• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical investigation on adiabatic film cooling effectiveness and heat transfer coefficient for effusion cooling over a transverse corrugated surface

    2017-11-20 12:07:19QuLihongZhngJingzhouTnXiomingWngMinmin
    CHINESE JOURNAL OF AERONAUTICS 2017年2期

    Qu Lihong,Zhng Jingzhou,b,*,Tn Xioming,Wng Minmin

    aCollege of Energy and Power Engineering,Jiangsu Province Key Laboratory of Aerospace Power System,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China

    bCollaborative Innovation Center of Advanced Aero-Engine,Beijing 100083,China

    Numerical investigation on adiabatic film cooling effectiveness and heat transfer coefficient for effusion cooling over a transverse corrugated surface

    Qu Lihonga,Zhang Jingzhoua,b,*,Tan Xiaominga,Wang Minmina

    aCollege of Energy and Power Engineering,Jiangsu Province Key Laboratory of Aerospace Power System,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China

    bCollaborative Innovation Center of Advanced Aero-Engine,Beijing 100083,China

    Adiabatic film cooling effectiveness;Effusion cooling;Heat transfer;Numerical computation;Transverse corrugated surface

    Three-dimensional numerical computations are conducted to investigate the effects of the blowing ratio and corrugation geometry on the adiabatic film cooling effectiveness as well as the heat transfer coefficient over a transverse corrugated surface.It is noticeable that the adiabatic wall temperature on the wavy valley of the transverse corrugated surface is relatively lower than that on the wavy peak.Surface corrugation has a relatively obvious influence on the laterallyaveraged adiabatic film cooling effectiveness in the region where the effusion film layer is developed,but has little influence in the front region.Compared to a flat surface,the transverse corrugated surface produces a smaller adiabatic film cooling effectiveness and a higher heat transfer coefficient ratio.The effusion cooling difference between the flat and corrugated surfaces behaves more obviously under a small aspect ratio of the wavy corrugation.

    1.Introduction

    Effusion cooling is regarded as a more ideal cooling scheme for protecting the combustor liners of aero-engines.1–3Earlier research presented by Andrews et al.4–6revealed preliminarily the effects of main geometric and aero-thermal factors on the thermal and aerodynamic performances of an effusion cooling scheme.Bohn and Moritz7,Scrittore et al.8,and Yang and Zhang9,10investigated numerically or experimentally the developing process of coolant jets injected from effusion holes.It waspointed outthatanasymptotic ‘fullydeveloped”adiabatic effectiveness level or velocity profile is established at a certain streamwise location.From this location on,the averaged adiabatic film cooling effectiveness should tend to be constant.Lin et al.11and Zhang et al.12conducted experiments to reveal the effects of the hole-array arrangement and holedeflection angle on the effusion cooling effectiveness.More recently,Ligrani et al.13,14performed an experimental investigation on full-coverage film cooling for dense and sparse hole arrays at different blowing ratios.Comparisons of adiabatic effectiveness,heat transfer coefficients,and net heat flux reduction(NHFR)for sparse and dense hole arrays were presented.Andreini et al.15made an experimental and theoretical investigation on the overall cooling effectiveness of multi-perforated plates.It was reported that a geometry with tilted holes shows the best wall protection under low blowing ratios.On the contrary,for high blowing ratios,a normal hole array provides a slightly better overall effectiveness.

    Most of the previous studies focused on effusion cooling over aflatsurface.However,veryfewworkswerereportedoneffusion cooling over a corrugated surface which is encountered in an aero-engine with an afterburner.The afterburner’s heat shield usuallyhasaperiodiccorrugatedfoldforthepurposeofstrengthening its structure,and the length-to-diameter ratio of the film hole used for the heat shield is usually relatively small in actual engineering.The injection angle of the film hole is normal to the corrugated surface.Thus,the coherence between the film injection and the mainstream is different compared with a flat plate.Shinboetal.16presentedanexperimentalstudyontheconvective heat transfer over a longitudinal corrugated surface.It was concluded that the convective heat transfer in the case of a corrugated plate is larger than that obtained from a flat surface,mainly due to the influence of the plate corrugation on the development of turbulence near the wall region.Champion et al.17studied experimentally the flow structure over a longitudinal wavy surface involving multi-holes regions.They showed that anincreaseoftheblowingratefrom0.8to2.5leadstoanincrease andamoreuniformstreamwisedistributionoftheadiabaticwall effectiveness.Funazaki et al.18performed an experiment on the aerodynamic behaviors of the air ejected from several discrete hole rows and the resultant film effectiveness over a longitudinal corrugated wall.It was indicated that the jet cores tend to diminish much faster than those in a flat-plate case,probably due to a mixing ofthe high-momentum jetand low-momentum air onthe valley of the corrugated wall.A group led by Chang dedicated a series of combined numerical and experimental publications on discrete-holes film cooling and effusion cooling over a longitudinalcorrugatedwall.19–22Toourknowledge,nearlynoattentionis paid to effusion cooling on a transverse corrugated surface.

    The motivation of the presented numerical study is to explore the effusion cooling characteristics over a transverse corrugated surface.Effects of the blowing ratio and the amplitude and wavelength of the corrugated wall on the adiabatic film cooling effectiveness as well as the heat transfer coef ficient are concentrated on.

