• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dynamic response analysis under atmospheric disturbances for helicopters based on elastic blades

    2017-11-20 12:07:08TongLiuYutingDaiGuanxinHongLinpengWang
    CHINESE JOURNAL OF AERONAUTICS 2017年2期

    Tong Liu,Yuting Dai,Guanxin Hong,Linpeng Wang

    School of Aeronautic Science and Engineering,Beihang University,Beijing 100083,China

    Dynamic response analysis under atmospheric disturbances for helicopters based on elastic blades

    Tong Liu,Yuting Dai*,Guanxin Hong,Linpeng Wang

    School of Aeronautic Science and Engineering,Beihang University,Beijing 100083,China

    Dynamic model;Elastic;Helicopter;Time domain analysis;Trimming;Wind shear

    A flight dynamics model based on elastic blades for helicopters is developed.Modal shape analysis is used to describe the rotating elastic blades for the purpose of reducing the elastic degrees of freedom for blades.The analytical result is employed to predict the rotor forces and moments.The equilibrium equation of the flight dynamics model is then constructed for the elastic motion for blades and the rigid motion for other parts.The nonlinear equation is further simplified,and the gradient descent algorithm is adopted to implement the trim simulation.The trim analysis shows that the effect of blade elasticity on the accuracy of rotor forces and moments is apparent at high speed,and the proposed method presents good accuracy for trim performance.The timedomain response is realized by a combination of the Newmark method and the adaptive Runge-Kutta method.The helicopter control responses of collective pitch show that the response accuracy of the model at a yaw-and-pitch attitude is improved.Finally,the influence of blade elasticity on the helicopter dynamic response in low-altitude wind shear is investigated.An increase in blade elasticity reduces the oscillation amplitude of the yaw angle and the vertical speed by more than 70%.Compared with a rigid blade,an elastic blade reduces the vibration frequency of the angular velocity and results in a fast return of the helicopter to its stable flight.

    1.Introduction

    When a helicopter encounters atmospheric disturbances,the flapping motion of the rotor blade causes a hysteresis effect on the response of the aircraft fuselage.1This phenomenon affects the judgment of the pilot on the helicopter’s flight attitude and endangers the helicopter’s flight safety seriously.Helicopter movement exhibits obvious nonlinear features because of the coupling characteristics among the helicopter rotor,fuselage,lifting surface,and other components,such as inertia coupling,structure coupling,motion coupling,and aerodynamic coupling.2In fact,the helicopter rotor blade rotates at high speed with high-order nonlinear flapping motion and elastic deformation.Therefore,a helicopter nonlinear dynamics model that considers blade elasticity and exhibits a high level of simulation fidelity can precisely estimate the characteristics of blade flapping.This model is meaningful for research on helicopters under atmospheric disturbances,especially in assessment of flying quality,design of control systems,and analysis of stability and maneuverability.

    Crocco3and Hohenemser4used an initial dynamics model of helicopters for the analysis of trim and stability.This model considers six degrees of freedom of a rigid body motion fuselage only.With the development of high-speed helicopters,the need for a reliable design of flight control systems has prompted interest in improving the accuracy of a flight dynamics model coupled with a sophisticated rotor model.The typical models are the ARMCOP general mathematical model proposed by the AMES Research Center,5,6the GENHEL model designed by Sikorsky Aircraft Corporation,7the affine nonlinear model established by Yang,8and the helicopter nonlinear dynamics model established by Chen9for the study of maneuver flight.However,all these models ignore the effect of elastic deformation of blades to reduce the coupling between helicopter components and simplify the dynamics models.Therefore,reflectingthecharacteristicsofbladeflappingmotion is difficult;this difficulty can affect the prediction of rotor aerodynamic loads and reduce the level of simulation fidelity.

    Dynamics models considering the effect of blade elasticity are constantly developed.Theodore and Celi10described a flight dynamics simulation model,which includes the effects of blade flexibility with coupled flap-lag-torsion degrees of freedom and a free-wake inflow formulation.Kim11proposed a calculation model for the aerodynamic loads of the main helicopter elastic blade propeller in hover and forward flights.Li and Chen12established a nonlinear flight dynamics model considering the flap-lag-torsion coupling of the elastic blade.These methods have improved the accuracy of model calculations,which apply finite element analysis to an elastic blade model.However,the obtained large computational overhead prohibits the deployment of such methods in real-time flight dynamics applications,such as flight simulation under atmospheric disturbances.

    Considering the abovementioned studies,this work aims to develop a helicopter dynamics model based on an elastic blade thatcanbeusedinreal-timeflightsimulationunderatmospheric disturbances.The specific objectives of the study are as follows:

    (1)To describe a real-time flight dynamics simulation model that includes the flapping dynamics equation of the elastic blade and the formulation of rotor forces and moments exerted on the aircraft fuselage.

    (2)To identify the capability of the model to obtain accurate estimates of trim performance by comparisons with flight test data.

    (3)To assess the effects of rotor blade elasticity on the accuracy of rotor forces and moments.

    (4)To realize time-domain response simulation of the helicopter with the dynamics model based on the elastic blade.

    (5)Tousetheestablished modelin investigating the dynamic response of the helicopter in low-altitude wind shear.

    2.Mathematical model

    2.1.Flapping dynamic equation of an elastic blade

    Yang8described a mathematical model of an affine nonlinear flight dynamic system for a single rotor.The rotor blade is assumed to be rigid with a blade hinge offset from the center of rotation and a spring about the flap hinge.The lag motion is ignored,and the value of the flapping angle b is supposed to be small.Linear coupling is considered between torsion and flapping.The flapping dynamic equation of the rigid blade in the model according to the equilibrium of bending moment can be expressed as

    whereC1,C2,andC3are the coefficients of the flapping equation.Considering the deformation of the elastic blade,the flapping angle of the blade changes in the spanwise direction.In this study,the blade piecewise discrete method is adopted to indicate the flapping angle of the elastic blade.

