• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Thermal behavior of an isolator with mode transition inducing back-pressure of a dual-mode scramjet

    2017-11-20 12:06:59YangQinghunBaoWenChetehounaKhaledZhangSilongGasoinNiolas
    CHINESE JOURNAL OF AERONAUTICS 2017年2期

    Yang Qinghun,Bao Wen,Chetehouna Khaled,Zhang Silong,Gasoin Niolas

    aSchool of Astronautics,Beihang University,100083,China

    bSchool of Energy Science and Engineering,Harbin Institute of Technology,150001 Harbin,China

    cINSA Centre Val de Loir,88 Boulevard Lahitolle,18000 Bourges,France

    Thermal behavior of an isolator with mode transition inducing back-pressure of a dual-mode scramjet

    Yang Qingchuna,b,*,Bao Wenb,Chetehouna Khaledc,Zhang Silongb,Gascoin Nicolasc

    aSchool of Astronautics,Beihang University,100083,China

    bSchool of Energy Science and Engineering,Harbin Institute of Technology,150001 Harbin,China

    cINSA Centre Val de Loir,88 Boulevard Lahitolle,18000 Bourges,France

    Combustion mode;Dual-mode scramjet;Isolator;Mode transition;Thermal behavior

    Combustion mode transition is a valuable and challenging research area in dual-mode scramjet engines.The thermal behavior of an isolator with mode transition inducing backpressure is investigated by direct-connect dual-mode scramjet experiments and theoretical analysis.Combustion experiments are conducted under the incoming airflow conditions of total temperature 1270 K and Mach 2.A small increment of the fuel equivalence ratio is scheduled to trigger mode transition.Correspondingly,the variation of the coolant flow rate is very small.Based on the measured wall pressures,the heat-transfer model can quantify the thermal state variation of the engine with active cooling.Compared with the combustor,mode transition has a greater effect on the isolator thermal behavior,and it significantly changes the isolator heat-flux and wall temperature.To further study the isolator thermal behavior from flight Mach 4 to Mach 7,a theoretical analysis is carried out.Around the critical point of combustion mode transition,sudden changes of the isolator flowfield and thermal state are discussed.

    1.Introduction

    The abilities to fly at wide-range velocities and for long periods are the inexorable demands for future development of scramjets.1,2A high-performance dual-mode scramjet can operate in the range of flight Mach numbers from 4 to 7,which would face different combustion modes.3The isolator is a very key component of the dual-mode scramjet engine.4,5For a high flightMa0,the scramjet will operate in the supersonic combustion mode and the isolator is shock-free.Flow is supersonic inthe whole engine.However,for a low-mediumMa0,a relatively enthalpy increase due to combustion is very high and the engine will operate in the subsonic combustion mode.Thus,flow will be thermally choked with combustion mode transition from supersonic to subsonic,leading to a rapid pressure rise.This back-pressure induced by thermal chocking will cause a shock train/pseudo-shock in the isolator,to prevent the back-pressure from disturbing the inlet.

    Numerous advanced experimental measurement technologies6,7and numerical methods8,9have been applied in scramjet engines to approach the mechanism of combustion mode transition in recent years,particularly for the flow characteristics of an isolator triggered by the back-pressure with MT(short for mode transition).Because of the interaction between the backpressure and the boundary-layer,a sequence of bifurcated shocks forms a shock train to adapt the pressure rise,as shown in Fig.1.10,11The shock train will cause the appearance of boundary separation and high static-enthalpy flow in the isolator.Consequently,it significantly increases the wall heat flux,even up to 2 times more.12Considering that the shock train induced by mode transition may vary with the flightMa0and other operating conditions,it brings difficult challenges for design of the thermal protection system of the vehicle,especially considerable uncertainties in the high heat flux associated with mode transition.Therefore,itis ofgreat signi ficance to precisely predict the change of the isolator heat flux with mode transition for developing strategies to provide the amount of cooling needed.

    On the other hand,to solve the high heat flux issues,active cooling with fuel used as coolant is proposed for scramjet engines.13,14Considering that a physical heat sink of fuel cannot meet cooling requirements,cracking of endothermic hydrocarbon fuel is used to improve the chemical heat sink.15Thus,active cooling with hydrocarbon fuel used as coolant for an isolator is adopted in this research.In order to get a better understanding of the effects of back-pressure variation with MT on thermal behavior,this paper carries out experimental and theoretical quantitative analysis in a dual-mode scramjet engine,particularly for the isolator.