    2.Computation scheme

    2.1.Brief description of physical model

    Considering the periodic structure of a transverse corrugated surface,one wavelength alongy-direction is taken as the computational domain,as seen in Fig.1(a).The height and length of the primary flow passage are chosen as 80 mm and 518 mm,respectively.The perforated port has a length of 198 mm and is located in the middle section of the computational domain.The coordinate origin is located at the center line of the corrugation as well as the starting edge of the perforated port.

    Fig.1 Schematic computational model.

    Table 1 Parameters tested in the present.

    2.2.Computational approach and validation

    Three-dimensional numerical simulation is employed by using Fluent-CFD software.According to that the realizablek-e turbulence model has been proved to provide reasonable computational results of film cooling23–25,thus the realizablek-e turbulence model is used in the current study to model turbulence,and the near wall region is modeled using enhanced wall functions.

    The computational meshes are divided in the same treatment as that by Yang and Zhang.9Four grid-blocks are involved in the present computation,corresponding to the primary flow zone upstream from the perforated port,perforated zone,effusion holes,and primary flow zone downstream from the perforated port.By a grid independence test,approximately 8 million computational grids are involved in the whole computational domain,as seen in Fig.2.Viscous clustering is ensured with ay+value less than 2.5 at all solid walls.

    To capture the effusion cooling performance,such as the adiabatic film cooling effectiveness gad(Eq.(1))and the convective heat transfer coefficienth(Eq.(2)),two series of computations are conducted with different thermal boundary conditions.

    Fig.2 Grid independence test.

    Either in the computations for determining the adiabatic film cooling effectiveness or in the computations for determining the convective heat transfer coef ficient,the computational boundaries for the primary flow inlet,the secondary flow inlet,and the out flow outlet are the same.

    Fig.3 Validation of computational results for flat surface.

    3.Results and discussion

    3.1.Effect of blowing ratio

    Fig.4 presents the effect of the blowing ratio on the adiabatic wall temperature distributions over the transverse corrugated surface with an amplitudeAof 8 mm and a wavelength k of 60 mm.

    It is seen that the evolution of the film flow displays an obvious ‘developing” feature in front rows.In the front zone of an effusion cooling scheme,the adiabatic wall temperature corresponding to the first few rows is higher under a higher blowing ratio,which is in good agreement with results of discrete film cooling from early studies.26,27Under a higher blowing ratio,the coolant jet has a stronger penetration capacity,which will induce larger kidney vortices,as seen in Fig.5.These vortices are detrimental to film cooling because the mutual interaction between a vortex pair tends to lift the coolant jet off the surface.

    Along the streamwise direction,film outflows from the front rows of multi-holes merge together gradually to form a relatively continuous film layer near the surface.Therefore,the adiabatic wall temperature decreases rapidly along the streamwise direction.Another notable feature is that the adiabatic wall temperature on the wavy valley of the transverse corrugated surface is relatively lower than that on the wavy peak.The contour cell corresponding to the lowest temperature on the wavy valley is enlarged in the streamwise direction with an increase of the blowing ratio.The wavy valley is helpful to accumulate the coolant outflow and thus builds up a thick film layer.By comparison,the varying gradient of the adiabatic wall temperature along the streamwise direction is greater under a higher blowing ratio.For multi-rows of film cooling holes,the jet spread capacity along the streamwise direction is stronger under a higher blowing ratio,leading to a rapider growth of the film layer,as seen in Fig.6.Besides,the vigorous film layer is provided with the ability of suppressing coolant jet penetration.Therefore,the cooling effectiveness of film jets originated from the downstream rows will be higher under a higher blowing ratio.

    Fig.7 presents the effect of the blowing ratio on the laterally-averaged adiabatic film cooling effectiveness and heat transfer coefficient ratio distributions along the streamwise direction.

    Here,the heat transfer coefficient ratioEgis defined as

    Fig.4 Effect of blowing ratio on adiabatic wall temperature distributions.

    Fig.5 Cross-sectional velocity fields and temperature fields downstream from the 3rd row.

    whereh0is the heat transfer coefficient without film holes on the surface.

    The varying trend of the laterally-averaged adiabatic film cooling effectiveness,as seen in Fig.7(a),is the same as that revealed by previous research for effusion cooling over a flat surface.The film cooling effectiveness increases rapidly in the front rows of multi-holes where the film layer is undergoing a developing stage.Then it increases tardily in the middle rows of multi-holes until becoming constant once the effusion film layer is fully developed.It is also noted that the laterally-averaged adiabatic film cooling effectiveness in the front zone decreases with an increase of the blowing ratio.Fromx/S?12 or the 12th row on,the laterally-averaged adiabatic film cooling effectiveness is higher under a higher blowing ratio.Once the blowing ratio exceeds 2.0,the influence of the blowing ratio on the laterally-averaged adiabatic film cooling effectiveness seems very weak.

    The jet injection produces increased turbulence levels inside the boundary layers.Increasing coolant injection typically produces increases in mixing and turbulence generation,which results in higher heat transfer coefficients.As expected,the heat transfer coefficient ratio increases with an increasing blowing ratio,as seen in Fig.7(b).The varying process seems to be divided as three stages.Firstly,the heat transfer coeff icient ratio increases rapidly along the streamwise direction.The turning point appears nearx/S=12.Then the heat transfer coefficient ratio varies tardily along the streamwise direction.Lastly,the laterally-averaged heat transfer coefficient ratio tends to be constant once the effusion film layer is nearly developed.