    With a large aspect ratio,the blade can be simplified as a cantilever beam;a two-node beam element is used to discretize the blade.The bending deformation of the elastic blade in a main rotor hub-rotation system(Sr)is shown graphically in Fig.1.

    Without considering the root offset distancee,the hinge offset distancee0,handAfor coordinates,and the tip loss(1?B)R,the blade is divided intoNrsections equally.Notably,Bis the coefficient of the tip loss andRis the blade radius.xnandrnare the distance from thenth segment to the root and the hinge.FZ,nis the rotor thrust generated by thenth segment.The flapping deformation on every micro-segment is assumed to be negligible,and the first harmonic form of the flapping angle on thenth segment is defined as

    The flapping mode degree of freedom is used to indicate the discrete flapping angle on each segment.The structural dynamic equation with the first-order modal shape under an aerodynamic load FZ(t)can be expressed as

    Fig.1 Bending deformation of elastic blade.

    Similarly,the aerodynamic force at the hub direction can be written as the following first harmonic form:

    2.2.Formulation of rotor forces and moments with elastic blades

    The rotor forces and moments acting on the rigid blade can be calculated by the integration method8or the computational fluid dynamics(CFD)method.13These methods are unsuitable for the elastic blade dynamics model whereas viable for the calculation of the elastic blade aerodynamic force integral through the piecewise summation method of the azimuth angle and the blade span finite element.Then,rotor forces and moments exerted on the aircraft fuselage,including the rotor thrustTt,horizontal forceHt,side forceYt,rolling momentLt,pitching momentMt,and torsional momentQtin the main rotor hub-airflow system,are mathematically expressed as

    2.3.Dynamics model for a helicopter with elastic blades

    The helicopter nonlinear dynamics model with elastic blades can be defined after building the flapping dynamics equation of the elastic blade and the algorithm of rotor forces and moments;the dynamics equation of the mass center translation,the dynamics equation of the mass center rotation,the geometrical relationship between the attitude angle and the angular velocity,the flapping dynamics equation of the tail rotor,and the dynamic inflow equation of the ANSM model are also obtained.8The model can be expressed by a firstorder differential equation as shown below,where the subscript ED represents the dynamics model that considers blade elastic deformation.

    where XEDis the state vector,including the velocity,angular velocity,attitude angle,flapping coefficient,dynamic inflow coefficient,and other state parameters.U is the control vector,including the main rotor pitch h0M,tail rotor pitch h0T,lateral cyclic pitchA1C,and longitudinal cyclic pitchB1C.The state vector AEDand the control matrix BEDare the functions of the blade azimuth angle,helicopter component parameters,and state parameters.

    3.Trim analysis

    3.1.Method of trim analysis

    During a steady flight of the helicopter,the derivatives to time of each state variable are all zero.The angular velocity and acceleration of the aircraft fuselage is also zero regardless of the sideslip flight of the helicopter.The dynamic equation can be simplified into an equilibrium equation as

    The trim variable vector is written as

    The gradient descent algorithm14is a mature and effective numerical analytical method.This algorithm is similar to the solution of a nonlinear algebraic equation for the extreme value problem of an objective function.The algorithm can be successfully used to solve nonlinear equation groups.To improve the efficiency and convergence of the trim algorithm,the equilibrium equation is further simplified.The trim variable is simplified as

    The equilibrium equation only considers six equilibrium equations of the aircraft fuselage.Other trim variables are solved in each iteration through the flapping dynamics equation of the elastic blade,the flapping dynamics equation of the tail rotor,and the dynamic inflow equation.The objective function can be defined as

    wherefiis the equilibrium equation of the helicopter.The trim simulation calculation of the helicopter is realized according to the iteration step of the gradient descent algorithm.15The process of trimming simulation is shown in Fig.2.

    3.2.Model validation

    To validate the precision of the helicopter nonlinear dynamics model with an elastic blade,the trim performance of a UH-60A helicopter under a steady level flight is calculated using the established model;the obtained results are then compared with the flight test data16and trim results of the dynamics model with a rigid blade.17The trim performance of UH-60A helicopters is selected because of the availability of a complete database system containing wind tunnel test data and flight test data of UH-60A helicopters for verifying most dynamics models.

    Fig.2 Process of trimming simulation.

    According to the flight test conditions,the rotor speed is set as 26.83 rad/s,the tail rotor speed is set as 124.64 rad/s,the flight height is set as 1600.2 m,and the helicopter flight weight is set as 7257.9 kg.Moreover,Nr=10 andNw=20.The first flapping model frequency x=46.39 rad/s.The four positions of the joystick including collective pitch control,tail rotor control,lateral cyclic control,and longitudinal cyclic control under a steady forward flight speed ofV=0–70 m/s can be calculated using the trim simulation.Fig.3 presents the comparison of trim results.

    The comparison of trim results shows a good correlation between the present approach and the flight test data.Compared with the trim results of the model with a rigid blade,the trim results of lateral cyclic control and longitudinal cyclic control are closer to the flight test data.Fig.3 also illustrates that the collective pitch control results agree well with the flight test data at medium-speed flights,but a discrepancy appears between the results at high-speed flights.The reason is attributed to the difference between the elastic blade model parameters and the actual parameters of a helicopter.Therefore,the influence of rotor blade elasticity on the trim performance at different flight speeds must be analyzed to further verify the accuracy of the model.