    2.Experimental setup and computational model

    The flowchart of the heat-transfer model for the dual-mode combustor with active cooling is shown in Fig.3.The cooling channel is divided into many cells in thex-axis direction.This model will be applied to every cell with a space-marching algorithm.Compared to wall pressures,the flow temperature and Mach number are very difficult to directly measure in the combustor.Thus,the other flowfield parameters in the combustor will be calculated by one-dimensional ordinary differential equations(ODEs)based on the measured pressures.Combining the conservations of equation for mass,momentum,and energy,17the following equations can be derived

    Fig.1 Flow features in scramjet isolator from Refs.10,11

    Fig.2 Schematic of dual-mode scramjet combustor model.16

    Fig.3 Flowchart of heat-transfer model for scramjet with active cooling and schematic of cooling channel.

    whereSt*indicates the Stanton number under the reference enthalpy.

    Considering the heat balance,Qwwill be absorbed by the coolant under a steady condition.The heat absorption of coolant includes physical absorption and chemical heat,corresponding to physical and chemical heat sink respectively,which can be expressed as

    The empirical formula of Nusselt number for the heat convection between the coolant and the coolant-side wall is

    whereReis coolant Reynolds number,Pris coolant Prandtl number and l is coolant viscosity.

    3.Results and discussions

    3.1.Experimental results

    Table 1 Thermal conductivity of the Ni-based alloy.

    Based on these experimental wall-pressures and the heattransfer model,the engine thermal behavior is investigated near the critical point of MT,as the fuel ER increases from 0.40 to 0.41. The calculated results are shown in Figs.6 and 7.Considering that the increment of the fuel ER is only 0.01,the variation of the coolant flow rate is correspondingly small.The isolator heat flux increases by about 60%with MT from the dual-mode subsonic combustion mode to the subsonic combustion mode.Considering the fuel being used as coolant,the coolant flow rate remains nearly constant.The internal wall temperature of the isolator increases by about 20%.The length of the high heat flux zone is about 100 mm corresponding to the length of the shock train.There is little change in the combustor heat flux with MT.Therefore,in the next section,this paper will mainly study the thermal behavior of the isolator.

    Fig.4 Changes of wall pressures with slightly increasing fuel equivalence ratio.

    Fig.5 Changes of Ma with slightly increasing fuel equivalence ratio.

    Fig.6 Wall heat flux distributions near critical point of MT.

    3.2.Theoretical predication of the isolator thermal behavior for flight Mach from 4 to 7

    3.2.1.Variation of the isolator flow with MT

    To utilize the heat transfer model in Fig.3,the isolator flowfield should be firstly obtained.In the range of flight Mach 4 to 7,numerous ground experiments of the scramjet are expensive.Therefore,a theoretical calculation of the flow field is essential.The flow in the isolator has two parts:shock-free zone and shock-train zone.In the shock-free zone,the isolator wall pressure keeps constant,which is the same as the isolator entrance pressure.Near the critical point of MT,the shock-train pressure rise will be obtained as follows.Based on the isolator impulse flow theory21,the exit-pressure of a frictionless constant-area isolator should satisfy the following equation:

    Fig.7 Internal wall temperatures near critical point of MT.

    This constraint expression can obtain the discontinuous zone for the isolator pressure ratio,which cannot meet Eq.(5)when MT occurs.As shown in Fig.8,the higher the flightMa0increases,the larger the discontinuous pressure ratio becomes.In fact,this discontinuous zone is led by MT,which is an unsteady catastrophe.The grey discontinuous zone indicates the effects of MT on the isolator exit pressure in Fig.8.It is important to note that the isolator exit pressure is also the pressure at the end of the shock train.

    Then,the wall pressure distributionsp(s)from the beginning to the end of the shock-train and the leading edge of the shock-train zone can be computed by the semi-empirical equation proposed by Billig,22,23which can be expressed as

    wheresis axial coordinate with origin at beginning of the isolator shock-train,yis isolator height and h is boundary-layer momentum thickness at the isolator entrance.

    According to the pressure ratios in Fig.8,the leading edge of the shock train near the critical point of MT can be obtained by Eq.(6),as shown in Fig.9.The deviation between the upper and lower curves is the length variation of the shock train with MT.It grows as the flight Mach increases.Curves representing the axial pressure distribution have been computed and plotted in Fig.10.Compared with a low flightMa,the pressure demonstrates more dramatic changes with MT under a high flight Mach.Under the condition of flight Mach 7,the shock-train leading edge has located near the entrance of the isolator.Fortunately,the isolator can still hold up the shock train,without disturbing the inlet flow.In addition,MT refers to a combustion mode shift from dual-mode supersonic combustion to supersonic combustion,because the Mach number is above one through the whole engine for flight Mach 7.

    3.2.2.Variation of the isolator thermal behavior with MT

    Since the isolator flow is obtained,the isolator thermal state can be computed by the heat transfer model near the critical point of MT.Note that the total temperature keeps constant in the whole isolator,which is equal to the free-stream total temperature.TheMaratio between the flightMa0and the isolator entranceMa1is 0.38 as proposed in Ref.10Figs.11–14 indicate the isolator internal wall temperature and the heat flux with different flight Mach numbers.

