• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influence of aircraft surface distribution on electromagnetic scattering characteristics

    2017-11-20 12:07:37LiuDaweiHuangJunSongLeiJiJinzu
    CHINESE JOURNAL OF AERONAUTICS 2017年2期

    Liu Dawei,Huang Jun,Song Lei,Ji Jinzu

    School of Aeronautic Science and Engineering,Beihang University,Beijing 100083,China

    Influence of aircraft surface distribution on electromagnetic scattering characteristics

    Liu Dawei,Huang Jun,Song Lei*,Ji Jinzu

    School of Aeronautic Science and Engineering,Beihang University,Beijing 100083,China

    Aircraft concept;Electromagnetic scattering characteristic;Horizontal polarization;MLFMA;Stealth;Surface distribution;Vertical polarization

    In this paper,two typical stealth aircraft concepts(wing fuselage blended and flyingwing)were designed.Then three gradually changed surface distribution models with the same planform for each concept were created.Based on the multilevel fast multipole algorithm(MLFMA),the vertical polarization transmitting/vertical polarization receiving(VV)and horizontal polarization transmitting/horizontal polarization receiving(HH)radar cross section(RCS)characteristics were simulated with five frequencies between 0.1 and 1.0 GHz.The influences and mechanisms of aircraft surface distribution on electromagnetic scattering characteristics were investigated.The results show that for the wing fuselage blended concept,the VV RCS of this frequency range is higher than the HH RCS in most cases,while it is just the opposite for the flying-wing concept.As for the two aircraft concepts,the RCS levels of HH and VV both decrease with the frequency increasing,but the HH RCS has a faster downward trend.The surface distribution has little influence on HH RCS characteristics.On the contrary,it has a significant impact on VV RCS characteristics,and the amplitude of the VV RCS increases with the surface thickness.

    1.Introduction

    With the rapid development of radar technologies,lowobservability or stealth performance has become more and more important for modern battle planes.Taking the radar cross section(RCS)reduction as a goal,radar stealth technologies mainly include shape-stealth,material-stealth,active offset,etc.Among them,the shape-stealth technology is the most effective method for improving aircraft stealth performance.1Main shape-stealth technologies include edge parallel,wing fuselage blended,cancelled empennage,tilt-empennage,etc.For the purpose of stealth performance,some newgeneration stealth aircraft concepts have removed the vertical tail.

    In recent years,a lot of works on aircraft shape stealth have been done and many results have been achieved.2–10In previous studies,most of the research focused on the effects of aircraft configurations,plane shape parameters,and airfoil parameters on stealth performance.However,little research has been conducted on the influence of aircraft surface distribution on aircraft electromagnetic scattering characteristics.For the overall design of stealth aircraft,the planform designis decided by performance indexes.Then according to stealth and aerodynamic characteristics,the aircraft surface distribution is iteratively designed.High scattering sources can be carried out by the design of the aircraft planform,while weak scattering sources(such as the traveling wave and creeping wave scattering)are mainly relative to the surface distribution.Therefore,the objective of this paper was to investigate the influence of aircraft surface distribution on electromagnetic scattering characteristics,and then get a regularity conclusion,which can provide a basic guidance for the aircraft multiobjective design of aerodynamic and stealthy performance.In this paper,two typical stealth aircraft concepts,i.e.,wing fuselage blended and flying-wing configurations, were designed.In order to investigate the influence of aircraft surface distribution on electromagnetic scattering characteristics,three gradually changed surface distribution geometrical models with the same planform for each concept were created used the CATIA software.Then based on the multilevel fast multipole algorithm(MLFMA),11the scattering characteristics of different surface distribution models were simulated and analyzed.

    2.Geometrical configurations

    Two kinds of typical stealth aircraft configurations were designed in this paper:the wing fuselage blended concept(X concept)and the flying-wing concept(Y concept).

    Fig.1 shows the X concept geometrical dimensions.As can be seen in Fig.1,the X concept adopted the wing fuselage blended configuration.The aircraft length is 10 m,and the wing span is 9 m.Three characteristic sweep angles exist in the aircraft flat shape:the wing leading edge sweep angle is 40?,the sweep angle of the wing strake is 75?,and the wing trailing edge has a 15?sweep-forward angle.

    In order to investigate the influence of wing fuselage blended aircraft surface distribution on electromagnetic scattering characteristics,three gradually changed surface distribution geometrical models with the same planform for the X concept were created(X_A,X_B,and X_C).For the X_A model,the aircraft spanwise cross section is symmetric parabola airfoil,and the airfoil relative thickness is set to 1%.Equivalent to a very thin plate,the X_A model represents the best stealth performance aircraft surface distribution for this planform.Relative to the X_A model,the X_B model has an increased back uplift surface,which contains a fuel tank and engine components.The X_C model is the actual complete wing fuselage blended aircraft model.Compared with X_B,a blocked inlet and engine cowling were added on the aircraft belly.The obliquity angles of the inlet side and front faces are 21.65?and 45?,respectively.

