• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Change rules of a stratospheric airship’s envelope shape during ascent process

    2017-11-20 12:07:35ZhaoShuaiLiuDongxuZhaoDaWuGangYinShiZhouPan
    CHINESE JOURNAL OF AERONAUTICS 2017年2期

    Zhao Shuai,Liu Dongxu,Zhao Da,Wu Gang,Yin Shi,Zhou Pan

    School of Aeronautic Science and Engineering,Beihang University,Beijing 100083,China

    Change rules of a stratospheric airship’s envelope shape during ascent process

    Zhao Shuai,Liu Dongxu*,Zhao Da,Wu Gang,Yin Shi,Zhou Pan

    School of Aeronautic Science and Engineering,Beihang University,Beijing 100083,China

    Non-forming launch;Pressure gradient;Stratospheric airship;Wrinkles;Zero-pressure level

    Stratospheric airship is a special near-space air vehicle,and has more advantages than other air vehicles,such as long endurance,strong survival ability,excellent resolution,low cost,and so on,which make it an ideal stratospheric platform.It is of great significance to choose a reasonable and effective way to launch a stratospheric airship to the space for both academic research and engineering applications.In this paper,the non-forming launch way is studied and the method of differential pressure gradient is used to study the change rules of the airship’s envelope shape during the ascent process.Numerical simulation results show that the head of the envelope will maintain the inflatable shape and the envelope under the zero-pressure level will be compressed into a wide range of wrinkles during the ascent process.The airship’s envelope will expand with the ascent of the airship and the position of the zero-pressure level will move downward constantly.At the same time,the envelope will gradually form a certain degree of stiffness under the action of the inner and external differential pressure.The experimental results agree well with the analytical results,which shows that the non-forming launch way is effective and reliable,and the analytical method has exactness and feasibility.

    1.Introduction

    Near space is the space region of earth’s atmosphere that lies between 20 and 100 km above the sea level,encompassing the stratosphere,the mesosphere,and the lower thermosphere.1–3In recent years,with the progress of science and technology,near space with its unique advantages of resources has become the focus of attention in the world.4,5A stratospheric airship has many advantages such as long hanging time,low cost,strong survival ability,excellent resolution,and so on.6–8It has a wide applicable prospect and developmental potential in the fields of monitoring and early warning,navigation and positioning,communications relay,meteorological observation,space exploration,etc.9–11

    When a stratospheric airship is launched to the near space,it will undergo complex changes of the external environment.12–14To choose a reasonable and effective way to launchthe airship is very important for the success of the stratospheric airship.15,16In general,there are two ways to launch a stratospheric airship,forming launch way and non-forming launch way.Forming launch is that the air and helium are charged into an airship’s envelope to form the shape of the airship before launch,and it will maintain the shape of the airship during the ascent process.Whereas as for non-forming launch,only a small amount of lifting gas is charged into the envelope before launch.Because the environmental atmospheric pressure will decrease gradually,the airship will expand gradually during the ascent process,and the lifting gas will continue to expand until it completely inflates the envelope to form the rigid aerodynamic shape required for operation at the predetermined resident height.The airship will keep its shape under the action of internal and external overpressure at the resident height.

    It is very important to study the change rules of the envelope shape during the launch and ascent process of an airship.The high altitude sentinel(HiSentinel17)airship sponsored by the United States Army Space and Missile Defense Command was launched with the non-forming launch way.

    In this paper,the non-forming launch way is studied.The adjustment of an airship’s attitude is not considered,that is,it is assumed that an airship will maintain the vertical upward attitude during the ascent process.By using the differential pressure gradient method to simulate the ascent process of an airship,the change rules of the airship’s state at different stages of the ascent process can be obtained.

    2.Principle of ascent and ceiling of airship

    2.1.Principle of ascent

    Fig.1 Internal and external pressure distributions of envelope during ascent process.

    2.2.Ceiling height of stratospheric airship

    With the ascent of the airship,the internal helium will gradually expand and the zero-pressure level will move downward.At the same time,the pressure field will change,too.By changing the location of the zero-pressure level,we can approximately simulate the airship’s ascent process until it reaches the predetermined resident height.

    The net buoyancy of the airship is

    whereBis the buoyancy of airship,and

    The total mass of the airship can be written as

    Without considering the temperature and pressure differences between the inside and outside of the airship,Eq.(4)can be simplified as

    whereVhemaxis the largest helium volume of airship at the resident height.

    According to the standard atmospheric model,it can be known that the density of the air is related to the flight height.Therefore,from Eq.(4),we can know that the airship’s maximum ceiling height is determined by the structural mass of the airship,the largest helium volume,the super-hot,and the super-pressure.The helium will fill the envelope except for the reserved air bag at the resident height.The whole volume of the envelope subtracting the volume of the reserved air bag is the largest helium volume.In this paper,the volume of the reserved air bag is zero.When considering the temperature and pressure differences,24the maximum ceiling height of the airship will be in the nearby range determined by Eq.(5).