    Fig.8 Change of isolator pressure ratio with MT in the range of lf ight Ma 4 to 7.

    Fig.9 Effect of MT on leading edge of shock train with different flight Mach numbers.

    Fig.10 Axial isolator pressure distributions near critical point of MT.

    Compared with the shock-free zone,Fig.11 indicates that the internal wall temperature increases faster in the shocktrain zone.It might also be noted that heat-transfer deterioration occurs near the entrance of the isolator,which will result in a wall temperature rise.Through the cooling channel,the coolant temperature is low near the entrance of the isolator.Correspondingly,its density and viscosity become larger,and then the coolant velocity andRebecome smaller.Therefore,the heat transfer deterioration appears at this position.In order to enhance the heat transfer at the entrance,the cooling channel entrance area should be reduced to increase the coolant velocity.Thus,the internal wall temperature firstly decreases,and then increases due to the rise of the coolant temperature along the cooling passage.

    Fig.11 Isolator internal wall temperature near critical point of MT for flight Ma 4.

    Under the condition of flight Mach 7,Fig.12 shows that the internal wall temperature rapidly increases after MT.Then,it is kept around 800 K until the exit of the isolator,which is quite different from that for Mach 4.Although the internal wall temperature deviation caused by MT is not large in the exit of the isolator,it demonstrates a large difference in the shock-train zone induced by MT.Moreover,the location of the high-temperature zone can be found through Fig.9.

    To show the overall thermal state of the isolator,Fig.13 depicts the distributions of the isolator average heat-flux under different flight Mach numbers.It increases with the flightMaand reaches the maximum aroundMa06.5.The deviation of the average heat-flux between before and after MT becomes larger and larger withMa0.The average heat-flux increases by approximately 30%while the flight Mach attains 7.Fig.14 shows the isolator maximum heat-flux distribution near the critical point of MT.Compared with Fig.13,the deviation of the peak heat- flux is smaller than the average heatflux.Evidently,it indicates that the high heat- flux zone becomes larger with MT.

    Fig.13 Variation of isolator average heat-flux with MT in range of flight Ma 4 to 7.

    Fig.14 Variation of isolator maximum heat-flux with MT in range of flight Ma 4 to 7.

    4.Conclusions

    In order to investigate the effect of mode transition on the thermal behavior of a scramjet isolator,combustion experiments are conducted with a strut-based dual-mode scramjet combustor.In addition,to further predict the variation of the isolator heat-flux during the scramjet accelerating process from flight Mach 4 to Mach 7,a theoretical study is carried out.

    When the combustion mode shifts from dual-mode subsonic combustion to subsonic combustion,the fuel equivalence ratio only increases 0.01.However,the isolator heat-flux and temperature increase by approximately 60%and 20%in the shock train zone,respectively.While the combustor thermal behavior has little change with MT,the back-pressure induced by MT significantly affects the isolator thermal state.

    A theoretical model to predict the isolator thermal behavior is developed in the range of flight Mach 4 to Mach 7.Near the critical point of MT,the results show that there is a sudden change for the isolator flow.The length variation of the shock train becomes larger with a rising flightMa0.The isolator temperature distribution demonstrates a significant difference with an increasing flight Mach number.The deviation of the average heat-flux induced by MT becomes larger and larger withMa0,and it is 30%for flight Mach 7.The theoretical analysis is not related to the engine structure and only depends on the value of the back-pressure,no matter using whether a strutbased combustor or a cavity-based combustor.Therefore,it can be widely applied to the scramjet thermal design.

    1.Wu X,Li X,Ding M,Liu W,Wang Z.Experimental study on effects of fuel injection on scramjet combustor performance.Chin J Aeronaut2007;20(6):488–94.

    2.Song WY,Li M,Cai YH,Liu WX,Bai HC.Experimental investigation of hydrocarbon-fuel ignition in scramjet combustor.Chin J Aeronaut2004;17(2):65–71.

    3.Huang W,Li Y,Tan JG.Survey on the mode transition technique in combined cycle propulsion systems.Aerosp Sci Technol2014;39:685–91.

    4.Le DB,Goyne CP,Krauss RH,Mcdaniel JC.Experimental study of a dual-mode scramjet isolator.J Propul Power2008;24(5):1050–7.

    5.Srikant S,Wagner JL,Valdivia A,Akella MR,Clemens N.Unstart detection in a simplified-geometry hypersonic inlet-isolator flow.J Propul Power2010;26(5):1059–71.