    Fig.2 shows the Y concept geometrical dimensions.As can be seen in Fig.2,the Y concept adopted the flying-wing configuration.The whole wing span is 21.6 m,the length of the central fuselage is 7.8 m,the chord length of the outboard straight wing is 2.4 m,and the sweep angle is 35?.

    Like the X concept,there are also three gradually changed surface geometrical models with the same planform for the Y concept(Y_A,Y_B,and Y_C).The Y_C model is the actual complete flying-wing aircraft model.Relative to the Y_C model,the Y_B model has the same outboard wing surface distribution,while the central fuselage surface thickness is reduced to that of the outboard wing.For the Y_A model,the aircraft spanwise cross section is symmetric parabola airfoil,and the airfoil relative thickness is set to 5%.Equivalent to a very thin plate,the Y_A model also represents the best stealth performance aircraft surface distribution for this planform.

    Fig.1 Wing fuselage blended aircraft geometrical dimensions and surface distribution.

    Fig.2 Flying-wing aircraft geometrical dimensions and surface distribution.

    3.Numerical method and validation

    3.1.Numerical method

    At present,the main numerical simulation methods of aircraft RCS are high-frequency algorithms.1The major advantages of these algorithms are less time-consuming and low memory requirements.12However,they cannot precisely simulate the target surface current.In addition,they are not suitable to solve complex scattering targets,for instance,aircraft surface structure gaps or steps.13The method of moments(MOM)14has high calculation accuracy,but are limited to a required memory level and time-consuming,so the MOM cannot simulate large scatterers like aircraft.15The MLFMA is a highly efficient and precisely controlled algorithm.Owing to high precision and efficiency,the MLFMA has found wide applications in aircraft RCS calculations in recent years,16–19so in this paper,the MLFMA was used to numerically simulate the RCS characteristics of the aircraft models.

    The basic principle of the MLFMA is that the combined field integral equation can be expressed by19,20

    Fig.3 Implementation process of MLFMA.

    Fig.4 Electromagnetic test of a scaled flying-wing aircraft model in an anechoic chamber.

    The matrix vector products computation process is divided into the near interaction which is calculated by the MOM and the far interaction which is divided with the MLFMA into three phases(Fig.3):aggressive phase,translation phase,and disaggregation phase.For the aggregation phase,the outgoing pattern is computed at the finest level by calculating the radiation patterns ofcorresponding sources,while acoarser-level calculation of the outgoing pattern is obtained through interpolation and shift from its child level.The incoming patterns of both top and lower levels are obtained through interpolation.

    3.2.Numerical simulation method validation

    In order to validate the numerical simulation method,an electromagnetic test of a scaled flying-wing aircraft model was conducted in an anechoic chamber(Fig.4).A 3D aircraft prototype was produced by the 3D printing technology.The initial conditions of the electromagnetic test and numerical simulation through the MLFMA were:the radiation frequency was 10 GHz,the pitching angle of the incident wave was set to 0?,the pitch and roll angles of the prototype were 0?,and horizontal polarization transmitting/horizontal polarization receiving(HH)and vertical polarization transmitting/vertical polarization receiving(VV)were adopted in the test and numerical simulation.The simulated and experimental HH and VV RCS curves are compared in Fig.5,in which u is the azimuth angle.From Fig.5 it can be seen that the simulated RCS spikes and curve trend are in good agreements with those determined by the electromagnetic test.All of these validate the numerical method and the simulated results of aircraft RCS characteristics in this study.

    4.Presentation of results

    4.1.Influence of surface distribution on RCS characteristics for wing fuselage blended concept

    Fig.5 Comparison of RCS curves between MLFMA numerical simulation and electromagnetic test.

    Figures 6 and 7 shows the HH and VV RCS characteristics of the wing fuselage blended concept.When the radiation frequency is 100 MHz,the VV RCS curve fluctuates little along the circumferential direction,and no significant RCS spike appears.As the radar radiation frequency rises to 300 MHz,the spike resulted by the characteristic swept angle becomes more and more significant.With the radar radiation frequency rising further,the vertical RCS spike widths of the three models of the X concept become narrow,and the X_A and X_B spike heights almost don’t change,while the X_C model RCS spikes have a downtrend which can be deduced by the result of the scattering field superposition of the fuselage surface and the leading-trailing edge.

    A common characteristic exists for the VV RCS curves of the X_A,X_B,and X_C models,that is,the curve concussion levels are all below 10 dB as the radiation frequency increases.It can be deduced that this phenomenon is caused by the aircraft components surface size effect.The VV circumferential RCS values have a promotion of about 20 dB from the X_A model to the X_B model.This reflects that the thickness of the spanwise cross section has a significant influence on the VV RCS value.Comparing the X_C VV RCS curve with that of X_B,we can see that the spike located at the azimuth angle of 15?is replaced by a flat‘upland”;a new spike appears at the azimuth angle of 90?;a relatively high scattering region is formed by the spikes located at azimuth angles of 75?,90?,and 105?;the non-spike part of the RCS curve has an increase of about 10 dB and the average increment of the frontward RCS value is up to 20 dB.