    It should be noted that when the rotational speed of the rotor is constant,with a higher forward flight speed,the linear velocity of the blade tip increases.When the linear velocity of the blade tip approaches the speed of sound,the drag coeff icient will increase rapidly because of the compression of the air,leading to a significant drop of the aerodynamic performance of the rotor.Due to the fact that the proposed model fails to consider the compression effect,the model is only applicable for simulating analysis in a restricted forward flight speed,which ensures that the linear velocity of the blade tip is not up to the range of transonic speed.

    Fig.3 Comparison of trim results between simulation and flight test data.

    3.3.Influence of rotor blade elasticity

    To analyze the influence of rotor blade elasticity on the trim performance and rotor forces and moments,a type of helicopter model is used as an example in this article.The model presents a flying quality of 5250 kg,a rotor wing revolving speed of 31.85 rad/s,and a rotor wing radius of 6.75 m.

    Notably,Nr=10 andNw=20,under a steady flight with a helicopter forward flight speed ofV=36,180,252 km/h;the first flapping model frequencies are 42.90,46.39,61.78,137.57,149.15,205.71 rad/s.The changes in the main rotor pitch,tail rotor pitch,lateral cyclic pitch,longitudinal cyclic pitch,pitch angle,and roll angle with blade elasticity at different speeds are calculated.The trim parameters are shown in Fig.4.It was replaced with the the first flapping model frequency,which can represent the blade elastic properties better.In this section,change trend of trim parameters under different speeds is the focus of attention.In order to show the effect of the rotor blade elasticities to the trim parmenters,the horizontal coordinate is represented by an equidistant form.

    The calculation results show that blade elasticity slightly influences the trim performance at low and medium speeds,except the tail rotor pitch.However,each of the trim parameters changes significantly with an increase in blade elasticity when the helicopter flies at a high speed.The pitch angle of the helicopter,as an exception,is barely affected by the blade elasticity regardless of speed.Considering that the trim performance is mainly determined by the rotor aerodynamic loads,the influences of rotor blade elasticity to the main rotor aerodynamic loads are presented in Fig.5.In the figure,XMR,YMR,andZMRare the main rotor force components;LMR,MMR,andNMRare the rolling,pitching,and yawing moments,respectively.

    The calculation results illustrate that the main rotor force is insignificantly influenced by blade elasticity at low and medium speeds.However,an increase in blade elasticity signif icantly affects the main rotor forces at high speed.ZMRpresents the largest influence among all components.This effect explains the significant influence of elastic modulus on the main rotor pitch at high speed only.The rolling moment of the helicopter is mainly attributed to the main rotor;hence,the effect of blade elasticity on the roll angle is consistent with that on the rolling moment of the main rotor.Moreover,given the influence of the horizontal tail,the pitch angle is barely affected by the pitching moment.

    The rotor load increases with the flight speed,thereby resulting in serious blade deformation.The change in blade elasticity obviously affects the blade deformation,resulting in a certain effect on the trim performance at high speed.Therefore,the established helicopter dynamics model can reflect the actual characteristics of the main rotor and presents sufficient fidelity for simultaneous predictions of rotor forces and moments.

    4.Response analysis

    4.1.Algorithm of time-domain response

    The discrete dynamic equation is used for the elastic blade.Thus,the equation can be performed through the Newmark method.18The time-domain response of flapping coefficients can be realized accordingly.Considering that the dynamics model can still be represented as a first-order ordinary differential equation,the rest of the parameters can still be calculated by the adaptive Runge-Kutta method.19The process of timedomain response simulation is shown in Fig.6.

    Given that the two methods are adopted to achieve realtime integration,the time step must be cautiously selected for calculation.A small time step results in high accuracy for the adaptive Runge-Kutta method.However,the time step of the Newmark method is related to the load time process and the modal frequency of the system.Hence,the time step size must be selected according to the need of simulation.

    Fig.4 Trim results with different rotor blade elasticities in forward flight.

    4.2.Helicopter control response of collective pitch

    In analyzing the influence of the helicopter control response of collective pitch,the UH-60A helicopter is still used with a forward flight speed ofV=185 km/h.According to the flight condition of the flight-test,the collective pitch control input by the driver is 1.27 cm upward and the process of control is shown in Fig.7.

    Fig.8 shows the comparison between the control response by the established model,the flight test data16,and the results of the dynamics model with rigid blades17.

    Fig.5 Comparison of the main rotor force components under different trim states.

    When the helicopter is flying in a steady level flight mode,flight state parameters will remain stable,and respective responses between rigid and elastic blades are basically consistent with each other.After the helicopter experiences disturbances as a result of the collective pitch control input,the impact of blade elasticity on the helicopter performance will be significant.The results show that the control responses of the roll and yaw angles of the helicopter are close to the flight test results.However,some differences are observed in the pitch angle.The reason is that the pitching moment of the helicopter is mainly supplied by the horizontal stabilizer,and the improvement in the calculation accuracy of the main rotor cannot improve the control response accuracy of the pitch angle.On the contrary,compared with the model with rigid blades,the accuracy of the dynamic response analysis can be improved by considering blade elasticity.Thus,the model can be effectively applied to the analysis of the helicopter dynamic response under atmospheric disturbances.

    5.Helicopter dynamic response under atmospheric disturbances

    The first flapping mode represents the flapping elastic deformation in the established helicopter dynamics model.The model exhibits no additional degree of freedom in the state parameter vector of the helicopter model.The model can be applied in the real-time dynamic response simulation of helicopter flight under atmospheric disturbances.