    Fig.6 Cross-sectional velocity fields and temperature fields downstream from the 15th row.

    Fig.7 Effects of blowing ratio on laterally-averaged adiabatic film cooling effectiveness and heat transfer coef ficient ratio.

    3.2.Effects of corrugation amplitude and wavelength

    Fig.8 presents the effect of the corrugation geometry on the adiabatic wall temperature distributions over the transverse corrugated surface under a fixed blowing ratio of 2.3.For comparison,a flat surface is selected as the baseline case.

    Relative to the baseline case(Fig.8(a)),it is found that the surface corrugation produces more obvious non-uniformity of temperature distributions in the lateral direction.For a fixed corrugation amplitude ofA=5 mm,the contour cell corresponding to the lowest temperature on the wavy valley is enlarged in the lateral direction with an increase of the corrugation wavelength,as seen from Fig.8(b)–(d).A similar trend is also true for the effect of the corrugation amplitude for a fixed corrugation wavelength of k=60 mm.As seen from Fig.8(d)–(f),the contour cell corresponding to the lowest temperature on the wavy valley is enlarged in the lateral direction with a decrease of the corrugation wavelength.In general,as the aspect ratio of the wavy corrugation increases,the contour cell corresponding to the lowest temperature on the wavy valley will be enlarged in the lateral direction.Either the corrugation amplitude or wavelength has relatively little in fluence on the distribution feature of the adiabatic wall temperature.

    Fig.9 presents the effect of the corrugation amplitude on the local adiabatic film cooling effectiveness in the lateral direction.In the front zone of the effusion cooling surface,such as atx/S=5,the coverage of the film layer is relatively poor compared with that in the further downstream zone.The local adiabatic film cooling effectiveness is relatively low and the difference between the wavy peak and the wavy valley seems not obvious.With the film layer being developed,such as atx/S=15,the wavy valley of the corrugated surface is helpful to accumulate the coolant out flow and thus strengths the film extending capacity along the streamwise direction,which makes the local effusion cooling effectiveness on the wavy valley region to be higher than that of a flat surface,while the local effusion cooling effectiveness in the wavy peak region is signi ficantly lower than that of a flat surface.As the film layer develops further,such as atx/S=30,the film layer reaches nearly to the full development,and the difference between the wavy peak and the wavy valley behaves more obviously.

    Figs.10 and 11 present the effects of the corrugation amplitude and wavelength on the laterally-averaged adiabatic film cooling effectiveness and heat transfer coefficient ratio distributions along the streamwise direction,respectively.

    It is seen from Figs.10 and 11(a)that the surface corrugation has a relatively obvious influence on the laterally-averaged adiabatic film cooling effectiveness in the region where the effusion film layer is developed,but has little influence in the front region.The laterally-averaged adiabatic film cooling effectiveness increases as the aspect ratio of the wavy corrugation increases.The difference between the baseline case and the corrugated surface is more obvious under small aspect ratios.However,the corrugation geometry has an important influence on the laterally-averaged heat transfer coefficient ratio,even under larger aspect ratios,as seen in Figs.10 and 11(b).As the aspect ratio of the wavy corrugation increases,the laterally-averaged heat transfer coefficient ratio decreases.This trend is the same as the finding presented by Shinbo et al.16who concluded that the convective heat transfer in the case of a corrugated plate is larger than the one obtained for a flat surface,mainly due to the influence of the plate corrugations on the development of turbulence in the wall region.

    Fig.8 Effectofcorrugation geometryon adiabatic wall temperature distributions.

    Fig.9 Effect of corrugation amplitude on local adiabatic film cooling effectiveness in lateral direction.

    Fig.10 Effects of corrugation amplitude on laterally-averaged adiabaticfilmcoolingeffectivenessandheattransfercoefficientratio.

    Fig.11 Effects of corrugation wavelength on laterally-averaged adiabatic film cooling effectiveness and heat transfer coefficient ratio.

    4.Conclusions

    Surface corrugation produces more obvious non-uniformity of the local adiabatic film cooling effectiveness distribution in the lateral direction relative to a flat surface.The adiabatic wall temperature on the wavy valley of a transverse corrugated surface is relatively lower than that on the wavy peak where the coolant outflow is more accumulated to build up a thick film layer.

    Surface corrugation has a relatively obvious influence on the laterally-averaged adiabatic film cooling effectiveness in the region where the effusion film layer is developed,but has little influence in the front region.The laterally-averaged adiabatic film cooling effectiveness increases as the aspect ratio of the wavy corrugation increases.The difference between a flat surface and a corrugated surface behaves more obviously under a small aspect ratio of the wavy corrugation.

    The corrugation geometry has an important influence on the laterally-averaged heat transfer coefficient ratio.The laterally-averaged heat transfer coefficient ratio decreases as the aspect ratio of the wavy corrugation increases.

    1.Leger B,Miron P,Emidio JM.Geometric and aero-thermal influences on multi-holed plate temperature:application on combustor wall.Int J Heat Mass Transf2003;46(7):1215–22.

    2.Cerri G,Giovannelli A,Battisti L,Fedrizzi R.Advances in effusive cooling techniques of gas turbines.Appl Therm Eng2007;27(4):692–8.