    For the same radiation frequency,the HH RCS curves of the X_A,X_B,and X_C models have the same spikes and trend.This indicates that in this frequency range,the vertical extend of the aircraft surface has less influence on the HH RCS characteristic of the wing fuselage blended concept.

    Fig.6 VV and HH RCS characteristics of wing fuselage blended aircraft(100–500 MHz).

    Fig.7 VV and HH RCS characteristics of wing fuselage blended aircraft(800–1000 MHz).

    Fig.8 VV and HH RCS characteristics of flying-wing aircraft(100–300 MHz).

    When the radiation frequency is less than 500 MHz,three HH RCS spikes exist on the curves at azimuth angle of 40?,75?,and 140?,which correspond to the three characteristic swept angles.Due to the short length,the wing side edge will not produce RCS spikes even in proximal front irradiation.After the radiation frequency increases up to 500 MHz,the ratio between the length of the wing side edge and the incident wavelength gets greater,and the RCS spike caused by the wing side edge appears and the spike value increases with the frequency.The fluctuation of the RCS curve increases with the radiation frequency.For the 100 MHz radiation frequency,the RCS values have little fluctuation and stay at the level of 5 dBsm2around.As the radiation frequency increases up to 300 MHz,the circumferential RCS value is not influenced by the radiation frequency significantly,and the fluctuated level is about 10 dB.

    Compared to the other two models,there is a weaker RCS spike at the azimuth angle of 90?for the X_C model when the radiation frequency is less than 500 MHz.According to the geometrical model,this RCS spike is produced by the side face of the inlet,while the blocked front face of the inlet has not produced any spike.As can be seen in Fig.1,the obliquity angle of the inlet front face is 45?,23.35?larger than that of the side face.We can induce that the larger obliquity angle is the reason why no spike is produced at the position of the forward of the aircraft inlet.

    4.2.RCS characteristics of flying-wing configuration concept

    Figures.8 and 9 shows the VV and HH RCS characteristics of the flying-wing concept.For both VV polarization and HH polarization,RCS spikes are located at azimuth 35?and 145?positions.These spikes are mainly caused by the leading and trailing edges of the sweep wing.

    Fig.9 VV and HH RCS characteristics of flying-wing aircraft(500–1000 MHz).

    For the VV polarization characteristic,the width of the RCS spike has little change as the surface distribution gradually changes from the Y_A model to the Y_C model.The spike value for Y_B is significantly larger than that of Y_A,and the difference increases when the radiation frequency increases,while the spike heights of Y_B and Y_C are almost invariant.Caused by the coupling of the outer wing tip section and the inboard surface,the three models of the Y concept all have a vertical RCS spike at the azimuth angle of 90?,and the spike width increases in turn from the Y_A model to the Y_C model.The RCS spike disappears as the radiation frequency increases to a certain value.From the Y_A model to the Y_C model,the VV RCS at the non-spike region has a downtrend as the radiation frequency increases,but the decreased amplitude becomes smaller in turn.

    When the radiation frequency exceeds 100 MHz,the widths of the two spikes are invariant.As the radiation frequency increases,the amplitude of the RCS spike located at the azimuth angle of 35℃hanges a little,while the spike value at the azimuth angle of 145?decreases by about 6 dB after the radiation frequency increases up to 500 MHz.In the nonspike regions,the horizontal RCS curves all have a downtrend when the radiation frequency increases.The HH polarization scattering RCS curve amplitudes and trends for the Y_A,Y_B,and Y_C models are almost the same everywhere.In this frequency range,the spanwise cross section has little influence on HH polarization characteristics.

    5.Conclusions

    In the present study,the influence of aircraft surface distribution on the stealth performance at radiation frequencies between 100 MHz and 1000 MHz has been investigated through the MLFMA numerical simulation.The conclusions are summarized as follows:

    (1)For the wing fuselage blended concept,the VV RCS of this frequency range is higher than the HH RCS in most cases,while the RCS curves for the flying-wing aircraft concept are just the opposite.

    (2)As the frequency increases,radar scattering tends to optical scattering and the directivity gradually strengthens.The RCS levels of HH and VV both decrease with the frequency increasing,but the HH RCS has a faster downward trend.

    (3)The surface distribution has little influence on RCS characteristics with HH polarization.On the contrary,it has a significant impact on RCS characteristics with VV polarization,and the amplitude of the VV RCS increases with the spanwise cross section thickness.

    (4)The RCS spikes caused by the aircraft inlet are decided by the inlet surface obliquity angle.The aircraft inlet forward and lateral surface design needs emphatic consideration.

    1.Ruan YZ.Radar cross section and stealth technology.Beijing:National Defense Industry Press;1998.p.11–2[Chinese].

    2.Whitford R.Designing for stealth in fighter aircraft(stealth from the aircraft designer’s viewpoint).Warrendale(PA):SAE International;1996.Report No.:SAE Technical Paper 965540.