    Fig.6 Process of time-domain response simulation.

    Fig.7 Process of collective pitch control input.

    The low-altitude wind shear is an atmospheric disturbance phenomenon and is known as the ‘hidden killer” for aviation safety.20This parameter is used in analyzing the influence of blade elasticity on the helicopter dynamic response under atmospheric disturbances.The wind field model is defined as21

    whereVais the low-altitude wind shear strength andh0is the ground roughness.Empirically,h0=0.046 m under the condition of vertical takeoff and landing,andh0=0.61 m in other flight altitudes.

    The helicopter is assumed to fly forward at a speed of 252 km/h with a flight height of 600 m.The helicopter suffers from the low-altitude wind shear at 0.5 s from the incoming flow direction,which is set asVa=1 m/s andh0=0.61 m.Comparisons of the time-domain dynamic response of the state parameters are performed between model with elastic blades(x=46.39 rad/s)and rigid blades(x=149.15 rad/s).Fig.9 shows the results of simulation in terms of vertical speed,pitch angle,yaw angle,roll angle,pitching angular velocity,yaw angular velocity,and roll angular velocity.

    The response results demonstrate that blade elasticity apparently affects the response process of simulation.Specif ically,the influence of blade elasticity on the yaw angle is most obvious among all parameters.Compared with the rigid blade,the elastic blade can significantly increase the vibration amplitude of the yaw angle to more than 70%.In addition,for the motion parameters of the helicopter,the influence of blade elasticity on the vibration amplitude of the vertical speed is higher than that on the angular velocity.With an increase in elasticity,the vibration amplitude of the vertical speed can be controlled.However,a serious vibration phenomenon occurs on the angular velocity.This phenomenon increases the time for the helicopter to return to a stable flight after entering the wind field.The vibration amplitude of the parameters can be reduced with an increase in blade elasticity.However,the vibration frequency can increase accordingly.

    Fig.8 Comparison of control response of collective pitch between simulation and flight test data.

    Fig.9 Dynamic response of helicopter in low-altitude wind shear.

    With regard to helicopter design,an increase in the vibration amplitude can cause a certain influence on the structural safety.An increase in the vibration frequency can also affect the operating safety of the helicopter.Hence,the blade must be designed according to the functions,materials,controls,and other aspects of the helicopter.The safety performance of the helicopter design can be improved by establishing a balance between structural safety and operating safety.

    6.Conclusions

    A helicopter dynamics model with elastic blades is proposed for the simulation of the dynamic response of a helicopter under atmospheric disturbances.The proposed model presents sufficient fidelity for the prediction of trim performance and rotor aerodynamic loads particularly at high speed.The conclusions of this work can be summarized as follows:

    (1)The developed helicopter dynamics model presents a high level of simulation fidelity without an addition of degrees of freedom.This model can be applied to studies on real-time and non-real-time numerical simulation of helicopters and other research on aerodynamic features.

    (2)Blade elasticity significantly influences the estimation of the rotor forces and flight status at high speed.Therefore,the elastic deformation of the blade must be considered in the dynamics model of a helicopter.

    (3)The established modelcan predictthe dynamic response of a helicopter in low-altitude wind shear.An increase in blade elasticity can improve the rotor aerodynamic loads and reduce the vibration amplitude of the helicopter flying parameters in a wind field but increase the vibration frequency.Consequently,the effects of blade elasticity on structural safety and operating safety must be considered comprehensively when designing helicopters.

    Acknowledgements

    This study was co-supported by the National Natural Science Foundation of China–China(No.11302011)and the Specialized Research Fund for the Doctoral Program of Higher Education–China(No.20131102120051).

    1.Gao H.Research on helicopter flight characteristics in wind shear[dissertation].Nanjing:Nanjing University of Aeronautics and Astronautics;2009[Chinese].

    2.Yang C,Song SF.The analysis about current situation and development of helicopter dynamics.J Beijing Univ Aeronaut Astronaut1995;21(2):46–52[Chinese].

    3.Crocco GA.Inherent stability of helicopters.Washington D.C.:NASA;1923.Report No.:NACA-TM-234.

    4.Hohenemser K.Dynamic stability of a helicopter with hinged rotor blades.Washington D.C.:NASA;1938.Report No.:NACA-TM-907.

    5.Chen RTN.A simplified rotor system mathematical model for piloted flight dynamics simulation.Washington D.C.:NASA;1979 Report No.:NASA-TM-78575.

    6.Chen RTN.Effects of primary rotor parameters on flapping dynamics.Washington D.C.:NASA;1980 Report No.:NASATP-1411.

    7.Howlett JJ.UH-60A Black Hawk engineering simulation program:mathematical model.Washington D.C.:NASA;1981 Report No.:NASA-CR-166309.

    8.Yang C.A mathematical model and validation of affine nonlinear system for helicopter flight dynamics[dissertation].Beijing:Beihang University;1995[Chinese].

    9.Chen RL.A mathematical model of helicopter flight dynamics and investigation of maneuverability[dissertation].Nanjing:Nanjing University of Aeronautics and Astronautics;1998[Chinese].

    10.Theodore C,Celi R.Helicopter flight dynamic simulation with refined aerodynamics and flexible blade modeling.J Aircraft2002;39(4):577–86.

    11.Kim KC.Analytical calculation of helicopter main rotor blade flight loads in hover and forward flight.Vicksburg(MS):Army Research Laboratory;2004 Report No.:ARL-TR-3180.

    12.Li P,Chen RL.A mathematical model for helicopter comprehensive analysis.Chin J Aeronaut2010;23(3):320–32.

