yè)科學, 2014, 42(6): 145-149.
[3] Wang Y A, Zhang C L, Wang Y H,etal. Signal pathway and physiological functions of short chain fatty acid receptor GPR41 and GPR43. China Cattle Science, 2013, 39(6): 49-53.
王永安, 張春雷, 王艷紅, 等. 短鏈脂肪酸受體GPR41、GPR43的信號通路及生理功能. 中國牛業(yè)科學, 2013, 39(6): 49-53.
[4] Lu Z, Gui H, Yao L,etal. Short-chain fatty acids and acidic pH upregulate UT-B, GPR41, and GPR4 in rumen epithelial cells of goats. American Journal of Physiology-Regulatory Integrative and Comparative Physiology, 2015, 308(4): R283-293.
[5] Le Poul E, Loison C, Struyf S,etal. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. Journal of Biological Chemistry, 2003, 278(28): 25481-25489.
[6] Khajah M A, Mathew P M, Luqmani Y A. Inhibitors of PI3K/ERK 1/2/p38 MAPK show preferential activity against endocrine resistant breast cancer cells. Oncology Research, 2017, 25(8): 1283-1295.
[7] Shen H, Lu Z, Chen Z,etal. Rapid fermentable substance modulates interactions between ruminal commensals and toll-like receptors in promotion of immune tolerance of goat rumen. Frontiersin Microbiology, 2016, 7: 1812.
[8] Argov-Argaman N, Eshel O, Moallem U,etal. Effects of dietary carbohydrates on rumen epithelial metabolism of nonlactating heifers. Journal of Dairy Science, 2012, 95(7): 3977-3986.
[9] Aschenbach J R, Penner G B, Stumpff F,etal. Ruminant nutrition symposium: Role of fermentation acid absorption in the regulation of ruminal pH. Journal of Animal Science, 2011, 89(4): 1092-1107.
[10] Zhang X L. Effects of Lovastatin on Proliferation and Apoptosis of HL-60 Cells and Its Molecular Mechanisms[D]. Chongqing: Chongqing Third Military Medical University, 2002.
張雪玲. 膽固醇合成抑制劑洛伐他汀對HL-60細胞增殖和凋亡的影響及機制研究[D]. 重慶: 重慶第三軍醫(yī)大學, 2002.
[11] Mao Y H, Mi M T. Effects of cholesterol on cellular structure and function. Foreign Medical (Hygiene Branch), 2004, 31(6): 352-355.
毛應華, 糜漫天. 膽固醇對細胞膜結構和功能的影響. 國外醫(yī)學(衛(wèi)生學分冊), 2004, 31(6): 352-355.
[12] Gao X, Oba M. Characteristics of dairy cows with a greater or lower risk of subacute ruminal acidosis: Volatile fatty acid absorption, rumen digestion, and expression of genes in rumen epithelial cells. Journal of Dairy Science, 2016, 99(11): 8733-8745.
[13] Goodlad R A. Some effects of diet on the mitotic index and the cell cycle of the ruminal epithelium of sheep. Quarterly Journal of Experimental Psychology Section B-comparative and Physiological Psychology, 1981, 66(4): 487-499.
[14] Khafipour E, Krause D O, Plaizier J C. A grain-based subacute ruminal acidosis challenge causes translocation of lipopolysaccharide and triggers inflammation. Journal of Dairy Science, 2009, 92(3): 1060-1070.
[15] Tao S, Duanmu Y, Dong H,etal. A high-concentrate diet induced colonic epithelial barrier disruption is associated with the activating of cell apoptosis in lactating goats. BMC Veterinary Research, 2014, 10: 235.
[16] Tao S, Duanmu Y, Dong H,etal. High concentrate diet induced mucosal injuries by enhancing epithelial apoptosis and inflammatory response in the hindgut of goats. PLoS One, 2014, 9(10): e111596.