    Under the action of the internal and external pressure difference of the airship,it will keep an overpressure state at the resident height.25–27Meanwhile,the airship will keep its shape under the action of overpressure,so the buoyancy of the airship is constant.By keeping the constant buoyancy,the airship can achieve resident or cruise at the predetermined height.The envelope’s overpressure load is jointly determined by the temperature difference between day and night or seasons in the stratosphere,thermal radiation characteristics of the envelope material,the airship’s envelope volume,and other factors.28–30In general,a stratospheric airship’s envelope materials can withstand overpressure ranging from 0 to 1000 Pa.31

    3.Finite element simulation analysis

    3.1.Judgement of membrane element stress state

    The earliest method about the wrinkling analysis of a membrane is the tension field theory proposed by Wagner.32Mansfield33improved the theory with a reasonable density of relaxation energy instead of the original strain energy,and then Pipkin34used it for isotropic membrane wrinkling analysis.In 1961,Stein and Hedgepeth35proposed the Stein-Hedgepeth theory,which is mainly used for partial wrinkle analysis of a thin membrane.Kang and Lm36and Adler37made some improvements on the basis of the theory to widen the applicability of the method.The bifurcation theory can be used to get the speci fic shape of the wrinkle that is the wrinkle’s amplitude and wavelength.38Fujikake et al.39studied wrinkle questions by modifying the constitutive matrix in a tension thin membrane structure.

    In the Lagrange coordinate system,under the action of an external force,PointMof the deformation body moves to pointM0,as shown in Fig.2.u,v,andware the projections of the displacement along thex,y,andzaxes,respectively.For thin membrane materials,the displacement in the thickness direction can be ignored,so the geometric equations of strain can be written as40,41

    Fig.2 Diagrammatic sketch of deformation.

    where h is the angle between the off-axis and the principle axis,as shown in Fig.3,E1andE2are the elastic modulus in the warp and zonal directions,G12is the shear modulus,m1is the zonal direction Poisson’s ratio caused by the warp direction,and m2is the warp direction Poisson’s ratio caused by the zonal direction.

    Fig.3 Diagrammatic sketch of off-axis and principle axis.

    and wherex1,x2andx3are the three axes in the space coordinate system,X1,X2andX3are the three axes in the material coordinate system.

    Then the principal stress can be obtained as follows:

    where rxand ryare the stress inx-axis and y-axis direction,sxyis the shear stress.

    where exand eyare the strain inx-axis and y-axis direction,cxyis the shear strain.

    Finally we can judge the stress state of the membrane by principal stress-principal strain principles.40,42,43That is:

    3.2.Explicit time integration

    To analyze the change rules of the envelope’s states in different stages of the ascent process,the explicit time integration method is used.The nonlinear discrete equation of motion for a wrinkling membrane at time step(n),obtained from a total Lagrangian finite element formulation,can be written as

    Given a new estimation of the nodal displacements at every time step,at each integration point of an element,a judgment is made on the wrinkling criterion,whether it is taut,wrinkled,or slack.According to the wrinkling criterion,change the constitutive matrix of the membrane materials,40and then go to the next time step.

    4.Numerical results and discussion

    4.1.Related parameters of airship

    Since the stratospheric airship is very large,at the same internal and external differential pressure of the airship,the larger diameter of the airship,the higher requirement for the envelope material strength.26The special and complicated stratospheric environment such as the temperature difference between day and night or seasons,high radiation,and high ozone,puts forward higher requirements for the envelope’s material.4The properties of the material are shown in Table 1.The length of the airship model isL=75 m,the maximum radius of the cross section isR=12 m,and the slenderness ratio is 3.125.

    Table 1 Performance parameters of skin material of airship.

    4.2.Model establishment

    The airship’s envelope is a symmetrical structure,which can be obtained by rotating a generatrix around the symmetrical axis.In this paper,the whole model is established including the envelope,the drag net,and the tension rope.The drag net is on the top of the envelope to fasten the envelope through the tension rope,and the other end of the rope is fixed to the ground.The envelope’s wrinkling deformation,which is induced by the gradient pressure field and gravity load,can be simulated using the dynamic finite element analysis method.Firstly,we can fix the bottom of the airship to the ground and exert the gradient pressure field and gravity load to simulate the initial launch state.Then we can release the bottom of the airship to simulate the ascent process.The effect of gravity is considered in the whole model.By constantly adjusting the position of the zero-pressure level of the airship,the change rules of the airship in different ascent stages can be obtained.

    In order to get the deformation state of the airship’s head more accurately at the initial launch state,it is necessary to use a smaller grid to get more accurate results.At the same time,in order to save the computation time,only the airship’s head is modeled and analyzed.

    4.3.Results and discussion

    In this paper,it is assumed that the airship will maintain the vertical upward attitude during the ascent process,so the adjustment of the airship’s attitude is not considered.Before the launch of the airship,an appropriate amount of lifting gas should be charged into the envelope to meet the resident or cruise requirement of buoyancy.By estimating,at the initial launch state after the lifting gas is charged into the envelope,the zero-pressure level position is approximately 17 m under the top of the airship.

    (1)At the initial state of launch,we can set y0=17 m,the simulation results and the experimental results of the airship’s envelope shape are shown in Fig.4.

    The simulation results and the experimental results agree well.The region above the zero-pressure level expands to the shape of the airship’s head.Meanwhile,the bottom region is compressed to fold together under the action of external atmospheric pressure.