    3.Paterson J.Overview of low observable technology and its effects on combat aircraft survivability.J Aircraft1999;36(2):380–8.

    4.Yue KZ,Jia ZH,Ji JZ,Su M.Numerical simulation on the RCS of carrier-based electronic warfare aircraft.Syst Eng Electr2014;36(5):852–8[Chinese].

    5.Yue KZ,Sun C,Ji JZ.Numerical simulation on the stealth characteristics of twin-vertical-tails for fighter.J Beijing Univer Aeronau Astronau2014;40(2):160–5[Chinese].

    6.Yue KZ,Tian YF,Liu H,Han W.Conceptual design and RCS property research of three-surface strike fighter.Int J Aeronaut Space Sci2014;15(3):309–19.

    7.Chen SC,Yue KZ,Hu B,Guo R.Numerical simulation on the radar cross section of variable-sweep wing aircraft.J Aerosp Technol Manage2015;7(2):170–8.

    8.Yue KZ,Gao Y,Li GX,Yu DZ.Conceptual design and RCS performance research of shipborne early warning aircraft.J Syst Eng Electron2014;25(6):968–76.

    9.Chen LL,Yue KZ,Xing CF,Yu D.RCS numerical simulation of stealth modified three-surface aircraft.Int J Aeronaut Space Sci2016;17(1):101–8.

    10.Li Y,Huang J,Hong S,Wu Z,Liu Z.A new assessment method for the comprehensive stealth performance of penetration aircrafts.Aerosp Sci Technol2011;15(7):511–8.

    11.Song JM,Lu CC,Chew WC.Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects.IEEE Trans Antennas Propag1997;45(10):1488–93.

    12.Knott EF.A progression of high-frequency RCS prediction techniques.Proc IEEE1985;73(2):252–64.

    13.Senior T,Volakis JL.Scattering by gaps and cracks.IEEE Trans Antennas Propag1989;37(6):744–50.

    14.Wang JJH.Generalized moment methods in electromagnetics.IEE Proc H1990;137(2):127–32.

    15.Gao ZH,Wang ML.An efficient algorithm for calculating aircraft RCS based on the geometrical characteristics.Chin J Aeronaut2008;21(4):296–303.

    16.Rao SM,Wilton DR,Glisson AW.Electromagnetic scattering by surfaces of arbitrary shape.IEEE Trans Antennas Propag1982;30(3):409–18.

    17.Cui TJ,Chew WC,Chen G,Song J.Efficient MLFMA,RPFMA,and FAFFA algorithms for EM scattering by very large structures.IEEE Trans Antennas Propag2004;52(3):759–70.

    18.Liu ZH,Huang PL,Wu Z,Gao X.Analysis of scattering from serrated edge plate on aircraft with MLFMA.J Beijing Univer Aeronau Astronau2008;34(5):499–502[Chinese].

    19.Liu ZH,Huang PL,Gao X,Ji JZ.Multi-frequency RCS reduction characteristics of shape stealth with MLFMA with improved MMN.Chin J Aeronaut2010;23(3):327–33.

    20.Song JM,Chew WC.Fast multipole method solution of three dimensional integral equation.IEEE Trans Antennas Propag1995;45(10):1528–31.

    23 February 2016;revised 21 October 2016;accepted 27 November 2016

    Available online 20 February 2017

    *Corresponding author.

    E-mail address:songlei@buaa.edu.cn(L.Song).

    Peer review under responsibility of Editorial Committee of CJA.