    3.Krewinkel R.A review of gas turbine effusion cooling studies.Int J Heat Mass Transf2013;66(6):706–22.

    4.Andrews G,Gupta M,Mkpadi M.Full coverage discrete hole film cooling:cooling effectiveness.J Turbo Jet Eng1984;2(3):199–212.

    5.Andrews G,Gupta M,Mkpadi M.Full coverage discrete hole film cooling:the influence of hole size.J Turbo Jet Eng1997;2(3):213–25.

    6.Bazdidi TF,Andrews G.Full coverage discrete hole film cooling:investigation of the effect of variable density ratio.J Eng Gas Turbines Power1994;116(3):587–96.

    7.Bohn D,Moritz N.Influence of hole shaping of staggered multihole configurations on cooling film development.Reston:AIAA;2000.Report No:AIAA-2000–2579.

    8.Scrittore JJ,Thole KA,Burd SW.Investigation of velocity profiles for effusion cooling of a combustor liner.ASME J Turbomach2007;129(3):518–26.

    9.Yang CF,Zhang JZ.Influence of multi-hole arrangement on cooling film development.Chin J Aeronaut2012;25(2):182–8.

    10.Yang CF,Zhang JZ,Yang WH.Effect of the holes array arrangement on the full coverage film cooling characteristics.J Aerospace Power2010;25(7):1524–9[Chinese].

    11.Lin YZ,Song B,Li B,Liu G,Wu Z.Investigation of film cooling effectiveness of full-coverage inclined multihole walls with different hole arrangements.New York:ASME;2003.Report No:GT2003-38881.

    12.Zhang C,Song B,Lin YZ,Xu Q.Cooling effectiveness of effusion walls with deflection hole angles measured by infrared imaging.Appl Therm Eng2009;29(5–6):966–72.

    13.Ligrani P,Goodro M,Fox M,Moon HK,Ligrani P.Fullcoverage film cooling:film effectiveness and heat transfer coeff icients for dense and sparse hole arrays at different blowing ratios.ASME J Turbomach2012;134(6):061039-1-13.

    14.Ligrani P,Goodro M,Fox M,Mook HK.Full-coverage film cooling:film effectiveness and heat transfer coefficients for dense hole arrays at different hole angles,contraction ratios,and blowing ratios.ASME J Heat Transfer2013;135(3),031707-1-14.

    15.Andreini A,Facchini B,Picchi A,Tarchi L,Turrini F.Experimental and theoretical investigation of thermal effectiveness in multiperforated plates for combustor liner effusion cooling.ASME J Turbomach2014;136(9):091003-1-13.

    16.Shinbo K,Koide Y,Kashiwagi T,Oguma M,Mizuno M,Funazaki K.Research of heat transfer of a liner for an afterburner.Reston:AIAA;1997.Report No:AIAA-1997-3005.

    17.Champion JL,Deshaies B,Curtelin R,Desaulty M.Aerodynamical structure of the wall flow over a wavy surface partially cooled by air injection through multiperforations.Reston:AIAA;1999.Report No:AIAA-1999-1016.

    18.Funazaki K,Igarashi T,Koide Y,Shinbo K.Studies on cooling air ejected over a corrugated wall:its aerodynamic behavior and film effectiveness.New York:ASME;2001.Report No:ASME 2001-GT-143.

    19.Tang C,Chang HP,Mao JK.Numerical simulation of discrete holes on the longitudinal ripple wavy liner.J Eng Thermophys2007;28(3):487–9[Chinese].

    20.Tang C,Chang HP.Numerical simulation of effusion holes on the longitudinal ripple heat shield.J Aerospace Power2009;24(1):18–24[Chinese].

    21.Chang GQ,Chang HP,Chang H,Hu XD,Shan XQ.Experimental investigation on film cooling effectiveness of multi-hole at longitudinal wavy surface.J Aerospace Power2009;24(3):513–8[Chinese].

    22.Chang F,Chang HP,Chang GQ,Tang C,Shan XQ.Numerical simulation of characteristic of film cooling on corrugated wall.J Eng Thermophys2009;30(2):2093–5[Chinese].

    23.Harrison K,Bogard D.Comparison of RANS turbulence models for prediction of film cooling performance.New York:ASME;2008.Report No:ASME GT2008-50366.

    24.Silieti M,Kassab AJ,Divo E.Film cooling effectiveness:comparison of adiabatic and conjugate heat transfer CFD models.Int J Thermal Sci2009;48(12):2237–48.

    25.Yao Y,Zhang JZ,Tan XM.Numerical study of film cooling from converging slot-hole on a gas turbine blade suction side.Int Commun Heat Mass Transfer2014;52(2):61–72.

    26.Schmidt DL,Sen B,Bogard DG.Film cooling with compound angle holes:adiabatic effectiveness.ASME J Turbomach1996;118(4):807–13.

    27.Gritsch M,Schulz A,Wittig S.Adiabatic wall effectiveness measurements of film cooling holes with expanded exits.ASME J Turbomach1998;120(3):549–56.

    8 October 2015;revised 25 November 2016;accepted 15 December 2016

    Available online 21 February 2017

    *Corresponding author at:College of Energy and Power Engineering,Jiangsu Province Key Laboratory of Aerospace Power System,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China.