    13.Ye L,Zhang Y,Yang S,Zhu XL,Dong J.Numerical simulation of aerodynamic interaction for a tilt rotor aircraft in helicopter mode.Chin J Aeronaut2016;29(4):843–54.

    14.Nelder JA,Mead R.A simplex method for function minimization.Comput J1965;7(4):308–13.

    15.Xu SL.Common algorithm assembly.2nd ed.Beijing:Tsinghua University Press;1992[Chinese].

    16.Ballin MG.Validation of a real-time engineering simulation of the UH-60A helicopter.Washington,D.C.:NASA;1987 Report No.:NASA-TM-88360.

    17.Yang C,Hong GX,Song SF.Affine nonlinear mathematical model for helicopter flight dynamcis.J Beijing Univ Aeronaut Astronaut1997;23(4):471–6[Chinese].

    18.Newmark NM.A method of computation for structural dynamics.J Eng Mech Divis1959;85(3):67–94.

    19.Cameron IT,Gani R.Adaptive Runge-Kutta algorithms for dynamic simulation.Comput Chem Eng1988;12(7):705–17.

    20.Xiao YL,Jin CJ.Flight theory in atmospheric disturbance.1st ed.Beijing:National Defence Industry Press;1993[Chinese].

    21.Specification M.Flight qualities of piloted airplanes.Washington D.C.:Military Specification;1980 Report No.:MIL-F-8785C.

    9 May 2016;revised 19 October 2016;accepted 29 November 2016

    Available online 16 February 2017

    *Corresponding author.

    E-mail address:yutingdai@buaa.edu.cn(D.Yuting).

    Peer review under responsibility of Editorial Committee of CJA.