    老司机影院毛片| 纯流量卡能插随身wifi吗| 欧美久久黑人一区二区| bbb黄色大片| 夫妻性生交免费视频一级片| 久热这里只有精品99| 一二三四在线观看免费中文在| 搡老乐熟女国产| 精品国产乱码久久久久久小说| 精品久久久久久久毛片微露脸 | 亚洲欧美精品综合一区二区三区| 青春草亚洲视频在线观看| 最黄视频免费看| 五月开心婷婷网| 成年av动漫网址| 两个人看的免费小视频| 国产欧美日韩综合在线一区二区| 成人亚洲欧美一区二区av| 成年动漫av网址| 欧美日韩黄片免| 国产成人免费无遮挡视频| 99热网站在线观看| 日韩av不卡免费在线播放| 女人久久www免费人成看片| 丁香六月天网| 亚洲欧美日韩另类电影网站| 久久99热这里只频精品6学生| 久久ye,这里只有精品| 久久精品久久久久久噜噜老黄| 国产亚洲精品久久久久5区| 美女中出高潮动态图| 精品国产超薄肉色丝袜足j| 亚洲精品国产av成人精品| 久久影院123| 亚洲国产av新网站| 男女免费视频国产| 人妻一区二区av| 91麻豆精品激情在线观看国产 | 亚洲激情五月婷婷啪啪| 免费在线观看完整版高清| 两个人免费观看高清视频| 涩涩av久久男人的天堂| 亚洲欧美日韩另类电影网站| 中文字幕av电影在线播放| 久久久久国产一级毛片高清牌| 观看av在线不卡| 大型av网站在线播放| 欧美黑人欧美精品刺激| 亚洲视频免费观看视频| 999久久久国产精品视频| 国产精品国产三级国产专区5o| 最近手机中文字幕大全| 国产人伦9x9x在线观看| 操美女的视频在线观看| 日本av免费视频播放| 波野结衣二区三区在线| 捣出白浆h1v1| 亚洲少妇的诱惑av| a 毛片基地| 久久精品久久精品一区二区三区| 亚洲国产中文字幕在线视频| 一级片'在线观看视频| 欧美日韩福利视频一区二区| 亚洲一码二码三码区别大吗| av有码第一页| 国产精品国产av在线观看| 男女无遮挡免费网站观看| 自线自在国产av| 亚洲精品成人av观看孕妇| 亚洲欧美清纯卡通| 黄色a级毛片大全视频| 欧美中文综合在线视频| 十分钟在线观看高清视频www| 超色免费av| 亚洲欧美精品自产自拍| 老汉色av国产亚洲站长工具| 日韩视频在线欧美| 黄片小视频在线播放| 人妻 亚洲 视频| av线在线观看网站| 欧美日韩黄片免| 99国产精品一区二区三区| av国产精品久久久久影院| av一本久久久久| 国产97色在线日韩免费| 欧美亚洲 丝袜 人妻 在线| 亚洲国产精品一区二区三区在线| 九草在线视频观看| 18禁国产床啪视频网站| 精品一区二区三卡| 亚洲精品一区蜜桃| 亚洲精品在线美女| 免费在线观看影片大全网站 | 精品亚洲成a人片在线观看| 免费看av在线观看网站| 丝袜在线中文字幕| 一级黄片播放器| 欧美精品啪啪一区二区三区 | 国产国语露脸激情在线看| 婷婷色麻豆天堂久久| 亚洲欧美一区二区三区黑人| 成人亚洲欧美一区二区av| 亚洲成色77777| 99国产精品免费福利视频| 国产一区二区激情短视频 | 国产又爽黄色视频| 91字幕亚洲| 老司机靠b影院| 亚洲精品国产区一区二| 国产无遮挡羞羞视频在线观看| 我要看黄色一级片免费的| 高潮久久久久久久久久久不卡| 高潮久久久久久久久久久不卡| 搡老乐熟女国产| 丰满迷人的少妇在线观看| 黑人猛操日本美女一级片| 国产精品人妻久久久影院| 黄色片一级片一级黄色片| 十八禁人妻一区二区| 狠狠婷婷综合久久久久久88av| 十八禁人妻一区二区| 男女边摸边吃奶| 国产精品 国内视频| 中文字幕另类日韩欧美亚洲嫩草| 高清视频免费观看一区二区| 午夜影院在线不卡| 国产精品国产av在线观看| 男人添女人高潮全过程视频| 国产精品久久久av美女十八| 国产深夜福利视频在线观看| 亚洲精品国产av蜜桃| 国产一级毛片在线| 亚洲 国产 在线| 亚洲精品在线美女| 亚洲五月色婷婷综合| 久热爱精品视频在线9| 老司机亚洲免费影院| 午夜91福利影院| 亚洲午夜精品一区,二区,三区| 啦啦啦视频在线资源免费观看| av一本久久久久| 亚洲精品国产一区二区精华液| 国产成人免费观看mmmm| 亚洲天堂av无毛| 国产精品国产三级专区第一集| 狠狠婷婷综合久久久久久88av| 一级毛片黄色毛片免费观看视频| 精品久久久久久久毛片微露脸 | 伊人久久大香线蕉亚洲五| 激情视频va一区二区三区| 国产精品免费视频内射| 国产黄色视频一区二区在线观看| 亚洲精品日本国产第一区| 日本欧美国产在线视频| 