    E-mail address:zhangjz@nuaa.edu.cn(J.Zhang).

    Peer review under responsibility of Editorial Committee of CJA.

    亚洲色图综合在线观看| 伦精品一区二区三区| 日韩精品有码人妻一区| 精品国产乱码久久久久久男人| 午夜精品国产一区二区电影| 精品久久蜜臀av无| 毛片一级片免费看久久久久| 欧美av亚洲av综合av国产av | 欧美日韩综合久久久久久| 妹子高潮喷水视频| 亚洲欧洲日产国产| 纵有疾风起免费观看全集完整版| 欧美成人午夜精品| 国产一区亚洲一区在线观看| 亚洲成色77777| 18禁观看日本| 性色avwww在线观看| 亚洲天堂av无毛| 男女午夜视频在线观看| 国产一区二区 视频在线| 亚洲av电影在线进入| 麻豆精品久久久久久蜜桃| 国产片内射在线| 日本免费在线观看一区| 亚洲精品一区蜜桃| 久久人人爽av亚洲精品天堂| 中文字幕人妻丝袜制服| 狠狠精品人妻久久久久久综合| 国产乱来视频区| 亚洲精品久久久久久婷婷小说| videos熟女内射| 欧美精品av麻豆av| 满18在线观看网站| 99久久人妻综合| 国产视频首页在线观看| 中文欧美无线码| 亚洲成av片中文字幕在线观看 | av国产久精品久网站免费入址| 亚洲美女黄色视频免费看| 成人免费观看视频高清| 自线自在国产av| 亚洲av电影在线观看一区二区三区| 黄频高清免费视频| 免费黄频网站在线观看国产| 97精品久久久久久久久久精品| 高清av免费在线| 日本免费在线观看一区| 新久久久久国产一级毛片| 亚洲,一卡二卡三卡| 久久ye,这里只有精品| 日产精品乱码卡一卡2卡三| av有码第一页| 五月开心婷婷网| 日本黄色日本黄色录像| 国产成人精品福利久久| 亚洲国产日韩一区二区| 国产熟女欧美一区二区| 天堂中文最新版在线下载| 男女啪啪激烈高潮av片| 女人被躁到高潮嗷嗷叫费观| 久久99蜜桃精品久久| 日本免费在线观看一区| 一二三四在线观看免费中文在| 妹子高潮喷水视频| av又黄又爽大尺度在线免费看| 黄色 视频免费看| 免费av中文字幕在线| 欧美日韩精品成人综合77777| 人成视频在线观看免费观看| 国产一区二区激情短视频 | 男人舔女人的私密视频| 欧美国产精品va在线观看不卡| 9色porny在线观看| 黑人欧美特级aaaaaa片| 日韩成人av中文字幕在线观看| 国产亚洲午夜精品一区二区久久| 激情五月婷婷亚洲| 精品一区二区免费观看| 精品福利永久在线观看| 色网站视频免费| 美女脱内裤让男人舔精品视频| 亚洲成色77777| 女人被躁到高潮嗷嗷叫费观| 波多野结衣av一区二区av| 老司机亚洲免费影院| 在线观看美女被高潮喷水网站| 男女边摸边吃奶| 亚洲欧美精品自产自拍| 看免费成人av毛片| 国产一区有黄有色的免费视频| 综合色丁香网| 日产精品乱码卡一卡2卡三| 亚洲精品美女久久av网站| 99热全是精品| 热re99久久国产66热| 欧美中文综合在线视频| 国产国语露脸激情在线看| 久久久久精品久久久久真实原创| 婷婷色综合大香蕉| 中文字幕人妻丝袜一区二区 | 精品国产乱码久久久久久小说| 99热全是精品| 一区在线观看完整版| 大陆偷拍与自拍| 少妇的逼水好多| 国产在线一区二区三区精| 亚洲精品国产av成人精品| 91久久精品国产一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 在线天堂最新版资源| 巨乳人妻的诱惑在线观看| 一级a爱视频在线免费观看| 亚洲国产欧美网| 精品午夜福利在线看| 国产黄色免费在线视频| 久久久久久久久久久免费av| 在线观看免费视频网站a站| 三级国产精品片| 国产免费视频播放在线视频| 国产亚洲午夜精品一区二区久久| 国产精品无大码| 国产白丝娇喘喷水9色精品| av在线老鸭窝| 18禁观看日本| 美女国产高潮福利片在线看| 国产人伦9x9x在线观看 | 欧美国产精品一级二级三级| 久久人妻熟女aⅴ| 老熟女久久久| av在线播放精品| 在线观看国产h片| 69精品国产乱码久久久| 国产熟女欧美一区二区| 成人免费观看视频高清| 在线观看免费视频网站a站| 在线观看www视频免费| 国产老妇伦熟女老妇高清| av在线播放精品| 亚洲天堂av无毛| 国产精品av久久久久免费| 少妇被粗大的猛进出69影院| 日韩中文字幕欧美一区二区 | 狠狠精品人妻久久久久久综合| 欧美人与性动交α欧美软件| 热99国产精品久久久久久7| 