[17] Yan L, Zhang B, Shen Z. Dietary modulation of the expression of genes involved in short-chain fatty acid absorption in the rumen epithelium is related to short-chain fatty acid concentration and pH in the rumen of goats. Journal of Dairy Science, 2014, 97(9): 5668-5675.
[18] Gui H, Shen Z. Concentrate diet modulation of ruminal genes involved in cell proliferation and apoptosis is related to combined effects of short-chain fatty acid and pH in rumen of goats. Journal of Dairy Science, 2016, 99(8): 6627-6638.
[19] Lee J I, Kim I H, Nam T J. Crude extract and solvent fractions ofCalystegiasoldanellainduce G1 and S phase arrest of the cell cycle in HepG2 cells. International Journal of Oncology, 2017, 50(2): 414-420.
[20] Wu J, Zhou Z, Hu Y,etal. Butyrate-induced GPR41 activation inhibits histone acetylation and cell growth. Journal of Genetics and Genomics, 2012, 39(8): 375-384.
[21] Hua C, Tian J, Tian P,etal. Feeding a high concentration diet induces unhealthy alterations in the composition and metabolism of ruminal microbiota and host response in a goat model. Frontiersin Microbiology, 2017, 8: 138.
[22] He Z X, Sun Z H, Tan Z L,etal. Effects of maternal protein or energy restriction during late gestation on antioxidant status of plasma and immune tissues in postnatal goats. Journal of Animal Science, 2012, 90(12): 4319-4326.
[23] Sharifi M, Bashtani M, Naserian A A,etal. The effect of increasing levels of date palm (PhoenixdactyliferaL.) seed on the performance, ruminal fermentation, antioxidant status and milk fatty acid profile of Saanen dairy goats. Journal of Animal Physiology and Animal Nutrition (Berl), 2017, 101(5): e332-e341.
[24] Zhu R Q, Jiang W W, Tan Z L,etal. Progress of reactive oxygen species, oxidative, stress, cell apoptosis and antioxidant in animals. China Veterinary Medicine Journal, 2015, 3: 21-25.
朱若岑, 蔣維維, 譚柱良, 等. 動物體內活性氧、氧化應激與細胞凋亡以及抗氧化劑研究進展. 中獸醫(yī)醫(yī)藥雜志, 2015, 3: 21-25.
[25] Idriss A A, Hu Y, Sun Q,etal. Prenatal betaine exposure modulates hypothalamic expression of cholesterol metabolic genes in cockerels through modifications of DNA methylation. Poultry Science, 2017, 96(6): 1715-1724.
[26] Tessema M, Belinsky S A. Mining the epigenome for methylated genes in lung cancer. Proceedings of the American Thoracic Society, 2008, 5(8): 806-810.
[27] Yao X M, Song B L, Wang C H,etal. Human Acyl-coenzyme A: cholesterol Aacyltr ansfer ase (ACAT). Journal of Shanghai Jiaotong University (Agricultural Science), 2006, 24(1): 108-115.
姚曉敏, 宋保亮, 王燦華, 等. 人?;o酶A: 膽固醇酰基轉移酶(ACAT). 上海交通大學學報(農(nóng)業(yè)科學版), 2006, 24(1): 108-115.
[28] Steele M A, Vandervoort G, AlZahal O,etal. Rumen epithelial adaptation to high-grain diets involves the coordinated regulation of genes involved in cholesterol homeostasis. Physiological Genomics, 2011, 43(6): 308-316.
[29] Lu Z, Yao L, Jiang Z,etal. Acidic pH and short-chain fatty acids activate Na+transport but differentially modulate expression of Na+/H+exchanger isoforms 1, 2, and 3 in omasal epithelium. Journal of Dairy Science, 2016, 99(1): 733-745.
[30] Schlau N, Guan L L, Oba M. The relationship between rumen acidosis resistance and expression of genes involved in regulation of intracellular pH and butyrate metabolism of ruminal epithelial cells in steers. Journal of Dairy Science, 2012, 95(10): 5866-5875.