    (2)To simulate the whole ascent process,we can set the position of the zero-pressure level at 17,25,40,50,and 65 m.Fig.5 shows the change rules of the envelope shape.

    Fig.4 Comparison of simulation results and experimental results when y0=17 m.

    Fig.5 Change rules of envelope shape.

    During the ascent process of the airship,the external environmental pressure will reduce gradually.The internal helium volume will gradually expand,and the position of the zero-pressure level will move downward constantly.With the constant adjustment of the zero-pressure level,the envelope will form a certain degree of stiffness under the actions of the inner helium and the external pressure.As for a practical stratospheric airship,a payload system,a propulsion system,and an energy system are necessary.With the vertical ascent process,these systems will lead to the center of gravity not consistent with the center of buoyancy,so the airship will automatically adjust the attitude to the horizontal direction.At the same time,the airship will continue to rise until it get to the predetermined resident height.The airship will produce overpressure which makes the airship fully inflated to the rigid aerodynamic shape required for operation.Since then,the airship will achieve resident or cruise at the predetermined height.

    (3)A smaller grid is used to get a more accurate deformation state of the airship’s head.The simulation results and the experimental results are shown in Figs.6 and 7,respectively.

    Fig.6 Simulation result and experimental result of head.

    Fig.7 Partial simulation result and experimental result of head.

    Fig.8 Undeformed model and deformed model results of net.

    The drag net on the top of the envelope is connected to the ground by the tension rope,and we can release the rope properly to adjust the launch attitude of the airship and make the wrinkled part of the airship leave the ground.The undeformed model and deformed model results of the net are shown in Fig.8,respectively.

    In the initial launch state,the simulation results of the airship’s head agree very well with the experimental results.Under the action of atmospheric pressure,the airship will get upward buoyancy,and the buoyancy is born by the drag net,so we can observe a dent obviously in the connecting region of the airship’s head and drag net.

    5.Conclusions

    (1)The coincidence between the simulation results and the experimental results reveals that the model is reasonable and correct.It also shows that the non-forming launch way is effective and reliable,and the simulation method has exactness and feasibility.

    (2)The shape of the airship’s envelope can be simulated by the gradient of the pressure field,and the change rules of the envelope can be obtained by continuously adjusting the position of the zero-pressure level.For further research,during the ascent process,we can use this analytical method to check whether the payload system,propulsion system,and energy system will interfere with each other.Based on the result,we can determinate the location of each system reasonably.

    (3)The pressure gradient will change gradually along with the change of the ascent height.The position of the zero-pressure level will also constantly move downward with the expanding of the envelope.This is a dynamic and coupling change process,so the analytical method may have some limitations,but for the entire ascent process,the method still has a great reference value.

    Acknowledgments

    The reviewers of this paper have provided the authors many valuable suggestions.This study was supported by the Achievements Cultivation Fund of Beihang University(No.YWF-15-CGPY-HKXY-001).The authors wish to express their thanks to all.

    1.Colozza A,Dolce JL.High-altitude,long-endurance airships for coastal surveillance.Wahsington,D.C.:NASA;2005.Report No.:NASA/TM-2005-213427.

    2.Colozza A.Initial feasibility assessment of a high altitude long endurance airship.Wahsington,D.C.:NASA;2003.Report No.:NASA/CR-2003-212724.

    3.Jamison L,Sommer GS,Porche III IR.High-altitude airships for the future force army.Santa Monica(CA):RAND Corporation;2005.Report No.:DASW01-01-C-0003.

    4.Gu ZM.Research of stratospheric airships’skin material.Spacecr Recov Remote Sens2007;28(1):62–6[Chinese].

    5.Wang YF,An YW,Yang JH.Current situation and development trend of near space airship.Technol Found National Defence2010;1:33–7[Chinese].

    6.Schmidt DK,Stevens J,Roney J.Near-space station-keeping performance of a large high-altitude notional airship.J Aircraft2007;44(2):611–5.

    7.Wang MJ,Huang XS.Development of stratospheric airship platform and its key technology analysis.Ordnan Indust Automat2007;26(8):58–60[Chinese].

    8.Ma ZY,Hou ZX,Yang XX.Structural performance analysis of large-scale flexible inflatable structures for stratospheric airships.J Nat Univ Defense Technol2015;4:25–30[Chinese].

    9.Yao W,Li Y,Wang WJ,Zheng W.Development plan and research progress of stratospheric airship in USA.Spacecraft Eng2008;17(2):69–75[Chinese].

    10.Cui EJ.Research statutes,development trends and key technical problems of near space flying vehicles.Adv Mech2009;39(6):658–73[Chinese].

    11.Li YY,Li Z,Shen HR.Analysis on development and application of near space vehicle.J Acad Equip Command Technol2008;19(2):61–5.

    12.Kim DM,Lee YG,Kang WG.Korea stratospheric airship program and current results.Restion:AIAA;2003.Report No.:AIAA-2003-6782.

    13.Lee YG,Kim DM,Yeom CH.Development of Korean high altitude platform systems.Int J Wireless Inform Networks2006;13(1):31–42.

    14.Ouyang J,Qu WD,Xi YG.Stratospheric verifying airship modelingand analysis.JShanghaiJiaotongUniv2003;37(6):956–60[Chinese].