日本猛色少妇xxxxx猛交久久| 久久久亚洲精品成人影院| 成年人免费黄色播放视频| 在线精品无人区一区二区三| 精品亚洲成国产av| 蜜桃国产av成人99| 九色亚洲精品在线播放| 国产成人免费无遮挡视频| 日韩三级伦理在线观看| 国产片内射在线| 国产亚洲欧美精品永久| 国产激情久久老熟女| 国产激情久久老熟女| 亚洲,一卡二卡三卡| 午夜福利影视在线免费观看| 国产精品99久久99久久久不卡 | 精品国产国语对白av| 国产精品久久久久久精品电影小说| 超碰成人久久| 亚洲激情五月婷婷啪啪| 天天躁夜夜躁狠狠久久av| 一级片免费观看大全| 女性生殖器流出的白浆| 黄色配什么色好看| 肉色欧美久久久久久久蜜桃| 欧美激情 高清一区二区三区| 天天躁夜夜躁狠狠躁躁| 女人高潮潮喷娇喘18禁视频| 乱人伦中国视频| 亚洲国产最新在线播放| 国产麻豆69| 国产福利在线免费观看视频| 夫妻性生交免费视频一级片| 日韩制服丝袜自拍偷拍| 久久久久国产精品人妻一区二区| 在线 av 中文字幕| 国产精品嫩草影院av在线观看| 一本大道久久a久久精品| 国产免费一区二区三区四区乱码| 国产精品熟女久久久久浪| 天天躁日日躁夜夜躁夜夜| 国产高清国产精品国产三级| 国产精品一区二区在线不卡| 精品少妇内射三级| 欧美精品亚洲一区二区| 女的被弄到高潮叫床怎么办| 精品亚洲乱码少妇综合久久| 两个人免费观看高清视频| 欧美激情 高清一区二区三区| 女人高潮潮喷娇喘18禁视频| 中文字幕制服av| 高清在线视频一区二区三区| 午夜福利乱码中文字幕| 9热在线视频观看99| 99久国产av精品国产电影| 日韩中文字幕欧美一区二区 | 永久免费av网站大全| 精品少妇黑人巨大在线播放| 免费高清在线观看日韩| 亚洲精品视频女| av免费在线看不卡| 成人国语在线视频| 最黄视频免费看| 亚洲国产av新网站| av免费观看日本| 亚洲精品美女久久久久99蜜臀 | 久久久欧美国产精品| 欧美+日韩+精品| 亚洲欧美一区二区三区黑人 | 大片免费播放器 马上看| 亚洲色图综合在线观看| 国产高清国产精品国产三级| 2018国产大陆天天弄谢| 中国国产av一级| 在线观看免费高清a一片| 久久综合国产亚洲精品| 久久韩国三级中文字幕| 少妇 在线观看| 十八禁高潮呻吟视频| 国产午夜精品一二区理论片| 叶爱在线成人免费视频播放| 天天操日日干夜夜撸| 亚洲国产av新网站| 国产精品一区二区在线不卡| 春色校园在线视频观看| 狠狠精品人妻久久久久久综合| 老司机亚洲免费影院| 韩国高清视频一区二区三区| a级毛片黄视频| 丝瓜视频免费看黄片| 18禁动态无遮挡网站| 免费黄网站久久成人精品| 在现免费观看毛片| 中文字幕色久视频| 成人黄色视频免费在线看| 80岁老熟妇乱子伦牲交| 久久精品国产亚洲av天美| 国产人伦9x9x在线观看 | 各种免费的搞黄视频| 美女脱内裤让男人舔精品视频| 国产色婷婷99| 春色校园在线视频观看| 国产成人91sexporn| 免费高清在线观看日韩| 久久精品国产a三级三级三级| 中文乱码字字幕精品一区二区三区| 色吧在线观看| 香蕉丝袜av| 欧美激情 高清一区二区三区| 在线免费观看不下载黄p国产| 91久久精品国产一区二区三区| 亚洲综合色惰| 欧美日韩成人在线一区二区| 亚洲精品aⅴ在线观看| 国产野战对白在线观看| 少妇精品久久久久久久| 欧美精品高潮呻吟av久久| 99re6热这里在线精品视频| 亚洲,欧美,日韩| 国产在线免费精品| 国产精品av久久久久免费| 欧美日本中文国产一区发布| 国产男女超爽视频在线观看| 欧美日韩综合久久久久久| 国产av码专区亚洲av| 亚洲精品久久久久久婷婷小说| 最新的欧美精品一区二区| 精品国产乱码久久久久久小说| 成人国产麻豆网| 国产成人免费观看mmmm| 男女边吃奶边做爰视频| 男女高潮啪啪啪动态图| 午夜老司机福利剧场| 最近中文字幕2019免费版| 色吧在线观看| 色婷婷av一区二区三区视频| 777米奇影视久久| 久久久精品94久久精品| 精品少妇久久久久久888优播| 免费观看性生交大片5| 午夜日韩欧美国产| 国产免费一区二区三区四区乱码| 一级毛片我不卡| 午夜激情av网站| 侵犯人妻中文字幕一二三四区| 一区二区三区激情视频| 自线自在国产av| 高清在线视频一区二区三区| 精品一区二区三卡| 成人午夜精彩视频在线观看| 日本欧美视频一区| 看免费成人av毛片| 精品国产一区二区三区久久久樱花| 少妇人妻 视频| 七月丁香在线播放| 久久青草综合色| 精品卡一卡二卡四卡免费| av女优亚洲男人天堂| 