    国产极品天堂在线| 内射极品少妇av片p| kizo精华| 欧美日韩国产亚洲二区| 亚洲人成网站在线观看播放| 免费观看精品视频网站| 国产色婷婷99| 波多野结衣巨乳人妻| 国产精品野战在线观看| 成人欧美大片| 尾随美女入室| 精品国产一区二区三区久久久樱花 | 一二三四中文在线观看免费高清| 校园人妻丝袜中文字幕| 美女内射精品一级片tv| av在线播放精品| 一本久久精品| 简卡轻食公司| 秋霞在线观看毛片| 成人亚洲精品av一区二区| av线在线观看网站| 亚洲在线自拍视频| 色5月婷婷丁香| 精品熟女少妇av免费看| 久久久亚洲精品成人影院| 成人三级黄色视频| 欧美精品国产亚洲| 国产成人福利小说| 在线观看美女被高潮喷水网站| 最后的刺客免费高清国语| 欧美丝袜亚洲另类| 一级av片app| 国产又黄又爽又无遮挡在线| 成人欧美大片| www.av在线官网国产| 亚洲电影在线观看av| 午夜日本视频在线| 菩萨蛮人人尽说江南好唐韦庄 | 午夜福利视频1000在线观看| 一级黄片播放器| 国产精品久久久久久久久免| 国产乱人偷精品视频| 久久久精品大字幕| 国产又色又爽无遮挡免| 一个人看视频在线观看www免费| 白带黄色成豆腐渣| 亚洲精品aⅴ在线观看| 欧美日本亚洲视频在线播放| 免费电影在线观看免费观看| 激情 狠狠 欧美| 免费观看性生交大片5| 国产亚洲精品久久久com| 成人性生交大片免费视频hd| 麻豆乱淫一区二区| 2021少妇久久久久久久久久久| 精品少妇黑人巨大在线播放 | 噜噜噜噜噜久久久久久91| 亚洲五月天丁香| 国产淫片久久久久久久久| 麻豆乱淫一区二区| 国产精品伦人一区二区| 特大巨黑吊av在线直播| 国产日韩欧美在线精品| 国产精品电影一区二区三区| 97超碰精品成人国产| 国产精品久久久久久久电影| 亚洲精品日韩在线中文字幕| 国产三级在线视频| 精华霜和精华液先用哪个| 亚州av有码| 国产黄色小视频在线观看| 毛片女人毛片| 日韩 亚洲 欧美在线| 婷婷色av中文字幕| 男女那种视频在线观看| 国产高清三级在线| 欧美变态另类bdsm刘玥| 国产精品一区二区在线观看99 | 日韩在线高清观看一区二区三区| 黄色一级大片看看| 国产成人精品久久久久久| 国产一区二区三区av在线| 国产精品人妻久久久影院| 中国国产av一级| 日韩成人av中文字幕在线观看| 国产成人a∨麻豆精品| 最近的中文字幕免费完整| 欧美极品一区二区三区四区| 久久久a久久爽久久v久久| 中文字幕av在线有码专区| 国产精品99久久久久久久久| 熟女电影av网| 日韩一本色道免费dvd| 黑人高潮一二区| 久久99热这里只频精品6学生 | 成人午夜精彩视频在线观看| www.av在线官网国产| 精品人妻偷拍中文字幕| 精华霜和精华液先用哪个| av在线天堂中文字幕| 日本欧美国产在线视频| 直男gayav资源| 日韩在线高清观看一区二区三区| 日韩av在线免费看完整版不卡| 国产精品国产三级国产av玫瑰| 国产高清有码在线观看视频| 亚洲国产色片| 亚洲av电影不卡..在线观看| 少妇的逼水好多| 亚洲经典国产精华液单| 亚洲激情五月婷婷啪啪| 免费av毛片视频| 亚洲精品国产成人久久av| 嫩草影院入口| 国产老妇伦熟女老妇高清| 晚上一个人看的免费电影| 国产色婷婷99| 国语自产精品视频在线第100页| 天天躁夜夜躁狠狠久久av| 亚洲美女视频黄频| 成人特级av手机在线观看| 插阴视频在线观看视频| 麻豆乱淫一区二区| 十八禁国产超污无遮挡网站| 欧美激情久久久久久爽电影| 亚洲精品aⅴ在线观看| 色噜噜av男人的天堂激情| 97在线视频观看| av国产久精品久网站免费入址| 国产在视频线精品| 99热这里只有是精品在线观看| av黄色大香蕉| 欧美人与善性xxx| 亚洲电影在线观看av| 黄片无遮挡物在线观看| 美女国产视频在线观看| 青春草亚洲视频在线观看| 一区二区三区乱码不卡18| 99久国产av精品| 久久久欧美国产精品| 亚洲中文字幕一区二区三区有码在线看| 美女大奶头视频| 长腿黑丝高跟| 色综合站精品国产| 亚洲欧美日韩卡通动漫| 国产真实乱freesex| 亚洲精品乱码久久久v下载方式| 18+在线观看网站| 色网站视频免费| 午夜福利在线在线| 国产一区二区三区av在线| 少妇的逼好多水| 丝袜美腿在线中文| 成人鲁丝片一二三区免费| 亚洲丝袜综合中文字幕| 亚洲色图av天堂| 亚洲激情五月婷婷啪啪| 国产成人91sexporn| 岛国在线免费视频观看| 能在线免费观看的黄片| 色尼玛亚洲综合影院| 亚洲在久久综合| 国产极品精品免费视频能看的| 2021天堂中文幕一二区在线观| 国产精品一及| 淫秽高清视频在线观看| 国产成人精品久久久久久| 一个人看视频在线观看www免费| 麻豆久久精品国产亚洲av| 亚洲综合色惰| 午夜亚洲福利在线播放| 2021少妇久久久久久久久久久| 亚洲欧美精品综合久久99| 赤兔流量卡办理| 九九在线视频观看精品| 免费观看a级毛片全部| 有码 亚洲区| 亚洲高清免费不卡视频| 麻豆乱淫一区二区| 国产日韩欧美在线精品| 亚洲经典国产精华液单| 亚洲精品成人久久久久久| 超碰av人人做人人爽久久| 日韩 亚洲 欧美在线| 国产免费又黄又爽又色| 国产成人一区二区在线| ponron亚洲| 中文精品一卡2卡3卡4更新| 国语对白做爰xxxⅹ性视频网站| 亚洲国产精品国产精品| 亚洲成色77777| 2022亚洲国产成人精品| 欧美一区二区国产精品久久精品| 国产片特级美女逼逼视频| 又黄又爽又刺激的免费视频.