    15.Li LL,Guo WM,He JF.Current situation and development of foreign near space airship.Ordnan Indust Automat2008;27(2):32–4[Chinese].

    16.Roney JA.Statistical wind analysis for near-space applications.J Atmos Solar-Terrest Phys2007;69(13):1485–501.

    17.Smith S,Lee M.The HiSentinel Airship.Restion:AIAA;2007.Report No.:AIAA-2007-7748.

    18.Ma YP,Lǜ MY,Wu Z,Liu DX.Simulation of near-space airship based on wrinkle during ascent.J Beijing Univ Aeronaut Astronaut2009;11(11):1298–301[Chinese].

    19.Baginski FE.A mathematical model for a partially inflated balloon with periodic lobes.Adv Space Res2002;30(5):1167–71.

    20.Kang W,Suh Y,Woo K,Lee I.Mechanical property characterization of film-fabric laminate for stratospheric airship envelope.Compos Struct2006;75(1–4):151–5.

    21.Baginski FE.Nonuniqueness of strained ascent shapes of high altitude balloons.Adv Space Res2004;33(10):1705–10.

    22.Baginski FE,Collier W.Modeling the shapes of constrained partially inflated high-altitude balloons.AIAAJ2001;39(9):1662–72.

    23.Baginski FE,Brakke KA.Modeling ascent configurations of strained high-altitude balloons.AIAA J1998;36(10):1901–10.

    24.Yao W,Li Y,Wang WJ,Zheng W.Thermodynamic model and numerical simulation of a stratospheric airship take-off process.J Astronaut2007;28(3):603–7[Chinese].

    25.Liu DX,Yang YQ,Lu¨MY,Wu Z.Effect of envelope thermal radiative properties on the stratospheric super-pressure LTA vehicle helium temperature.J Beijing Univ Aeronaut Astronaut2010;36(7):836–40[Chinese].

    26.Wang WJ,Li Y,Yao W,Zheng W.Estimation of the relationship between the pressure in airship balloon and the tension in its envelope.J Astronaut2007;5,1109-2[Chinese].

    27.Liao L,Pasternak I.A review of airship structural research and development.Prog Aerosp Sci2009;45(4):83–96.

    28.Shi H,Song B,Yao Q,Cao X.Thermal performance of stratospheric airships during ascent and descent.J Thermophys Heat Transf2009;23(4):816–21.

    29.Xu XH,Cheng XT,Ling XG.Thermal analysis of a stratospheric airship.J Tsinghua Univ(Sci Technol)2009;49(11):1848–51[Chinese].

    30.Fang XD,Wang WZ,Li XJ.A study of thermal simulation of stratospheric airships.Spacecr Recov Remote Sens2007;28(2):5–9[Chinese].

    31.Liu LB,Lu¨MY,Xiao HD,Cao S.Calculation and simulation of stratospheric airship capsule stress considering the pressure gradient.J Beijing Univ Aeronaut Astron2014;40(10):1386–91[Chinese].

    32.Wagner H.Flat sheet metal girders with very thin metal web.Z Flugtechn Motorluftschiffahrt1929;20:200–314.

    33.Mansfield EH.Tension field theory:A new approach which shows its duality with inextensional theory.Applied Mechanics.Berlin:Springer;1969,p.305-20.

    34.Pipkin AC.The relaxed energy density for isotropic elastic membranes.J Appl Math1986;36(1):85–99.

    35.Stein M,Hedgepeth JM.Analysis of partly wrinkled membranes.Washington,D.C.:NASA;1961,p.122-56.

    36.Kang S,Lm S.Finite element analysis of wrinkling membranes.J Appl Mech1997;64(2):263–9.

    37.Adler AL.Finite element approaches for static and dynamic analysis of partially wrinkled membrane structures[dissertation].Boulder(CO):University of Colorado;2000,p.65–75.

    38.Li ZW,Yang QS,Liu RX.Review of methods of wrinkling analysis of membrane structures.China Safety Sci J2004;14(7):16–20[Chinese].

    39.Fujikake M,Osamu K,Seiichiro F.Analysis of fabric tension structures.Comput Struct1989;32(3–4):537–47.

    40.Tan F,Yang QS,Li ZW.Wrinkling criteria and analysis method for membrane structures.J Beijing Jiaotong Univ2006;30(1):35–9[Chinese].

    41.Yang QS,Jiang YN.Analysis and design of tensioned cable–membrane structures.Beijing:Science Press;2004.p.89–93[Chinese].

    42.Tan F,Yang QS,Zhang J.Finite element method of wrinkling analysis of membrane structure.Eng Mech2006;23(1):62–8[Chinese].

    43.Tan F,Zhao J,Yang QS.Integrated program CAFA1.0 for cable and membrane structures.Spatial Struct2003;9(4):33–8[Chinese].

    4 March 2016;revised 11 July 2016;accepted 28 August 2016

    Available online 16 February 2017

    *Corresponding author.

    E-mail addresses:zhaoshbuaa@163.com(S.Zhao),liubuaa@163.com(D.Liu),buaazd@yeah.net(D.Zhao).

    Peer review under responsibility of Editorial Committee of CJA.

