郁 峰, 徐統(tǒng)球, 陳誠豪, 崔焌輝
(浙江省立同德醫(yī)院肛腸科, 浙江 杭州 310012)
川楝素與γδ T細胞協(xié)同抗結(jié)直腸癌的作用及機制研究
郁 峰, 徐統(tǒng)球, 陳誠豪, 崔焌輝△
(浙江省立同德醫(yī)院肛腸科, 浙江 杭州 310012)
目的探討γδ T細胞對結(jié)直腸癌細胞的殺傷活性,并研究川楝素對γδ T細胞的協(xié)同效應(yīng)。方法體外培養(yǎng)人γδ T細胞并用流式細胞術(shù)進行鑒定。乳酸脫氫酶(LDH)釋放實驗檢測γδ T細胞和川楝素對人結(jié)直腸癌SW480細胞的殺傷活性。Western blot實驗檢測川楝素對SW480細胞中Bcl-2、Bcl-xL和MCL-1表達水平的影響。 ELISA實驗檢測川楝素是否影響γδ T細胞腫瘤壞死因子相關(guān)凋亡誘導(dǎo)配體(TRAIL)和Fas配體(FasL)的分泌。流式細胞術(shù)檢測川楝素和γδ T細胞處理后SW480細胞的線粒體膜電位和凋亡情況。Western blot實驗檢測川楝素和γδ T細胞處理后SW480細胞caspase-9和caspase-3的活化。結(jié)果體外培養(yǎng)的γδ T細胞高表達CD3和γδ T細胞受體(TCR)。川楝素處理能顯著增強γδ T細胞對SW480的殺傷活性。川楝素不影響γδ T細胞TRAIL和FasL的表達。川楝素不影響SW480細胞中Bcl-2和Bcl-xL的蛋白水平但顯著抑制MCL-1的表達。轉(zhuǎn)染MCL-1質(zhì)粒能顯著抑制川楝素對γδ T細胞的協(xié)同效應(yīng)。川楝素通過抑制MCL-1的表達促進γδ T細胞對SW480細胞線粒體膜電位的損傷和凋亡的誘導(dǎo)。川楝素通過抑制SW480細胞MCL-1的表達促進γδ T細胞對SW480細胞caspase-9和caspase-3的活化。結(jié)論川楝素通過抑制MCL-1的表達發(fā)揮對γδ T細胞的協(xié)同抗結(jié)直腸癌作用。
川楝素; MCL-1; γδ T細胞; 結(jié)直腸癌
結(jié)直腸癌是常見的消化道惡性腫瘤,發(fā)病率占胃腸道腫瘤的第3位。由于其轉(zhuǎn)移性很強,且早期癥狀不明顯,因此結(jié)直腸癌的致死率非常高[1-2]。對于早期結(jié)直腸癌,手術(shù)是最有效的治療手段,然而很多患者在確診結(jié)直腸癌時已發(fā)生轉(zhuǎn)移,對于這些患者而言,化療或免疫治療是不可缺少的替代治療手段[3-4]。在腫瘤的免疫治療中,以免疫效應(yīng)細胞為主體的治療方法已經(jīng)開始進行臨床試驗[5]。γδ T細胞屬于T細胞的一個功能性亞群,其表面的T細胞受體(T-cell receptor,TCR)由γδ T肽鏈組成。研究發(fā)現(xiàn),γδ T細胞是一群效應(yīng)性T細胞,它能直接殺傷腫瘤細胞而不依賴于主要組織相容性(抗原)復(fù)合物(major histocompability complex,MHC)分子的抗原提呈,因此,γδ T細胞被認(rèn)為是一種有良好前景的抗腫瘤免疫治療方法[6]。本研究的目的在于探討γδ T細胞對結(jié)直腸癌細胞的殺傷活性,并研究中藥川楝子活性成分川楝素(toosendanin)是否對γδ T細胞有協(xié)同作用。
1細胞培養(yǎng)