Effectsoffeedinghighconcentratedietstolactatingdairygoatsonoxidativestressandcholesterolmetabolisminruminalepithelium
GENG Ya-Li, TIAN Ping, LUO Yan-Wen, HUA Can-Feng, TAO Shi-Yu, TIAN Jing, NI Ying-Dong*
Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agriculture University, Nanjing 210095, China
In order to investigate the effects of feeding high concentrate diets on the functional status of ruminal epithelia in terms of oxidative stress and cholesterol metabolism, seventeen lactating goats with similar body weight and milk production were randomly divided into three groups, including LC (n=5), HS (n=5) and HL (n=7) groups, which were fed by diets of concentrate∶forage of 35∶65 for whole experiment period (LC), concentrate∶forage of 65∶35 for 4 weeks (HS), and concentrate∶forage of 65∶35 for 19 weeks (HL), respectively. At the end of the experiment, ruminal epithelial tissues were sampled, promptly immersed in liquid nitrogen and then stored at -80 ℃ for analysis. The results showed that mRNA expression of theCDK2 andCDK4 genes related to cell cycle significantly increased in both HS and HL goats (Plt;0.05). The level of p-ERK1/2 proteins increased in HS but not in HL goats (Plt;0.05). However, GPR41 and 43 protein expression in the ruminal epithelium was not changed both in HS and HL compared to LC. The expression of theCasepase9 gene participating in cell apoptosis was significantly up-regulated in the HL and HS groups, while the anti-apoptotic index of the relative ratio ofBcl-2/BaxmRNA expression showed a tendency to decrease in the HS group compared to LC group (0.05lt;Plt; 0.1). In addition, the enzyme activity of SOD and CAT in the epithelium significantly increased in HL and HS goats compared to LC goats (Plt;0.05), whereas the total anti-oxidative capacity (T-AOC) increased only in HS goats (Plt;0.05). The level of cholesterol in ruminal epithelium significantly decreased in the HS group (Plt;0.01), and also showed a decreasing trend in the HL group (P=0.06). The enzymesACAT1 and 2, which may be involved in the regulation of cholesterol metabolism, significantly increased in HL and HS goats compared to LC goats (Plt;0.05). Correlation analysis revealed that cholesterol concentration in the ruminal epithelium was negatively correlated withACAT1 andACAT2 mRNA expression in the HS group (P=0.0067,r=-0.8208;P=0.0100,r=-0.7980). Compared with the LC group, mRNA expressions ofAE2,DRA,NHE2,NHE3andνH+ATPasegenes involving VFAs transportation significantly increased (Plt;0.05), while NHE2 protein expression was not altered both in HS and HL groups. Compared with the HL group, the HS group’s T-AOC significantly increased (Plt;0.05) and the level of cholesterol significantly decreased (Plt;0.05). These results indicate that feeding high concentrate diets over a short time period can improve the health status and functions of ruminal epithelium, while feeding high concentrate diets over a longer period might lessen these beneficial effects.
high concentrate diet; ruminal epithelium; oxidative stress; cholesterol; goat
10.11686/cyxb2017160http//cyxb.lzu.edu.cn
耿雅麗, 田平, 羅燕文, 華燦楓, 陶詩煜, 田靖, 倪迎冬. 高精料對泌乳奶山羊瘤胃上皮氧化應激和膽固醇代謝的影響. 草業(yè)學報, 2017, 26(11): 94-103.
GENG Ya-Li, TIAN Ping, LUO Yan-Wen, HUA Can-Feng, TAO Shi-Yu, TIAN Jing, NI Ying-Dong. Effects of feeding high concentrate diets to lactating dairy goats on oxidative stress and cholesterol metabolism in ruminal epithelium. Acta Prataculturae Sinica, 2017, 26(11): 94-103.
2017-03-31;改回日期:2017-06-14
國家重大基礎研究發(fā)展計劃 973 項目(No. 2011CB100802)資助。
耿雅麗(1992-),女,河北衡水人,在讀碩士。E-mail:2604413221@qq.com
*通信作者Corresponding author. E-mail:niyingdong@njau.edu.cn