一级黄片播放器| 欧美 日韩 精品 国产| 国产日韩欧美亚洲二区| 亚洲欧美成人精品一区二区| 交换朋友夫妻互换小说| 男女边吃奶边做爰视频| 国产在视频线精品| 亚洲精品日本国产第一区| 亚洲成人一二三区av| 国产亚洲av片在线观看秒播厂| 亚洲精品一二三| 免费高清在线观看日韩| 日韩伦理黄色片| 国产av国产精品国产| 国产日韩欧美视频二区| 久久久久久人人人人人| 另类亚洲欧美激情| 18在线观看网站| 有码 亚洲区| a 毛片基地| 日韩一区二区视频免费看| 欧美日韩综合久久久久久| 久久99蜜桃精品久久| 日本av手机在线免费观看| 成人二区视频| 久久久精品免费免费高清| 亚洲一区二区三区欧美精品| 最近最新中文字幕大全免费视频 | 狂野欧美激情性bbbbbb| 麻豆乱淫一区二区| 自线自在国产av| 日韩一区二区视频免费看| 伦精品一区二区三区| 日本-黄色视频高清免费观看| av免费观看日本| 免费av中文字幕在线| 咕卡用的链子| 亚洲精品在线美女| 日韩欧美一区视频在线观看| 国产一区二区激情短视频 | 超色免费av| 中国三级夫妇交换| 秋霞在线观看毛片| 少妇精品久久久久久久| 90打野战视频偷拍视频| 国产黄色免费在线视频| av网站在线播放免费| 久久韩国三级中文字幕| 人妻系列 视频| 国产精品麻豆人妻色哟哟久久| 国产探花极品一区二区| 国产福利在线免费观看视频| 亚洲综合色惰| 高清在线视频一区二区三区| 18+在线观看网站| 叶爱在线成人免费视频播放| 街头女战士在线观看网站| 爱豆传媒免费全集在线观看| 丝袜美足系列| 日韩一区二区三区影片| 亚洲国产精品999| 天堂中文最新版在线下载| 又粗又硬又长又爽又黄的视频| 国精品久久久久久国模美| 欧美日韩亚洲高清精品| 赤兔流量卡办理| 亚洲精品久久久久久婷婷小说| 色吧在线观看| 不卡av一区二区三区| 18禁观看日本| 香蕉丝袜av| 国产欧美日韩综合在线一区二区| 卡戴珊不雅视频在线播放| 建设人人有责人人尽责人人享有的| 亚洲视频免费观看视频| 天堂中文最新版在线下载| 高清av免费在线| av国产久精品久网站免费入址| 新久久久久国产一级毛片| 成年人免费黄色播放视频| 制服诱惑二区| 青青草视频在线视频观看| 午夜激情av网站| 自线自在国产av| 亚洲精品美女久久久久99蜜臀 | 亚洲四区av| 国产乱人偷精品视频| 欧美激情极品国产一区二区三区| 汤姆久久久久久久影院中文字幕| 青春草亚洲视频在线观看| av不卡在线播放| 一级爰片在线观看| 免费大片黄手机在线观看| 久久99蜜桃精品久久| 欧美另类一区| 97人妻天天添夜夜摸| 欧美av亚洲av综合av国产av | videosex国产| 国产 一区精品| 日本av手机在线免费观看| 国产精品国产三级国产专区5o| 少妇被粗大的猛进出69影院| 香蕉丝袜av| 色吧在线观看| 性色avwww在线观看| 亚洲国产精品国产精品| 女性生殖器流出的白浆| 亚洲色图 男人天堂 中文字幕| 美女xxoo啪啪120秒动态图| 少妇人妻精品综合一区二区| 国产av一区二区精品久久| 国产女主播在线喷水免费视频网站| 日韩三级伦理在线观看| 丰满少妇做爰视频| 精品亚洲乱码少妇综合久久| 国产免费福利视频在线观看| 精品第一国产精品| 欧美 日韩 精品 国产| 不卡视频在线观看欧美| 精品久久久久久电影网| 欧美日韩精品网址| 女性生殖器流出的白浆| 高清av免费在线| 丝袜在线中文字幕| 亚洲av日韩在线播放| 天堂8中文在线网| 免费少妇av软件| 久久精品亚洲av国产电影网| 国产日韩欧美在线精品| 精品国产一区二区三区久久久樱花| www.精华液| av女优亚洲男人天堂| 国产又色又爽无遮挡免| 免费观看无遮挡的男女| 色婷婷久久久亚洲欧美| 捣出白浆h1v1| 久久久久久久久久人人人人人人| 欧美日韩精品成人综合77777| 777久久人妻少妇嫩草av网站| 国产男女超爽视频在线观看| 毛片一级片免费看久久久久| 欧美最新免费一区二区三区| av国产久精品久网站免费入址| 美女高潮到喷水免费观看| 美女福利国产在线| 午夜福利在线免费观看网站| 性色avwww在线观看| 午夜福利在线观看免费完整高清在| 91在线精品国自产拍蜜月| 成人免费观看视频高清| 又黄又粗又硬又大视频| 亚洲av日韩在线播放| 国产在视频线精品| 婷婷色综合大香蕉| 一本大道久久a久久精品| 国产免费福利视频在线观看| 欧美国产精品va在线观看不卡| 叶爱在线成人免费视频播放| 99热国产这里只有精品6| 欧美国产精品一级二级三级| 国产在视频线精品| 亚洲内射少妇av| 青青草视频在线视频观看| 亚洲av免费高清在线观看| 丝袜喷水一区| 日韩 亚洲 欧美在线| 香蕉精品网在线| 午夜福利,免费看| 亚洲精品日韩在线中文字幕| 曰老女人黄片| 制服诱惑二区| av福利片在线| 国产精品熟女久久久久浪| 一区二区日韩欧美中文字幕| 边亲边吃奶的免费视频| 欧美少妇被猛烈插入视频| 国产日韩欧美视频二区| 精品少妇黑人巨大在线播放| 性少妇av在线| 大片免费播放器 马上看| 波多野结衣av一区二区av| 亚洲激情五月婷婷啪啪| 欧美精品av麻豆av| 欧美日韩亚洲高清精品| 欧美最新免费一区二区三区| www.