人結(jié)直腸癌細胞系SW480購于美國模式培養(yǎng)物保藏所(American Type Culture Collection,ATCC),細胞培養(yǎng)在含10%胎牛血清的DMEM培養(yǎng)基中,置于37 ℃、5% CO2恒溫培養(yǎng)箱中培養(yǎng)。人γδ T細胞的體外增殖培養(yǎng)按文獻所述進行[7],取15例健康人的全血(標(biāo)本的使用已取得知情同意),采取Ficoll密度梯度離心法獲取單個核細胞層,并培養(yǎng)在含10%胎牛血清的DMEM培養(yǎng)基中,加入3 μmol/L γδ T細胞特異性擴增劑溴代醇焦磷酸(bromohydrin pyrophosphate,BrHPP)和4×105U/L的白細胞介素2(interleukin-2,IL-2),培養(yǎng)14 d。
2實驗試劑
乳酸脫氫酶(lactate dehydrogenase,LDH)細胞毒性檢測試劑盒和線粒體分離試劑盒購于江蘇碧云天生物技術(shù)有限公司;DMEM培養(yǎng)基購于Gibco;抗細胞色素(cytochrome C,Cyt C)、Bcl-xL、Bcl-2、MCL-1、cleaved caspase-9、cleaved caspase-3和GAPDH抗體購于Cell Signaling;IL-2、腫瘤壞死因子相關(guān)凋亡誘導(dǎo)配體(TNF-related apoptosis-inducing ligand,TRAIL)和Fas配體(Fas ligand,F(xiàn)asL)ELISA試劑盒購于R&D System;ECL試劑盒購于Pierce;pcDNA3.1質(zhì)粒和Lipofectamine 2000購于Invitrogen;BrHPP購于Innate Pharma;抗γδ TCR-PE流式細胞抗體和抗CD3-FITC流式細胞抗體購于BD Bioscience;川楝素購于南京春秋生物工程有限公司;Annexin V-FITC凋亡檢測試劑盒購于Sigma。
3方法
3.1γδ T細胞的鑒別 體外培養(yǎng)的γδ T細胞用帶PE熒光標(biāo)記的γδ TCR流式細胞抗體和帶FITC熒光標(biāo)記的CD3流式細胞抗體孵育20 min,用生理鹽水將細胞清洗3次后以流式細胞儀進行檢測,CD3和γδ TCR雙陽性細胞即為γδ T細胞。
3.2MCL-1過表達質(zhì)粒構(gòu)建和轉(zhuǎn)染 將MCL-1基因的開放閱讀框架序列經(jīng)PCR擴增后以分子克隆的方法與pcDNA3.1質(zhì)粒連接,構(gòu)建成MCL-1重組過表達質(zhì)粒。MCL-1過表達質(zhì)粒按Lipofectamine 2000試劑操作說明書步驟進行轉(zhuǎn)染,將2 mg/LMCL-1過表達質(zhì)粒轉(zhuǎn)染入SW480細胞中。
3.3LDH釋放實驗檢測γδ T細胞的殺傷活性 按不同的效應(yīng)γδ T細胞個數(shù)與目標(biāo)SW480靶細胞個數(shù)的比值(ratio of effector and target,E∶T)將SW480細胞和γδ T細胞用Transwell小室(0.4 μM孔徑)隔離后進行共培養(yǎng),12 h后用LDH細胞毒性檢測試劑盒按說明書步驟檢測SW480細胞中LDH的釋放,LDH釋放水平越高則表示γδ T細胞對SW480細胞的殺傷活性越強。SW480殺傷率用以下公式表示:SW480殺傷率(%)=[(A實驗組-A對照組) / (A細胞LDH最大釋放-A對照組)] × 100%。
3.4LDH釋放實驗檢測川楝素對γδ T細胞殺傷活性的影響 將SW480細胞用2 mg/L pcDNA3.1空質(zhì)?;騇CL-1重組質(zhì)粒進行轉(zhuǎn)染。將轉(zhuǎn)染后的SW480細胞接種在Transwell小室(上室)中,下室加入E∶T為2.5∶1的γδ T細胞及50 mmol/L川楝素,共培養(yǎng)12 h。之后按方法3.3所述進行LDH釋放實驗,檢測川楝素對γδ T細胞殺傷活性的影響。