日韩免费高清中文字幕av| 中文字幕高清在线视频| av国产精品久久久久影院| 久久99热这里只频精品6学生| 黄片播放在线免费| 免费在线观看日本一区| 亚洲欧洲精品一区二区精品久久久| 成人国语在线视频| 免费不卡黄色视频| 91麻豆av在线| 久久久久国产一级毛片高清牌| av网站在线播放免费| 男女高潮啪啪啪动态图| 国产高清videossex| 91九色精品人成在线观看| 国产欧美日韩一区二区三区在线| 国产成人欧美| 精品一区二区三卡| 国产av一区二区精品久久| 91麻豆精品激情在线观看国产 | 久久久久久久久免费视频了| 搡老乐熟女国产| 久久久久久久精品精品| 国产成人免费无遮挡视频| 精品国产国语对白av| 侵犯人妻中文字幕一二三四区| 欧美日韩精品网址| 午夜两性在线视频| 婷婷成人精品国产| 久久人人97超碰香蕉20202| 天天影视国产精品| 久久精品aⅴ一区二区三区四区| 精品亚洲成国产av| 高清av免费在线| 久久久久国产一级毛片高清牌| svipshipincom国产片| 制服人妻中文乱码| 欧美久久黑人一区二区| 午夜免费鲁丝| 国产99久久九九免费精品| 最近手机中文字幕大全| 高清欧美精品videossex| www日本在线高清视频| 五月天丁香电影| 黄色视频在线播放观看不卡| 亚洲成人免费电影在线观看 | 久久久亚洲精品成人影院| 嫁个100分男人电影在线观看 | 又紧又爽又黄一区二区| 午夜视频精品福利| 欧美 日韩 精品 国产| 999久久久国产精品视频| 国产亚洲av片在线观看秒播厂| 亚洲欧美色中文字幕在线| 日韩,欧美,国产一区二区三区| 九草在线视频观看| 免费高清在线观看日韩| 51午夜福利影视在线观看| 美女大奶头黄色视频| 亚洲国产中文字幕在线视频| 亚洲精品久久午夜乱码| 欧美性长视频在线观看| 热re99久久精品国产66热6| 极品少妇高潮喷水抽搐| 国产精品香港三级国产av潘金莲 | av网站在线播放免费| 精品少妇久久久久久888优播| 五月天丁香电影| 午夜免费成人在线视频| 一二三四社区在线视频社区8| 国产有黄有色有爽视频| 免费观看a级毛片全部| 大片电影免费在线观看免费| 在线观看免费高清a一片| 国产精品一二三区在线看| 在线观看一区二区三区激情| 大香蕉久久网| 久久精品国产亚洲av高清一级| 精品国产一区二区久久| 青青草视频在线视频观看| 久久精品亚洲熟妇少妇任你| 18禁观看日本| a级片在线免费高清观看视频| 亚洲国产欧美一区二区综合| 国产一区二区在线观看av| 多毛熟女@视频| 91精品伊人久久大香线蕉| 国产精品久久久久久精品电影小说| 亚洲专区中文字幕在线| 久热这里只有精品99| 香蕉丝袜av| 女警被强在线播放| 男女边吃奶边做爰视频| 99国产精品99久久久久| 日韩一区二区三区影片| 亚洲第一av免费看| 看免费成人av毛片| 久久天躁狠狠躁夜夜2o2o | 18禁观看日本| 久久精品aⅴ一区二区三区四区| av有码第一页| 狠狠婷婷综合久久久久久88av| 大香蕉久久成人网| av又黄又爽大尺度在线免费看| 日日夜夜操网爽| 亚洲午夜精品一区,二区,三区| 18禁观看日本| 欧美黑人精品巨大| 久久国产精品大桥未久av| 中文欧美无线码| 国产成人欧美在线观看 | 免费在线观看日本一区| 美女国产高潮福利片在线看| av线在线观看网站| 亚洲成av片中文字幕在线观看| 日韩av在线免费看完整版不卡| 一级毛片 在线播放| 久久青草综合色| 一边摸一边做爽爽视频免费| 国产av一区二区精品久久| 超色免费av| 黄色a级毛片大全视频| 免费在线观看视频国产中文字幕亚洲 | 男女边摸边吃奶| 91麻豆av在线| netflix在线观看网站| 国产一级毛片在线| 美女午夜性视频免费| 大陆偷拍与自拍| 伊人亚洲综合成人网| 国产97色在线日韩免费| 一级毛片我不卡| 国产精品一二三区在线看| 国产一卡二卡三卡精品| 久久精品亚洲av国产电影网| 国产成人免费观看mmmm| 夫妻午夜视频| 久久国产亚洲av麻豆专区| 一边摸一边抽搐一进一出视频| 黄色 视频免费看| 成人午夜精彩视频在线观看| 国产熟女欧美一区二区| 国产成人精品无人区| 亚洲欧美成人综合另类久久久| 日日夜夜操网爽| 在线观看www视频免费| 美女午夜性视频免费| 成人亚洲精品一区在线观看| 国产一区二区三区av在线| 免费av中文字幕在线| 亚洲精品一卡2卡三卡4卡5卡 | 韩国精品一区二区三区| 