    精品99又大又爽又粗少妇毛片| 日日啪夜夜爽| 尤物成人国产欧美一区二区三区| 亚洲欧美日韩东京热| 国产乱人视频| 床上黄色一级片| 久久午夜福利片| 亚洲国产色片| 观看免费一级毛片| 免费人成在线观看视频色| 一级黄片播放器| av在线蜜桃| 国产在线男女| 国产亚洲一区二区精品| 一本一本综合久久| 亚洲国产色片| 国产精品一区www在线观看| 亚洲四区av| 一区二区三区乱码不卡18| 视频中文字幕在线观看| 日本猛色少妇xxxxx猛交久久| 国产一区二区亚洲精品在线观看| 美女黄网站色视频| 亚洲一级一片aⅴ在线观看| 国产成年人精品一区二区| 青春草亚洲视频在线观看| 日韩三级伦理在线观看| 春色校园在线视频观看| 久久精品国产亚洲av天美| 亚洲人成网站在线观看播放| 午夜免费观看性视频| 国产老妇伦熟女老妇高清| 国产精品久久久久久久久免| 水蜜桃什么品种好| 成人欧美大片| 亚洲av日韩在线播放| 亚洲怡红院男人天堂| 国产黄片视频在线免费观看| 欧美日韩亚洲高清精品| 特级一级黄色大片| 免费观看a级毛片全部| 欧美性感艳星| 国产黄色视频一区二区在线观看| 久久久久久久久中文| 永久免费av网站大全| 久久久久久久久大av| 一二三四中文在线观看免费高清| 欧美 日韩 精品 国产| kizo精华| 国产精品无大码| 狂野欧美激情性xxxx在线观看| 男人爽女人下面视频在线观看| 在线观看人妻少妇| 国产免费福利视频在线观看| 国产精品国产三级专区第一集| 国产伦精品一区二区三区视频9| 男女国产视频网站| 色视频www国产| 天堂av国产一区二区熟女人妻| av天堂中文字幕网| 亚洲精品日韩av片在线观看| 丝袜美腿在线中文| 国产乱人偷精品视频| 白带黄色成豆腐渣| 免费播放大片免费观看视频在线观看| 女人十人毛片免费观看3o分钟| 免费看av在线观看网站| 亚洲性久久影院| 日韩精品青青久久久久久| 亚洲国产欧美人成| 久久精品夜色国产| av在线亚洲专区| 男人舔奶头视频| 亚洲国产欧美人成| 免费看av在线观看网站| 成人亚洲精品一区在线观看 | 国产精品一区www在线观看| 中文字幕久久专区| 男人舔奶头视频| 淫秽高清视频在线观看| 成人鲁丝片一二三区免费| 亚洲精华国产精华液的使用体验| 国产午夜精品久久久久久一区二区三区| 噜噜噜噜噜久久久久久91| 久久精品夜色国产| 国产精品人妻久久久久久| 亚洲激情五月婷婷啪啪| 99九九线精品视频在线观看视频| 如何舔出高潮| 亚洲av二区三区四区| 亚洲怡红院男人天堂| av国产久精品久网站免费入址| 丝瓜视频免费看黄片| 国产成人精品福利久久| 免费不卡的大黄色大毛片视频在线观看 | 成人av在线播放网站| 国产一区有黄有色的免费视频 | 日韩成人av中文字幕在线观看| 麻豆av噜噜一区二区三区| 日韩在线高清观看一区二区三区| av在线观看视频网站免费| 淫秽高清视频在线观看| 又爽又黄无遮挡网站| 91精品一卡2卡3卡4卡| 国产精品国产三级专区第一集| 嫩草影院精品99| 国产精品一区www在线观看| 午夜视频国产福利| 只有这里有精品99| 丝袜美腿在线中文| 啦啦啦韩国在线观看视频| 成年女人看的毛片在线观看| 777米奇影视久久| 成人性生交大片免费视频hd| 国产伦精品一区二区三区四那| 亚洲av中文av极速乱| 精品久久久久久久久av| 国产69精品久久久久777片| 久久久久久久久久成人| 热99在线观看视频| 日韩亚洲欧美综合| 欧美人与善性xxx| 五月伊人婷婷丁香| 欧美xxxx黑人xx丫x性爽| 精品久久久久久久久久久久久| 99视频精品全部免费 在线| 色吧在线观看| 简卡轻食公司| 亚洲最大成人中文| av播播在线观看一区| 国产高清国产精品国产三级 | 午夜老司机福利剧场| 午夜久久久久精精品| 精品一区二区三区人妻视频| 久久久精品94久久精品| 99久国产av精品| 黄色一级大片看看| 日日撸夜夜添| 非洲黑人性xxxx精品又粗又长| 91精品一卡2卡3卡4卡| 哪个播放器可以免费观看大片| 日日摸夜夜添夜夜爱| 国产v大片淫在线免费观看| 少妇高潮的动态图| 国内揄拍国产精品人妻在线| 国产精品嫩草影院av在线观看| 久久久精品免费免费高清| 亚洲精品日韩在线中文字幕| 国产精品女同一区二区软件| 国产在线一区二区三区精| 国产一级毛片七仙女欲春2| 欧美另类一区| 嘟嘟电影网在线观看| 亚洲欧美日韩东京热| 99久久中文字幕三级久久日本| 