3.5ELISA實驗檢測γδ T細胞TRAIL和FasL的分泌 SW480細胞轉(zhuǎn)染及藥物處理方法同3.4。收集上清液,用TRAIL和FasL ELISA試劑盒檢測上清液中TRAIL和FasL的濃度。
3.6線粒體分離 SW480細胞轉(zhuǎn)染及藥物處理方法同3.4。收集處理后的SW480細胞并用線粒體分離試劑盒將線粒體從細胞質(zhì)中分離出來。
3.7Western blot實驗 SW480細胞轉(zhuǎn)染及藥物處理方法同3.4。細胞處理完畢后用蛋白提取液提取SW480細胞中的總蛋白質(zhì)。將等量的總蛋白質(zhì)(或3.6得到的去除線粒體的細胞質(zhì))行12% SDS-PAGE。分離完畢后通過電轉(zhuǎn)方法將蛋白質(zhì)從分離膠上轉(zhuǎn)到PVDF膜上,用抗Bcl-xL、Bcl-2、MCL-1、細胞色素C、cleaved caspase-9、cleaved caspase-3和GAPDH抗體孵育過夜,之后再用帶辣根過氧化物酶的 II 抗孵育2 h,蛋白條帶用ECL試劑盒顯色發(fā)光并用ImageJ軟件處理計算灰度值。目標(biāo)蛋白相對表達水平=灰度值目標(biāo)蛋白/灰度值GAPDH。
3.8線粒體膜電位檢測 SW480細胞轉(zhuǎn)染及藥物處理方法同3.4。處理完畢后按試劑操作說明書步驟將Transwell小室中的SW480細胞用JC-1染料進行孵育,孵育完畢后用流式細胞儀檢測JC-1發(fā)出的紅色熒光,紅色熒光強度越強,線粒體膜電位越高[8]。
3.9細胞凋亡檢測 SW480細胞轉(zhuǎn)染及藥物處理方法同3.4。藥物處理完畢后按照凋亡試劑盒說明書將碘化丙啶(PI)和Annexin V加入細胞中孵育20 min,采用流式細胞術(shù)檢測腫瘤細胞的凋亡,Annexin V陽性細胞即為凋亡細胞。
4統(tǒng)計學(xué)處理
實驗數(shù)據(jù)用均數(shù)±標(biāo)準(zhǔn)差(mean±SD)表示并用SPSS 15.0統(tǒng)計分析軟件進行處理。多組間均數(shù)的比較采用單因素方差分析(one-way ANOVA),以P<0.05為差異有統(tǒng)計學(xué)意義。
1川楝素增強γδT細胞對SW480細胞的殺傷活性
體外培養(yǎng)的人單個核細胞中γδ T細胞亞群純度達到94.3%,見圖1A。這些γδ T細胞對SW480細胞有殺傷活性,且E∶T越高,γδ T細胞對SW480的殺傷活性越強(P<0.05),見圖1B。SW480細胞用川楝素與γδ T細胞進行聯(lián)合處理后,其對γδ T細胞的敏感性顯著上升(P<0.05),見圖1C,提示川楝素對γδ T細胞的抗結(jié)直腸癌活性有協(xié)同效應(yīng)。
Figure 1. Toosendanin enhanced the cytotoxicity of γδ T cells to SW480 cells. A: identification of γδ T cells using CD3 and γδ TCR antibodies; B: γδ T cells were able to induce the lysis of SW480 cells; C: co-treatment with toosendanin enhanced the cytotoxicity of γδ T cells to SW480 cells. Mean±SD.n=3.*P<0.05vscontrol;#P<0.05vs1.25∶1;&P<0.05vs2.5∶1;ΔP<0.05vs10∶1;▲P<0.05vsγδ T cells.