你懂的网址亚洲精品在线观看| 国产片内射在线| 国产精品一二三区在线看| 无遮挡黄片免费观看| 亚洲欧美精品自产自拍| 人人澡人人妻人| 亚洲少妇的诱惑av| 国产男女超爽视频在线观看| 国产精品人妻久久久影院| 韩国高清视频一区二区三区| av欧美777| 中文字幕人妻熟女乱码| av国产精品久久久久影院| 欧美+亚洲+日韩+国产| 久久中文字幕一级| av又黄又爽大尺度在线免费看| 免费日韩欧美在线观看| 精品国产一区二区三区四区第35| 丝袜人妻中文字幕| xxxhd国产人妻xxx| 亚洲 国产 在线| 免费女性裸体啪啪无遮挡网站| 少妇人妻久久综合中文| 久久国产精品人妻蜜桃| 久久精品久久精品一区二区三区| av电影中文网址| 亚洲国产成人一精品久久久| 亚洲精品一二三| 亚洲欧美一区二区三区黑人| 一级毛片 在线播放| 欧美 亚洲 国产 日韩一| 亚洲精品成人av观看孕妇| 巨乳人妻的诱惑在线观看| 日本a在线网址| 女人精品久久久久毛片| 亚洲自偷自拍图片 自拍| 999精品在线视频| 国产成人一区二区在线| 成年人黄色毛片网站| 欧美久久黑人一区二区| 黄色视频在线播放观看不卡| 亚洲国产成人一精品久久久| 美女大奶头黄色视频| 亚洲av电影在线观看一区二区三区| 丝袜脚勾引网站| 熟女av电影| 午夜老司机福利片| 99九九在线精品视频| 一个人免费看片子| 人成视频在线观看免费观看| 日本av手机在线免费观看| 久久精品久久久久久久性| 在线天堂中文资源库| 成年人黄色毛片网站| 91精品国产国语对白视频| 午夜福利视频在线观看免费| 美女大奶头黄色视频| 日本av手机在线免费观看| 91成人精品电影| 久久精品成人免费网站| 91精品伊人久久大香线蕉| 极品少妇高潮喷水抽搐| 这个男人来自地球电影免费观看| 免费在线观看日本一区| 男女无遮挡免费网站观看| 成人手机av| 一区二区三区乱码不卡18| 午夜影院在线不卡| 亚洲激情五月婷婷啪啪| 国产高清videossex| 国产无遮挡羞羞视频在线观看| 亚洲av美国av| 菩萨蛮人人尽说江南好唐韦庄| 亚洲自偷自拍图片 自拍| a级片在线免费高清观看视频| 两人在一起打扑克的视频| 热99国产精品久久久久久7| 人妻 亚洲 视频| 亚洲熟女精品中文字幕| 色播在线永久视频| 午夜福利乱码中文字幕| 国产成人影院久久av| 91老司机精品| 日本五十路高清| 国产女主播在线喷水免费视频网站| 久久ye,这里只有精品| 天天躁夜夜躁狠狠躁躁| 欧美xxⅹ黑人| 91老司机精品| av在线app专区| 久久免费观看电影| 啦啦啦视频在线资源免费观看| 亚洲欧美色中文字幕在线| 日韩大码丰满熟妇| 亚洲国产欧美网| 一二三四社区在线视频社区8| 男女之事视频高清在线观看 | 青青草视频在线视频观看| 欧美+亚洲+日韩+国产| 亚洲欧美一区二区三区黑人| 菩萨蛮人人尽说江南好唐韦庄| av在线播放精品| 免费看不卡的av| 亚洲色图 男人天堂 中文字幕| 国产人伦9x9x在线观看| 少妇精品久久久久久久| 成年人免费黄色播放视频| 久久九九热精品免费| 夜夜骑夜夜射夜夜干| 国产野战对白在线观看| 99国产精品一区二区蜜桃av | 男人操女人黄网站| 真人做人爱边吃奶动态| 涩涩av久久男人的天堂| 亚洲人成电影观看| 两个人看的免费小视频| av线在线观看网站| 一级毛片黄色毛片免费观看视频| 少妇的丰满在线观看| 欧美精品亚洲一区二区| 视频区欧美日本亚洲| 黑人猛操日本美女一级片| 自拍欧美九色日韩亚洲蝌蚪91| 人人妻人人添人人爽欧美一区卜| 国产精品久久久av美女十八| 欧美日韩成人在线一区二区| 在现免费观看毛片| 久久国产精品大桥未久av| 色视频在线一区二区三区| 日韩精品免费视频一区二区三区| 美女主播在线视频| 国产精品久久久久久精品电影小说| 一区二区三区激情视频| 色播在线永久视频| 久久精品国产亚洲av涩爱| 亚洲av男天堂| 婷婷成人精品国产| 国产精品一区二区在线观看99| 精品久久蜜臀av无| 999精品在线视频| 人体艺术视频欧美日本| 日本猛色少妇xxxxx猛交久久| 中文字幕亚洲精品专区| 欧美xxⅹ黑人| 国产精品一区二区免费欧美 | 午夜激情av网站| 九草在线视频观看| 大码成人一级视频| 九色亚洲精品在线播放| 国产在线视频一区二区| 国产一区亚洲一区在线观看| 国产亚洲一区二区精品| 亚洲人成77777在线视频| 日本猛色少妇xxxxx猛交久久| 每晚都被弄得嗷嗷叫到高潮| 