国产淫片久久久久久久久| 国产在线男女| 亚洲欧美日韩东京热| 永久免费av网站大全| 欧美激情国产日韩精品一区| 亚洲最大成人中文| 色吧在线观看| 成年人午夜在线观看视频 | 搡女人真爽免费视频火全软件| 精品久久久精品久久久| 黄色欧美视频在线观看| 男女边摸边吃奶| 亚洲熟妇中文字幕五十中出| a级毛色黄片| 欧美+日韩+精品| 久久精品夜夜夜夜夜久久蜜豆| 最后的刺客免费高清国语| 黄色欧美视频在线观看| 免费观看a级毛片全部| 性色avwww在线观看| 国产色婷婷99| 亚洲精品,欧美精品| 一个人观看的视频www高清免费观看| 精品人妻一区二区三区麻豆| 亚洲精品久久久久久婷婷小说| 久久97久久精品| 国产在视频线在精品| 午夜福利网站1000一区二区三区| 日日摸夜夜添夜夜爱| av在线天堂中文字幕| 18禁裸乳无遮挡免费网站照片| 国产黄色视频一区二区在线观看| 亚洲欧美精品自产自拍| 成人亚洲欧美一区二区av| av在线亚洲专区| 国产有黄有色有爽视频| 欧美日韩在线观看h| 午夜激情久久久久久久| 日日摸夜夜添夜夜爱| 国产老妇伦熟女老妇高清| 精品亚洲乱码少妇综合久久| 国产亚洲精品av在线| 寂寞人妻少妇视频99o| 精品久久久久久电影网| 观看美女的网站| 一本一本综合久久| 亚洲图色成人| 伊人久久精品亚洲午夜| 国产爱豆传媒在线观看| 亚洲av成人精品一二三区| 日日干狠狠操夜夜爽| 成人鲁丝片一二三区免费| 国产探花极品一区二区| 97人妻精品一区二区三区麻豆| 日本av手机在线免费观看| 欧美成人一区二区免费高清观看| 26uuu在线亚洲综合色| 国产精品人妻久久久影院| 国产成人91sexporn| 18禁在线播放成人免费| 精品人妻一区二区三区麻豆| 国产在线男女| 毛片一级片免费看久久久久| 亚洲欧美清纯卡通| 亚洲高清免费不卡视频| 午夜福利网站1000一区二区三区| 亚洲经典国产精华液单| 老司机影院毛片| 又大又黄又爽视频免费| 一区二区三区免费毛片| 日日啪夜夜爽| 日本熟妇午夜| 神马国产精品三级电影在线观看| 亚洲国产av新网站| 69av精品久久久久久| 精品久久久久久久久久久久久| 肉色欧美久久久久久久蜜桃 | av在线蜜桃| 爱豆传媒免费全集在线观看| 久久久久九九精品影院| 九九爱精品视频在线观看| 人人妻人人澡人人爽人人夜夜 | or卡值多少钱| 精品一区二区三区视频在线| 日韩欧美国产在线观看| av福利片在线观看| 在线观看一区二区三区| 亚洲精品影视一区二区三区av| 国产色爽女视频免费观看| 三级国产精品欧美在线观看| 91久久精品国产一区二区三区| 欧美xxxx性猛交bbbb| 在线播放无遮挡| 亚洲成人精品中文字幕电影| 在线观看免费高清a一片| 色尼玛亚洲综合影院| 国产精品综合久久久久久久免费| 亚洲精品国产成人久久av| 国产v大片淫在线免费观看| 欧美日韩综合久久久久久| av国产免费在线观看| 亚洲国产精品成人综合色| 亚洲精品一区蜜桃| 九草在线视频观看| 精品久久久久久久久亚洲| 高清av免费在线| 亚洲综合精品二区| 午夜激情欧美在线| 日韩成人伦理影院| 国产男女超爽视频在线观看| 国产一区二区三区av在线| 亚洲一级一片aⅴ在线观看| 亚洲aⅴ乱码一区二区在线播放| 乱系列少妇在线播放| 少妇熟女欧美另类| 啦啦啦韩国在线观看视频| 网址你懂的国产日韩在线| 亚洲精品视频女| 亚洲精品成人久久久久久| 亚洲av电影在线观看一区二区三区 | 精华霜和精华液先用哪个| 男女边吃奶边做爰视频| 18禁裸乳无遮挡免费网站照片| 天堂影院成人在线观看| 一级毛片aaaaaa免费看小| 一区二区三区高清视频在线| 久久这里只有精品中国| 69人妻影院| 最近的中文字幕免费完整| 丝袜喷水一区| 色网站视频免费| xxx大片免费视频| 亚洲精品日本国产第一区| 精品人妻一区二区三区麻豆| 岛国毛片在线播放| 热99在线观看视频| 最近中文字幕高清免费大全6| 久久人人爽人人片av| 99热这里只有是精品50| 看免费成人av毛片| 22中文网久久字幕| 久久久久久久久久黄片| 性插视频无遮挡在线免费观看| 国产亚洲一区二区精品| 青春草视频在线免费观看| 人体艺术视频欧美日本| 久久精品熟女亚洲av麻豆精品 | 天天躁夜夜躁狠狠久久av| 日韩三级伦理在线观看| 亚洲综合精品二区| 中文在线观看免费www的网站| 国产免费福利视频在线观看| 天天躁日日操中文字幕| av在线亚洲专区| 