| 成年版毛片免费区| 亚洲精品成人久久久久久| 超碰av人人做人人爽久久| 非洲黑人性xxxx精品又粗又长| 啦啦啦韩国在线观看视频| 欧美日韩综合久久久久久| 日韩中字成人| 日本av手机在线免费观看| 99热全是精品| 中文资源天堂在线| 久久99蜜桃精品久久| 偷拍熟女少妇极品色| 婷婷色av中文字幕| 亚洲在久久综合| av播播在线观看一区| 一级毛片久久久久久久久女| a级毛色黄片| 伊人久久精品亚洲午夜| 免费观看a级毛片全部| 18禁在线播放成人免费| 建设人人有责人人尽责人人享有的 | 亚洲精品aⅴ在线观看| 亚洲美女视频黄频| videossex国产| 国产av一区在线观看免费| 欧美日韩综合久久久久久| 亚州av有码| 国产精品嫩草影院av在线观看| 男女那种视频在线观看| 在线天堂最新版资源| 五月玫瑰六月丁香| 国产真实乱freesex| 99久久精品一区二区三区| 日韩人妻高清精品专区| 色综合站精品国产| 韩国高清视频一区二区三区| 国产精品不卡视频一区二区| 中文欧美无线码| 一区二区三区四区激情视频| 国产精品蜜桃在线观看| 色5月婷婷丁香| 亚洲成人中文字幕在线播放| 高清av免费在线| 欧美性猛交黑人性爽| 美女国产视频在线观看| av又黄又爽大尺度在线免费看 | 久久久久精品久久久久真实原创| 国产精品综合久久久久久久免费| 人妻夜夜爽99麻豆av| 波多野结衣高清无吗| 免费不卡的大黄色大毛片视频在线观看 | 国产久久久一区二区三区| 一个人看视频在线观看www免费| 亚洲精品日韩av片在线观看| 亚洲av一区综合| 九九爱精品视频在线观看| 国产精品1区2区在线观看.| 国产成人免费观看mmmm| 久久久色成人| 亚洲丝袜综合中文字幕| 男女啪啪激烈高潮av片| 成人漫画全彩无遮挡| 国产精品一二三区在线看| 一个人看视频在线观看www免费| 日韩精品有码人妻一区| 插阴视频在线观看视频| 久久久a久久爽久久v久久| 欧美又色又爽又黄视频| 免费搜索国产男女视频| 精品人妻一区二区三区麻豆| 永久免费av网站大全| or卡值多少钱| 国产精品久久电影中文字幕| 女人久久www免费人成看片 | 啦啦啦啦在线视频资源| 国产伦一二天堂av在线观看| 国产 一区精品| 日日干狠狠操夜夜爽| 老女人水多毛片| 又粗又爽又猛毛片免费看| 亚洲最大成人av| 国产单亲对白刺激| 九草在线视频观看| 日日撸夜夜添| 禁无遮挡网站| av专区在线播放| av在线观看视频网站免费| 最近中文字幕高清免费大全6| 成人亚洲精品av一区二区| 精品不卡国产一区二区三区| 国产av不卡久久| 青春草国产在线视频| 中文天堂在线官网| 天美传媒精品一区二区| 99热这里只有精品一区| 国产极品精品免费视频能看的| 美女xxoo啪啪120秒动态图| 国产91av在线免费观看| 欧美三级亚洲精品| 国产视频首页在线观看| 亚洲久久久久久中文字幕| 老司机影院毛片| 91久久精品国产一区二区三区| 欧美成人精品欧美一级黄| 欧美日韩综合久久久久久| 久久精品综合一区二区三区| 又爽又黄无遮挡网站| 色网站视频免费| 亚洲熟妇中文字幕五十中出| 婷婷色av中文字幕| 三级男女做爰猛烈吃奶摸视频| 久久人人爽人人爽人人片va| 麻豆精品久久久久久蜜桃| 天天一区二区日本电影三级| 搡女人真爽免费视频火全软件| 老司机影院成人| 国产伦理片在线播放av一区| 国产成人91sexporn| av女优亚洲男人天堂| 97超碰精品成人国产| 国产精品久久久久久精品电影| 一本一本综合久久| 看黄色毛片网站| 午夜a级毛片| 最近手机中文字幕大全| 欧美变态另类bdsm刘玥| 人人妻人人澡欧美一区二区| 性插视频无遮挡在线免费观看| 午夜视频国产福利| 国产精品国产三级专区第一集| 国产成人a∨麻豆精品| 久久这里有精品视频免费| 日韩制服骚丝袜av| 亚洲国产色片| 人妻制服诱惑在线中文字幕| 久久久久久久久久黄片| 免费在线观看成人毛片| 人人妻人人澡人人爽人人夜夜 | 精品人妻视频免费看| videossex国产| 国产又色又爽无遮挡免| www.色视频.com| 欧美xxxx黑人xx丫x性爽| 小蜜桃在线观看免费完整版高清| 成年女人看的毛片在线观看| 免费观看人在逋| 国产探花在线观看一区二区| 亚洲欧美精品专区久久| 最后的刺客免费高清国语| 午夜免费男女啪啪视频观看| 欧美bdsm另类| 亚洲人与动物交配视频| 免费av不卡在线播放| 国产精品,欧美在线| av在线播放精品| 尤物成人国产欧美一区二区三区| 国产精品1区2区在线观看.| 精品午夜福利在线看| 国产一级毛片在线| 国产免费福利视频在线观看| 免费观看性生交大片5| 啦啦啦观看免费观看视频高清| 久久精品国产自在天天线| 国产精品一区www在线观看| 日本熟妇午夜| 亚洲熟妇中文字幕五十中出| 亚洲av电影不卡..在线观看| 中文字幕av成人在线电影| 亚洲五月天丁香| 18+在线观看网站| 国产成人精品婷婷| 亚洲美女搞黄在线观看| 日产精品乱码卡一卡2卡三| 国产免费视频播放在线视频 | 欧美日本视频| 亚洲av男天堂| 久久精品久久久久久久性| 国产av码专区亚洲av| 日韩成人av中文字幕在线观看| 天堂av国产一区二区熟女人妻| www.色视频.com| 蜜桃亚洲精品一区二区三区| 亚洲激情五月婷婷啪啪| 好男人视频免费观看在线| 欧美人与善性xxx| 天堂√8在线中文| 欧美成人精品欧美一级黄| 麻豆久久精品国产亚洲av| 天天躁日日操中文字幕| 欧美高清成人免费视频www| 日韩三级伦理在线观看| 中文字幕制服av| 男人舔奶头视频| 老司机影院成人| 精品国产一区二区三区久久久樱花 | 久久久久国产网址| 日韩精品有码人妻一区| 午夜激情欧美在线| 国产女主播在线喷水免费视频网站 | 综合色av麻豆| 国产色婷婷99| 久久婷婷人人爽人人干人人爱| 亚洲成人久久爱视频| av福利片在线观看| 91在线精品国自产拍蜜月| 在线播放无遮挡| 成人特级av手机在线观看| 成人欧美大片| 麻豆国产97在线/欧美| 国产成人精品一,二区| 婷婷六月久久综合丁香| 成人二区视频| 日韩精品青青久久久久久| 国产淫片久久久久久久久| 