精品免费久久久久久久清纯 | 亚洲欧洲精品一区二区精品久久久| 韩国精品一区二区三区| 男人操女人黄网站| 少妇粗大呻吟视频| 中文欧美无线码| 亚洲欧美中文字幕日韩二区| 成人亚洲精品一区在线观看| 国产高清videossex| 亚洲第一av免费看| 欧美黄色淫秽网站| av线在线观看网站| 欧美日韩视频精品一区| 97精品久久久久久久久久精品| 精品国产乱码久久久久久男人| 激情五月婷婷亚洲| 亚洲成人免费av在线播放| 美女主播在线视频| 国产视频一区二区在线看| 国产免费福利视频在线观看| 男男h啪啪无遮挡| 国产不卡av网站在线观看| 国产成人av教育| 啦啦啦啦在线视频资源| 久久久久久久久久久久大奶| 丰满少妇做爰视频| 精品人妻熟女毛片av久久网站| 丰满人妻熟妇乱又伦精品不卡| 日本欧美视频一区| 男人操女人黄网站| 五月天丁香电影| 视频区欧美日本亚洲| 久久久久精品国产欧美久久久 | 免费在线观看日本一区| 午夜福利一区二区在线看| 亚洲精品乱久久久久久| 三上悠亚av全集在线观看| 国产黄色免费在线视频| 国产片特级美女逼逼视频| 看免费成人av毛片| 亚洲国产精品一区三区| 日本欧美视频一区| 国产成人av教育| 国产老妇伦熟女老妇高清| 国产高清不卡午夜福利| 日日摸夜夜添夜夜爱| 亚洲男人天堂网一区| 欧美少妇被猛烈插入视频| 亚洲欧美色中文字幕在线| 精品一区二区三区四区五区乱码 | 18禁国产床啪视频网站| 2018国产大陆天天弄谢| 丝袜喷水一区| 亚洲av成人精品一二三区| 飞空精品影院首页| 超色免费av| 水蜜桃什么品种好| 日韩熟女老妇一区二区性免费视频| 国产精品免费大片| 巨乳人妻的诱惑在线观看| 午夜av观看不卡| 欧美精品啪啪一区二区三区 | 欧美黑人精品巨大| 成人国产av品久久久| 岛国毛片在线播放| 中文精品一卡2卡3卡4更新| 婷婷成人精品国产| 国产精品成人在线| 欧美日韩av久久| 你懂的网址亚洲精品在线观看| 久久 成人 亚洲| 在线天堂中文资源库| 精品一区二区三区av网在线观看 | 亚洲人成电影观看| 久热爱精品视频在线9| 欧美精品人与动牲交sv欧美| 国产在视频线精品| 波野结衣二区三区在线| 精品少妇久久久久久888优播| 国产成人一区二区在线| 中国国产av一级| 成人午夜精彩视频在线观看| av网站在线播放免费| 女人高潮潮喷娇喘18禁视频| 最新在线观看一区二区三区 | 日韩精品免费视频一区二区三区| 又粗又硬又长又爽又黄的视频| 在线观看一区二区三区激情| 国产极品粉嫩免费观看在线| 久久久精品区二区三区| 欧美精品一区二区大全| 丰满少妇做爰视频| 亚洲中文av在线| 丁香六月欧美| 在线精品无人区一区二区三| 亚洲av电影在线观看一区二区三区| 两个人免费观看高清视频| 自拍欧美九色日韩亚洲蝌蚪91| 少妇精品久久久久久久| 女警被强在线播放| 午夜精品国产一区二区电影| 成年人黄色毛片网站| 国产精品免费视频内射| 国产免费福利视频在线观看| 不卡av一区二区三区| 一级毛片黄色毛片免费观看视频| 免费日韩欧美在线观看| 叶爱在线成人免费视频播放| 午夜福利影视在线免费观看| 最近中文字幕2019免费版| 一区二区三区乱码不卡18| 天天添夜夜摸| 欧美乱码精品一区二区三区| 叶爱在线成人免费视频播放| 久久精品亚洲熟妇少妇任你| 在线看a的网站| av国产久精品久网站免费入址| 国产免费现黄频在线看| 日日摸夜夜添夜夜爱| 国产精品.久久久| 亚洲 欧美一区二区三区| 亚洲,欧美,日韩| 国产一区二区 视频在线| 午夜免费男女啪啪视频观看| 欧美国产精品一级二级三级| 久久亚洲精品不卡| 婷婷丁香在线五月| 欧美av亚洲av综合av国产av| 少妇的丰满在线观看| 日本91视频免费播放| 成人国语在线视频| 新久久久久国产一级毛片| 亚洲av男天堂| 涩涩av久久男人的天堂| 一级毛片 在线播放| 波多野结衣av一区二区av| xxx大片免费视频| 国产一区有黄有色的免费视频| 国产成人免费观看mmmm| 极品少妇高潮喷水抽搐| 首页视频小说图片口味搜索 | av网站免费在线观看视频| 精品福利观看| 99国产精品一区二区蜜桃av | 久久久久网色| 久久精品亚洲av国产电影网| 成人国产一区最新在线观看 | 国产真人三级小视频在线观看| 欧美久久黑人一区二区| 亚洲成色77777| 亚洲欧美清纯卡通| 亚洲av日韩在线播放| 国产精品99久久99久久久不卡| 亚洲av国产av综合av卡|