圖1川楝素增強γδT細胞對SW480細胞的殺傷活性
2川楝素通過抑制MCL-1的表達增強γδT細胞對SW480細胞的殺傷活性
川楝素處理不影響共培養(yǎng)體系中γδ T細胞TRAIL和FasL的分泌,見圖2A,提示川楝素不直接影響γδ T細胞的抗腫瘤活性。另外,Western blot實驗結(jié)果顯示川楝素處理雖然不影響SW480細胞抗凋亡蛋白Bcl-xL和Bcl-2的表達水平,但其能顯著抑制MCL-1蛋白的表達(P<0.05),見圖2B,提示MCL-1可能是川楝素的分子靶點。轉(zhuǎn)染MCL-1過表達質(zhì)粒能消除川楝素對MCL-1的抑制作用(P<0.05),見圖2C。同時,轉(zhuǎn)染MCL-1過表達質(zhì)粒能顯著抑制γδ T細胞聯(lián)合川楝素對SW480的殺傷活性(P<0.05),見圖2D,表明川楝素通過抑制MCL-1的表達增強γδ T細胞的抗結(jié)直腸癌活性。
3γδT細胞聯(lián)合川楝素誘導(dǎo)SW480細胞發(fā)生線粒體途徑的凋亡
川楝素能顯著增強γδ T細胞對線粒體膜電位的破壞,而過表達MCL-1則能顯著降低其損傷,見圖3A。同時,川楝素聯(lián)合處理能通過抑制MCL-1促進γδ T細胞依賴的SW480細胞中細胞色素C的釋放(圖3B)、caspase-9和caspase-3的活化(圖3C)及凋亡的發(fā)生(圖3D)。這些結(jié)果表明川楝素聯(lián)合處理能通過抑制MCL-1的表達促進結(jié)直腸癌細胞發(fā)生γδ T細胞依賴性線粒體途徑凋亡。
Figure 2. Toosendanin enhanced the cytotoxicity of γδ T cells to SW480 cells by suppressing the expression of MCL-1. A: toosendanin didn’t influence the secretion of TRAIL and FasL by γδ T cells; B: toosendanin didn’t change the expression of Bcl-xL and Bcl-2 but suppressed the expression level of MCL-1 in SW480 cells; C: MCL-1 plasmid abolished the inhibition of MCL-1 in toosendanin+γδ T cells group; D: enforced expression of MCL-1 inhibited the lysis of SW480 cells co-treated with toosendanin and γδ T cells. Mean±SD.n=3.*P<0.05vscontrol;#P<0.05vsγδ T cells;△P<0.05vsγδ T cells+toosendanin.