日韩三级伦理在线观看| 日本三级黄在线观看| 国内少妇人妻偷人精品xxx网站| 少妇猛男粗大的猛烈进出视频 | 日韩,欧美,国产一区二区三区| 精品午夜福利在线看| 亚洲久久久久久中文字幕| 街头女战士在线观看网站| 国产精品美女特级片免费视频播放器| 两个人的视频大全免费| 高清欧美精品videossex| 成年版毛片免费区| 日本av手机在线免费观看| 亚洲人成网站在线观看播放| 777米奇影视久久| 伊人久久国产一区二区| 亚洲国产av新网站| 久久精品国产亚洲av天美| 国产一区二区在线观看日韩| 啦啦啦啦在线视频资源| 国产精品一区二区性色av| 性色avwww在线观看| 黄色一级大片看看| 午夜亚洲福利在线播放| kizo精华| 欧美性猛交╳xxx乱大交人| 人人妻人人看人人澡| 亚洲18禁久久av| 又爽又黄a免费视频| 久久久久精品久久久久真实原创| 午夜福利成人在线免费观看| 久久国产乱子免费精品| 国产精品伦人一区二区| 婷婷色综合大香蕉| 男人狂女人下面高潮的视频| 亚洲精品久久久久久婷婷小说| 人妻少妇偷人精品九色| 亚洲电影在线观看av| 在线观看免费高清a一片| 99re6热这里在线精品视频| 久久精品综合一区二区三区| 联通29元200g的流量卡| 亚洲国产欧美在线一区| 日韩一区二区视频免费看| 777米奇影视久久| 久久久a久久爽久久v久久| 亚洲av成人精品一二三区| 如何舔出高潮| 美女主播在线视频| 99久国产av精品| 91aial.com中文字幕在线观看| 狂野欧美白嫩少妇大欣赏| 中文天堂在线官网| 欧美xxxx性猛交bbbb| 欧美区成人在线视频| 一级二级三级毛片免费看| 极品少妇高潮喷水抽搐| 国产有黄有色有爽视频| 99久久精品热视频| 欧美成人a在线观看| 啦啦啦韩国在线观看视频| 男女下面进入的视频免费午夜| 国产亚洲av嫩草精品影院| 国产午夜精品一二区理论片| 午夜日本视频在线| 亚洲av一区综合| 精品99又大又爽又粗少妇毛片| 我的老师免费观看完整版| 激情五月婷婷亚洲| 午夜精品国产一区二区电影 | 一级av片app| 美女脱内裤让男人舔精品视频| 午夜激情久久久久久久| 日韩一区二区三区影片| 国产成人精品福利久久| 爱豆传媒免费全集在线观看| 男人爽女人下面视频在线观看| 国产成人一区二区在线| 街头女战士在线观看网站| 性色avwww在线观看| 看黄色毛片网站| 在线观看一区二区三区| 亚洲婷婷狠狠爱综合网| 日韩视频在线欧美| 亚洲成人精品中文字幕电影| 亚洲精品影视一区二区三区av| 啦啦啦韩国在线观看视频| av播播在线观看一区| 国产亚洲精品久久久com| 伦精品一区二区三区| 国产视频首页在线观看| 久久亚洲国产成人精品v| 精品一区在线观看国产| 国产伦在线观看视频一区| 一级毛片久久久久久久久女| 国内精品一区二区在线观看| 色播亚洲综合网| 岛国毛片在线播放| 欧美成人一区二区免费高清观看| 你懂的网址亚洲精品在线观看| 日本一二三区视频观看| 91久久精品电影网| 99热全是精品| 日本色播在线视频| 亚洲图色成人| 黑人高潮一二区| 国产探花在线观看一区二区| 精品一区在线观看国产| 高清视频免费观看一区二区 | 国内精品美女久久久久久| 五月天丁香电影| 男的添女的下面高潮视频| 国产片特级美女逼逼视频| 麻豆久久精品国产亚洲av| 国产女主播在线喷水免费视频网站 | www.av在线官网国产| 99热6这里只有精品| av福利片在线观看| 少妇的逼好多水| 欧美高清性xxxxhd video| 国产爱豆传媒在线观看| 美女cb高潮喷水在线观看| 白带黄色成豆腐渣| 狂野欧美激情性xxxx在线观看| 国产大屁股一区二区在线视频| 国产av在哪里看| 午夜老司机福利剧场| 成人综合一区亚洲| 亚洲精品成人久久久久久| 亚洲欧美一区二区三区国产| 中国国产av一级| 欧美激情国产日韩精品一区| 综合色丁香网| 精品一区二区三卡| 国产 一区精品| 日本与韩国留学比较| 一区二区三区免费毛片| 午夜免费男女啪啪视频观看| 26uuu在线亚洲综合色| 国产片特级美女逼逼视频| 久久久久久久久久久免费av| 精品久久国产蜜桃| 亚洲国产精品国产精品| 午夜福利网站1000一区二区三区| 18禁在线播放成人免费| 精品人妻一区二区三区麻豆| 国产av在哪里看| 国产免费视频播放在线视频 | 久久精品国产自在天天线| 久久久久性生活片| 肉色欧美久久久久久久蜜桃 | 