熟女人妻精品国产| 国产精品久久久久久久久免| 亚洲中文av在线| 中国三级夫妇交换| 一二三四在线观看免费中文在| 精品人妻熟女毛片av久久网站| 日韩不卡一区二区三区视频在线| 老司机亚洲免费影院| 成人午夜精彩视频在线观看| 午夜av观看不卡| 在线观看免费高清a一片| 丝袜喷水一区| 如日韩欧美国产精品一区二区三区| 亚洲婷婷狠狠爱综合网| 亚洲国产精品国产精品| 在线天堂中文资源库| 91aial.com中文字幕在线观看| 日本av手机在线免费观看| av国产久精品久网站免费入址| 久久人人97超碰香蕉20202| 成年人午夜在线观看视频| 国产精品不卡视频一区二区| 日韩一卡2卡3卡4卡2021年| 欧美日韩精品网址| 少妇被粗大的猛进出69影院| 成人手机av| 91在线精品国自产拍蜜月| 侵犯人妻中文字幕一二三四区| 狠狠精品人妻久久久久久综合| 亚洲成av片中文字幕在线观看 | 久久综合国产亚洲精品| 少妇人妻精品综合一区二区| 老汉色av国产亚洲站长工具| 国产成人91sexporn| 欧美日韩精品网址| 久久久久精品人妻al黑| av又黄又爽大尺度在线免费看| 久久久精品区二区三区| 最近中文字幕2019免费版| 国产男女内射视频| 老汉色∧v一级毛片| 天堂中文最新版在线下载| av国产久精品久网站免费入址| 男的添女的下面高潮视频| 久热久热在线精品观看| 成年女人毛片免费观看观看9 | 侵犯人妻中文字幕一二三四区| 美女主播在线视频| 日韩视频在线欧美| 久久99热这里只频精品6学生| 天天躁夜夜躁狠狠躁躁| 午夜久久久在线观看| 欧美日本中文国产一区发布| 亚洲国产最新在线播放| 国产黄色免费在线视频| 久久精品国产a三级三级三级| 欧美中文综合在线视频| 国产在线免费精品| 中文乱码字字幕精品一区二区三区| 亚洲美女黄色视频免费看| 一个人免费看片子| 青青草视频在线视频观看| 欧美激情高清一区二区三区 | 国产精品国产av在线观看| 国产成人免费无遮挡视频| 纵有疾风起免费观看全集完整版| 丝袜在线中文字幕| 啦啦啦在线观看免费高清www| 黄片小视频在线播放| 午夜老司机福利剧场| 亚洲av中文av极速乱| 久久精品国产亚洲av天美| www.精华液| 伦理电影大哥的女人| a 毛片基地| 免费在线观看黄色视频的| 久久这里有精品视频免费| 高清不卡的av网站| 交换朋友夫妻互换小说| 男人舔女人的私密视频| 一边亲一边摸免费视频| 成人免费观看视频高清| 亚洲欧美精品综合一区二区三区 | 激情视频va一区二区三区| 性少妇av在线| 亚洲国产精品999| 最近手机中文字幕大全| 国产黄频视频在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 国产一区二区 视频在线| 国产av码专区亚洲av| 日韩中文字幕欧美一区二区 | 欧美人与性动交α欧美精品济南到 | 久久久久国产精品人妻一区二区| 亚洲欧洲国产日韩| 日韩欧美一区视频在线观看| 国产成人免费无遮挡视频| 天天躁夜夜躁狠狠久久av| 免费黄网站久久成人精品| 男女高潮啪啪啪动态图| 午夜福利在线免费观看网站| 韩国av在线不卡| 国产成人免费观看mmmm| 亚洲国产精品999| 在现免费观看毛片| 免费观看a级毛片全部| 精品视频人人做人人爽| 啦啦啦在线免费观看视频4| a级毛片在线看网站| 九九爱精品视频在线观看| 男女国产视频网站| 最近中文字幕2019免费版| 精品国产超薄肉色丝袜足j| 最近最新中文字幕免费大全7| 人妻一区二区av| 超碰成人久久| 69精品国产乱码久久久| 男人添女人高潮全过程视频| 91精品国产国语对白视频| 精品福利永久在线观看| 国产老妇伦熟女老妇高清| 国产在线视频一区二区| 国产在线免费精品| 精品一区二区免费观看| 天堂俺去俺来也www色官网| 日产精品乱码卡一卡2卡三| 亚洲欧美一区二区三区久久|