圖2川楝素通過抑制MCL-1的表達增強γδT細胞對SW480細胞的殺傷活性
γδ T細胞已被報道對多種腫瘤細胞都有良好的殺傷活性[9-10],因此γδ T細胞現(xiàn)已考慮作為一種免疫治療藥物進行臨床試驗。川楝素是中藥川楝子中的主要活性成分,具有很強的藥理學(xué)活性。近年來的研究發(fā)現(xiàn)川楝素還具有一定的抗腫瘤作用,對結(jié)直腸癌細胞和淋巴瘤細胞等多種惡性腫瘤細胞均有良好的輔助治療作用[11-13]。然而,川楝素是否在γδ T細胞的抗腫瘤免疫治療中存在價值,至今還未充分報道。在本研究中,我們發(fā)現(xiàn)當(dāng)用川楝素進行聯(lián)合治療后,γδ T細胞對結(jié)直腸癌細胞的殺傷活性顯著提高,表明對結(jié)直腸癌患者進行川楝素輔助治療可能是提高γδ T細胞免疫治療效果的一個新的策略。
MCL-1屬于Bcl-2蛋白家族的抗凋亡蛋白成員,主要定位于線粒體的外膜。MCL-1能與Bcl-2促凋亡蛋白成員結(jié)合使之失活,從而抑制細胞發(fā)生線粒體途徑的凋亡[14-15]。文獻報道MCL-1在多種人類惡性腫瘤細胞中均高度表達,這可能是腫瘤細胞對抗凋亡信號的重要機制。另外,MCL-1也和腫瘤細胞的耐藥有關(guān),高表達MCL-1的腫瘤患者往往預(yù)后不良[16-18]。通過輔助治療降低腫瘤細胞中MCL-1的表達水平可以有效提高其對藥物治療的敏感性,因此MCL-1可以作為腫瘤治療的一個重要靶點。
Figure 3. Toosendanin promoted mitochondrial apoptosis induced by γδ T cells in the SW480 cells. A: toosendanin enhanced collapse of mitochondrial membrane potential induced by γδ T cells in the SW480 cells; B: toosendanin promoted release of cytochrome C in γδ T cell-treated SW480 cells; C: toosendanin promoted activation of caspase-9 and caspase-3 induced by γδ T cells in SW480 cells; D: toosendanin enhanced γδ T cell-induced apoptosis in the SW480 cells. Mean±SD.n=3.*P<0.05vscontrol;#P<0.05vsγδ T cells;△P<0.05vsγδ T cells+toosendanin.
圖3川楝素促進SW480細胞的γδT細胞依賴性線粒體途徑凋亡
為了探討川楝素協(xié)同γδ T細胞殺傷結(jié)直腸癌細胞的機制,作者進行了進一步的實驗。γδ T細胞主要通過分泌TRAIL和FasL等凋亡誘導(dǎo)因子產(chǎn)生抗腫瘤活性[19],然而ELISA實驗結(jié)果發(fā)現(xiàn)川楝素處理不能增強γδ T細胞TRAIL和FasL的分泌,表明川楝素不能直接增強γδ T細胞的抗腫瘤活性,而是通過提高結(jié)直腸癌細胞自身對γδ T細胞的敏感性發(fā)揮其協(xié)同效應(yīng)。本研究發(fā)現(xiàn)川楝素能顯著降低結(jié)直腸癌細胞中MCL-1的表達,當(dāng)用重組真核過表達質(zhì)粒上調(diào)結(jié)直腸癌細胞中MCL-1的蛋白水平后,川楝素對γδ T細胞的協(xié)同抗腫瘤作用受到明顯抑制,證明川楝素是通過降低結(jié)直腸癌細胞中MCL-1蛋白的表達增強其對γδ T細胞介導(dǎo)的殺傷活性的敏感性。
在γδ T細胞介導(dǎo)的凋亡信號通路中,其分泌的凋亡誘導(dǎo)因子TRAIL和FasL能引起線粒體的損傷,使其中的細胞色素C等凋亡活性物質(zhì)從線粒體中釋放到細胞質(zhì)中,而細胞質(zhì)中的細胞色素C能與凋亡蛋白酶激活因子1結(jié)合形成復(fù)合體。該復(fù)合體能直接活化細胞中的caspase-9,從而激活下游的caspase-3,最終導(dǎo)致凋亡的發(fā)生[19-21]。鑒于川楝素是通過抑制MCL-1的表達增強γδ T細胞的抗腫瘤活性,且MCL-1是細胞線粒體途徑凋亡的重要抑制因子[22],因此作者進一步研究川楝素對γδ T細胞依賴性線粒體途徑凋亡的干預(yù)作用。實驗結(jié)果發(fā)現(xiàn)川楝素處理后的結(jié)直腸癌細胞線粒體對γδ T細胞高度敏感。γδ T細胞聯(lián)合川楝素能明顯誘導(dǎo)結(jié)直腸癌細胞發(fā)生線粒體膜電位的下降。進一步的實驗結(jié)果發(fā)現(xiàn)γδ T細胞聯(lián)合川楝素能明顯誘導(dǎo)結(jié)直腸癌細胞的細胞色素C從線粒體中釋放到細胞質(zhì)中,從而激活caspase-9及其下游的caspase-3,最終使結(jié)直腸癌細胞發(fā)生凋亡。
[1] 劉寶龍, 吳斌文, 李東風(fēng), 等. miR-375對人結(jié)腸癌細胞株HCT116活性、細胞周期及凋亡的影響[J]. 中國病理生理雜志, 2015, 31(4):609-614.