一区二区三区四区激情视频| 成人午夜精彩视频在线观看| 亚洲自偷自拍三级| 日本三级黄在线观看| 国产亚洲5aaaaa淫片| 久久久久精品性色| 亚洲电影在线观看av| 大香蕉97超碰在线| 亚洲av中文av极速乱| 成人亚洲精品av一区二区| 亚洲av男天堂| 国产伦精品一区二区三区四那| 视频中文字幕在线观看| 在线天堂最新版资源| 51国产日韩欧美| av播播在线观看一区| 色尼玛亚洲综合影院| 久久久国产一区二区| 在线播放无遮挡| 久久韩国三级中文字幕| 欧美精品一区二区大全| 特大巨黑吊av在线直播| 免费不卡的大黄色大毛片视频在线观看 | 男人舔女人下体高潮全视频| 国产免费又黄又爽又色| 午夜亚洲福利在线播放| 免费观看在线日韩| 美女高潮的动态| 亚洲综合色惰| 国产精品人妻久久久久久| 69av精品久久久久久| 国产成人精品久久久久久| 51国产日韩欧美| 亚洲成人中文字幕在线播放| 免费少妇av软件| 深爱激情五月婷婷| 亚洲成人av在线免费| 日韩不卡一区二区三区视频在线| 亚洲久久久久久中文字幕| freevideosex欧美| 久久久国产一区二区| 久久精品久久精品一区二区三区| 女人久久www免费人成看片| 午夜福利在线观看吧| 99久久九九国产精品国产免费| 免费观看性生交大片5| 99久久九九国产精品国产免费| 在线观看免费高清a一片| 亚洲成人av在线免费| 亚洲四区av| 男女边摸边吃奶| 免费看av在线观看网站| 亚洲精品成人久久久久久| 韩国高清视频一区二区三区| 男人舔奶头视频| 亚洲精品国产av成人精品| 你懂的网址亚洲精品在线观看| 97热精品久久久久久| 精品国产露脸久久av麻豆 | 亚洲av在线观看美女高潮| 最近最新中文字幕免费大全7| 国产日韩欧美在线精品| 国产成人免费观看mmmm| 精品久久久久久成人av| 日韩大片免费观看网站| 精品久久久噜噜| 日韩强制内射视频| 久久久久久久久久成人| 最近中文字幕高清免费大全6| 天天一区二区日本电影三级| 欧美激情在线99| 精品国产露脸久久av麻豆 | 国产成人一区二区在线| 久久韩国三级中文字幕| 插逼视频在线观看| 国语对白做爰xxxⅹ性视频网站| 欧美xxⅹ黑人| 好男人在线观看高清免费视频| 国产永久视频网站| 麻豆av噜噜一区二区三区| 看非洲黑人一级黄片| 亚洲久久久久久中文字幕| 亚洲av男天堂| 精品人妻一区二区三区麻豆| 国产一区亚洲一区在线观看| 国产欧美日韩精品一区二区| 一级毛片久久久久久久久女| av福利片在线观看| 久久久久网色| 亚洲精品亚洲一区二区| 国产中年淑女户外野战色| 又大又黄又爽视频免费| 亚洲在线自拍视频| 亚洲18禁久久av| 国产成人午夜福利电影在线观看| 亚洲最大成人av| h日本视频在线播放| 久久午夜福利片| av网站免费在线观看视频 | 亚洲欧美日韩东京热| 一级毛片我不卡| 国产乱人视频| 成人亚洲精品av一区二区| 国产成年人精品一区二区| 亚洲国产日韩欧美精品在线观看| 一个人观看的视频www高清免费观看| 日本黄大片高清| 欧美3d第一页| 久久精品夜夜夜夜夜久久蜜豆| 天堂影院成人在线观看| 久久久国产一区二区| 搞女人的毛片| 高清欧美精品videossex| 国产亚洲5aaaaa淫片| 午夜福利成人在线免费观看| 日韩大片免费观看网站| 18+在线观看网站| 国产av国产精品国产| 三级经典国产精品| 亚洲综合精品二区| 亚洲精品自拍成人| 美女高潮的动态| 亚洲综合色惰| 欧美高清成人免费视频www| 两个人视频免费观看高清| 夫妻性生交免费视频一级片| 日韩 亚洲 欧美在线| 日韩欧美精品v在线| 午夜福利成人在线免费观看| 色综合亚洲欧美另类图片| 欧美97在线视频| 丰满乱子伦码专区| 午夜免费男女啪啪视频观看| 亚洲最大成人av| 网址你懂的国产日韩在线| 久99久视频精品免费| 免费黄色在线免费观看| 看非洲黑人一级黄片| 亚洲av电影不卡..在线观看| 91av网一区二区| 精品一区二区三区视频在线| 亚洲av中文av极速乱| av线在线观看网站| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 丝袜美腿在线中文| 色综合色国产| 国语对白做爰xxxⅹ性视频网站| 男的添女的下面高潮视频| 国内精品宾馆在线| 国产乱人视频| 亚洲最大成人手机在线| 只有这里有精品99| 高清在线视频一区二区三区| 日韩中字成人| 夜夜爽夜夜爽视频|