天堂中文最新版在线下载 | 色网站视频免费| 国产高清有码在线观看视频| 中文资源天堂在线| 久久久久久久午夜电影| 国产伦精品一区二区三区四那| 床上黄色一级片| 亚洲精品乱码久久久v下载方式| 免费看a级黄色片| 狂野欧美白嫩少妇大欣赏| 美女脱内裤让男人舔精品视频| 99久久无色码亚洲精品果冻| 91狼人影院| 精品久久久久久久久av| 18禁动态无遮挡网站| 在线观看66精品国产| 视频中文字幕在线观看| 久久久久免费精品人妻一区二区| 亚洲av免费在线观看| 久久精品国产亚洲网站| 天天躁夜夜躁狠狠久久av| 人妻少妇偷人精品九色| 国内精品美女久久久久久| 大香蕉97超碰在线| 嘟嘟电影网在线观看| 青青草视频在线视频观看| 国产精品人妻久久久久久| 男女国产视频网站| 午夜视频国产福利| 久久久久久国产a免费观看| 黄色欧美视频在线观看| 国产欧美另类精品又又久久亚洲欧美| 国产 一区 欧美 日韩| 亚洲精品自拍成人| 在线免费观看不下载黄p国产| 小说图片视频综合网站| 亚洲精品国产成人久久av| 午夜视频国产福利| 男女国产视频网站| 联通29元200g的流量卡| 国产男人的电影天堂91| 老师上课跳d突然被开到最大视频| 亚洲精品亚洲一区二区| 国产片特级美女逼逼视频| 国产成人精品久久久久久| 欧美成人a在线观看| 久久久久久久久久久免费av| 一个人免费在线观看电影| 精品国产三级普通话版| 色哟哟·www| 久久久国产成人精品二区| 成人毛片60女人毛片免费| 能在线免费看毛片的网站| 99久久九九国产精品国产免费| 两个人视频免费观看高清| 99热这里只有精品一区| 十八禁国产超污无遮挡网站| 国产不卡一卡二| 国产精品国产三级国产专区5o | 91在线精品国自产拍蜜月| 搞女人的毛片| 嫩草影院精品99| 亚洲欧美成人精品一区二区| 床上黄色一级片| 联通29元200g的流量卡| 我的女老师完整版在线观看| 成年av动漫网址| 91aial.com中文字幕在线观看| 久久精品国产亚洲网站| 男人舔奶头视频| 欧美成人一区二区免费高清观看| 少妇高潮的动态图| 观看美女的网站| 成人午夜精彩视频在线观看| 中文精品一卡2卡3卡4更新| 亚洲图色成人| 色噜噜av男人的天堂激情| 欧美成人免费av一区二区三区| 精品人妻视频免费看| 国产精品一二三区在线看| 自拍偷自拍亚洲精品老妇| 麻豆精品久久久久久蜜桃| 国产极品天堂在线| 简卡轻食公司| 一区二区三区高清视频在线| 久久久色成人| 日本-黄色视频高清免费观看| 亚洲国产最新在线播放| .国产精品久久| 91精品伊人久久大香线蕉| 99久久九九国产精品国产免费| 国产黄片视频在线免费观看| 日韩国内少妇激情av| 国产黄色小视频在线观看| 内射极品少妇av片p| 久久精品久久精品一区二区三区| 国产成人freesex在线| 久久99热这里只频精品6学生 | 国产精品福利在线免费观看| 一级黄片播放器| 日韩av在线免费看完整版不卡| 插阴视频在线观看视频| 欧美日韩一区二区视频在线观看视频在线 | 韩国av在线不卡| 日产精品乱码卡一卡2卡三| 熟女人妻精品中文字幕| 日本黄色视频三级网站网址| 久久国内精品自在自线图片| 精品不卡国产一区二区三区| 免费搜索国产男女视频| 免费av不卡在线播放| 国产精品久久视频播放| 欧美区成人在线视频| 毛片女人毛片| 人妻夜夜爽99麻豆av| 少妇人妻精品综合一区二区| 男人舔奶头视频| 三级国产精品片| 亚洲自拍偷在线| 中文字幕亚洲精品专区| 精品国产三级普通话版| 直男gayav资源| 久久久久久久久大av| 亚洲人成网站高清观看| 又粗又硬又长又爽又黄的视频| 啦啦啦韩国在线观看视频| 男女国产视频网站| kizo精华| 国产高清有码在线观看视频| 白带黄色成豆腐渣| 97热精品久久久久久| 永久网站在线| 简卡轻食公司| 日韩av在线免费看完整版不卡| 国产成人aa在线观看| 日韩精品青青久久久久久| 久久久国产成人精品二区| 97人妻精品一区二区三区麻豆| 老司机福利观看| 91aial.com中文字幕在线观看| 欧美丝袜亚洲另类| 国内少妇人妻偷人精品xxx网站| 久99久视频精品免费| 日日啪夜夜撸| 国产精品伦人一区二区| 日韩中字成人| 国产精品永久免费网站| 七月丁香在线播放| 又黄又爽又刺激的免费视频.| 亚洲av福利一区| 亚洲三级黄色毛片| 亚洲精品国产成人久久av| 国产亚洲精品av在线| 青春草亚洲视频在线观看| 亚洲性久久影院| 听说在线观看完整版免费高清| 欧美+日韩+精品| 亚洲av一区综合| 少妇高潮的动态图| 91久久精品国产一区二区成人| 少妇高潮的动态图| 天天躁日日操中文字幕| 夜夜看夜夜爽夜夜摸| 国产淫片久久久久久久久| 天天躁夜夜躁狠狠久久av| 久久人人爽人人片av| 亚洲精品,欧美精品| 免费看av在线观看网站| 女人十人毛片免费观看3o分钟| 国产亚洲精品av在线| 69人妻影院| 一级黄色大片毛片| 亚洲四区av| 日本五十路高清| 亚洲欧美精品综合久久99| 欧美bdsm另类| 亚洲国产精品久久男人天堂| 在线免费观看的www视频| 久久这里有精品视频免费| 舔av片在线| 亚洲性久久影院| 国产黄片视频在线免费观看| 黄色日韩在线| videossex国产| 1000部很黄的大片| 少妇熟女欧美另类| 午夜a级毛片| 成人综合一区亚洲| 深爱激情五月婷婷| 欧美最新免费一区二区三区| 午夜精品在线福利| 亚洲欧美精品专区久久| 欧美成人午夜免费资源| 日韩三级伦理在线观看| 免费av观看视频| 久久6这里有精品| 高清午夜精品一区二区三区| 国产精品美女特级片免费视频播放器| 久久99精品国语久久久| 直男gayav资源| 精品久久久久久久久av| 欧美人与善性xxx| 一边摸一边抽搐一进一小说| 全区人妻精品视频| 岛国在线免费视频观看| 亚洲国产高清在线一区二区三|