[2] Jafri SH, Mills G. Lifestyle modification in colorectal cancer patients: an integrative oncology approach[J]. Future Oncol, 2013, 9(2):207-218.
[3] Boland PM, Ma WW. Immunotherapy for colorectal cancer[J]. Cancers (Basel), 2017, 9(5):E50.
[4] Redondo-Blanco S, Fernández J, Gutiérrez-Río I, et al. New insights toward colorectal cancer chemotherapy using natural bioactive compounds[J]. Front Pharmacol, 2017, 8:109.
[5] Dokouhaki P, Schuh NW, Joe B, et al. NKG2D regulates production of soluble TRAIL byexvivoexpanded human γδ T cells[J]. Eur J Immunol, 2013, 43(12):3175-3182.
[6] Li Z. Potential of human γδ T cells for immunotherapy of osteosarcoma[J]. Mol Biol Rep, 2013, 40(1):427-437.
[7] Gonnermann D, Oberg HH, Kellner C, et al. Resistance of cyclooxygenase-2 expressing pancreatic ductal adenocarcinoma cells against γδ T cell cytotoxicity[J]. Oncoimmunology, 2015, 4(3):e988460.
[8] Prathapan A, Vineetha VP, Raghu KG. Protective effect of Boerhaavia diffusa L. against mitochondrial dysfunction in angiotensin II induced hypertrophy in H9c2 cardiomyoblast cells[J]. PLoS One, 2014, 9(4):e96220.
[9] Rong L, Li K, Li R, et al. Analysis of tumor-infiltrating γδ T cells in rectal cancer[J]. World J Gastroenterol, 2016, 22(13):3573-3580.
[10] Paul S, Lal G. Regulatory and effector functions of gamma-delta (γδ) T cells and their therapeutic potential in adoptive cellular therapy for cancer[J]. Int J Cancer, 2016, 139(5):976-985.
[11] Li X, You M, Liu YJ, et al. Reversal of the apoptotic resistance of non-small-cell lung carcinoma towards TRAIL by natural product toosendanin[J]. Sci Rep, 2017, 7:42748.
[12] Wang G, Feng CC, Chu SJ, et al. Toosendanin inhibits growth and induces apoptosis in colorectal cancer cells through suppression of AKT/GSK-3β/β-catenin pathway[J]. Int J Oncol, 2015, 47(5):1767-1774.
[13] Ju J, Qi Z, Cai X, et al. The apoptotic effects of toosendanin are partially mediated by activation of deoxycytidine kinase in HL-60 cells[J]. PLoS One, 2012, 7(12):e52536.
[14] Chu JQ, Jing KP, Gao X, et al. Toxoplasma gondii induces autophagy and apoptosis in human umbilical cord mesenchymal stem cells via downregulation of Mcl-1[J]. Cell Cycle, 2017, 16(5):477-486.
[15] 應(yīng) 曉, 王再紅, 王振華. miR-193b體外協(xié)同增強多柔比星對乳腺癌細胞的抗腫瘤效應(yīng)[J]. 中國病理生理雜志, 2015, 31(9):1584-1588.
[16] Thomas LW, Lam C, Edwards SW. Mcl-1; the molecular regulation of protein function[J]. FEBS Lett, 2010, 584(14):2981-2989.
[17] Palve V, Mallick S, Ghaisas G, et al. Overexpression of Mcl-1L splice variant is associated with poor prognosis and chemoresistance in oral cancers[J]. PLoS One, 2014, 9(11):e111927.
[18] Nguyen M, Marcellus RC, Roulston A, et al. Small molecule obatoclax (GX15-070) antagonizes MCL-1 and overcomes MCL-1-mediated resistance to apoptosis[J]. Proc Natl Acad Sci U S A, 2007, 104(49):19512-19517.
[19] Zou C, Zhao P, Xiao Z, et al. γδ T cells in cancer immunotherapy[J]. Oncotarget, 2017, 8(5):8900-8909.
[20] Huang G, Chen X, Cai Y, et al. miR-20a-directed regulation of BID is associated with the TRAIL sensitivity in colorectal cancer[J]. Oncol Rep, 2017, 37(1):571-578.
[21] Zhou M, Li Y, Hu Q, et al. Atomic structure of the apoptosome: mechanism of cytochrome c- and dATP-mediated activation of Apaf-1[J]. Genes Dev, 2015, 29(22):2349-2361.
[22] Woo SM, Min KJ, Seo BR, et al. YM155 enhances ABT-737-mediated apoptosis through Mcl-1 downregulation in Mcl-1-overexpressed cancer cells [J]. Mol Cell Biochem, 2017, 429(1-2):91-102.
(責(zé)任編輯: 陳妙玲, 宋延君)
Toosendanin exerts synergistic effect on γδ T cell-induced cytotoxicity to colorectal cancer by suppressing expression of MCL-1
YU Feng, XU Tong-qiu, CHEN Cheng-hao, CUI Jun-hui
(DepartmentofAnus-intestines,TongdeHospitalofZhejiangProvince,Hangzhou310012,China.E-mail:mytc_cn@163.com)
AIM: To investigate the synergistic effect of toosendanin on regulating the cytotoxicity of γδ T cells to colorectal cancer cells.METHODSγδ T cells amplifiedinvitrowere identified by flow cytometry. Lactate dehydrogenase (LDH) release was detected to evaluate the cytotoxicity of γδ T cells and toosendanin to SW480 cells. The role of toosendanin in regulating the protein expression of Bcl-xL, Bcl-2 and MCL-1 was determined by Western blot. The effect of toosendanin on regulating the secretion of TNF-related apoptosis-inducing ligand (TRAIL) and Fas ligand (FasL) by γδ T cells was evaluated by ELISA. The mitochondrial membrane potential and apoptosis in SW480 cells treated with γδ T cells and toosendanin were analyzed by flow cytometry. The activation of caspase-9 and caspase-3 were determined by Western blot.RESULTSCD3 and γδ T-cell receptor (TCR) were highly expressed in the γδ T cells amplifiedinvitro. Combination with toosendanin significantly enhanced the cytotoxicity of γδ T cells to SW480 cells. Toosendanin did not influence the secretion of TRAIL and FasL secreted by γδ T cells. Toosendanin did not regulate the expression of Bcl-xL and Bcl-2 but suppressed the expression of MCL-1 in SW480 cells. In addition, enforced expression of MCL-1 obviously suppressed the synergistic effect of toosendanin on γδ T cell-induced cell death in SW480 cells. Meanwhile, co-treatment with toosendanin was able to enhance the γδ T cell-induced apoptosis and decrease of mitochondrial membrane potential. γδ T cell-dependent activation of caspase-9 and caspase-3 was significantly enhanced by toosendanin co-treatment in SW480 cells.CONCLUSIONToosendanin exerts synergistic effect on γδ T cell-induced cytotoxicity to colorectal cancer by suppressing the expression of MCL-1.
Toosendanin; MCL-1; γδ T cells; Colorectal cancer
1000- 4718(2017)11- 2020- 06
2017- 05- 15
2017- 07- 05
△通訊作者 Tel: 0571-89972372; E-mail: mytc_cn@163.com
R735.7; R285.5
A
10.3969/j.issn.1000- 4718.2017.11.016