    6.Fotia ML,James FD.Ram-scram transition and flame/shocktrain interactions in a model scramjet experiment.J Propul Power2012;29(1):261–73.

    7.Turner JC,Michael KS.Mode change characteristics of a threedimensional scramjet at Mach 8.J Propul Power2013;29(4):982–90.

    8.Yentsch RJ,Gaitonde DV.Unsteady three-dimensional phenomena in mode-transition simulations of the HIFiRE-2 scramjet lf owpath.49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference;2013 July 14–17;San Jose,CA.Reston:AIAA;2013.

    9.Kouchi T,Masuya G,Mitani T,Tomioka S.Mechanism and control of combustion-mode transition in a scramjet engine.J Propul Power2012;28(1):106–12.

    10.Matsuo K,Yoshiaki M,Heuy DK.Shock train and pseudo-shock phenomena in internal gas flows.Prog Aerosp Sci1999;35(1):33–100.

    11.Laurence SJ,Lieber D,Schramm JM,Hannemann K,Larsson J.Incipient thermal choking and stable shock-train formation in the heat-release zone of a scramjet combustor.Part I:Shock-tunnel experiments.Combust Flame2015;162(4):921–31.

    12.Heiser WH, Pratt DT.Hypersonicairbreathingpropulsion.Reston:AIAA Education Series;1994.

    13.Qin J,Zhou W,Bao W,Yu D.Thermodynamic analysis and parametric study of a closed Brayton cycle thermal management system for scramjet.Int J Hydrogen Energy2010;35(1):356–64.

    14.Zhang SL,Qin J,Xie KL,Feng Y,Bao W.Thermal behavior inside scramjet cooling channels at different channel aspect ratios.J Propul Power2015;127:1–14.

    15.Feng Y,Qin J,Zhang SL,Bao W,Cao Y,Huang HY.Modeling and analysis of heat and mass transfers of supercritical hydrocarbon fuel with pyrolysis in mini-channel.Int J Heat Mass Transf2015;91(5):520–31.

    16.Yang QC,Bao W.Experimental study on combustion mode transition effects in a strut-based scramjet combustor.Proc Instit Mech Eng,Part G:J Aerospace Eng2014;229(4):764–71.

    17.Starkey RP,Mark JL.Quasi-one-dimensional high-speed engine modelwith finite-ratechemistry.JPropulPower2012;17(6):1367–74.

    18.Qin J,Bao W,Zhang S,Zhou W.Comparison during a scramjet regenerative cooling and recooling cycle.J Thermophys Heat Transfer2015;26(4):612–8.

    19.Tian L,Chen L,Chen Q,Li F,Chang X.Quasi-one-dimensional multimodes analysis for dual-mode scramjet.J Propul Power2014;30(6):1559–67.

    20.Torrez SM,Scholten NA,Micka DJ,Driscoll JF,Bolender MA,Doman DB,et al.A scramjet engine model including effects of precombustion shocks and dissociation.Reston:AIAA;2008,Report No:AIAA-2008-4619.

    21.Fotia ML.Mechanics of combustion mode transition in a directconnect ramjet–scramjet experiment.J Propul Power2014;31(1):69–78.

    22.Waltrup PJ,Frederick SB.Prediction of precombustion wall pressure distributions in scramjet engines.J Spacecraft Rockets1973;10(9):620–2.

    23.Billig FS.Research on supersonic combustion.J Propul Power1993;9(4):499–514.

    15 November 2015;revised 23 February 2016;accepted 23 August 2016

    Available online 16 February 2017

    *Corresponding authorat:SchoolofAstronautics,Beihang University,100083,China.

    E-mail address:qingchun.yang@insa-cvl.fr(Q.Yang).

    Peer review under responsibility of Editorial Committee of CJA.

    精品国产乱码久久久久久小说| 久久99一区二区三区| 国产免费又黄又爽又色| 电影成人av| 欧美变态另类bdsm刘玥| 国产精品一国产av| 亚洲精品日韩在线中文字幕| 天天操日日干夜夜撸| 男女免费视频国产| 肉色欧美久久久久久久蜜桃| 大陆偷拍与自拍| 狠狠婷婷综合久久久久久88av| 成人毛片a级毛片在线播放| 在线天堂中文资源库| 熟女少妇亚洲综合色aaa.| 久久久久精品人妻al黑| 男人添女人高潮全过程视频| 亚洲,一卡二卡三卡| 国产男女超爽视频在线观看| 熟女av电影| 欧美黄色片欧美黄色片| 亚洲国产成人一精品久久久| 天堂俺去俺来也www色官网| 亚洲一区中文字幕在线| 丰满饥渴人妻一区二区三| 极品少妇高潮喷水抽搐| 国产成人免费无遮挡视频| 男人操女人黄网站| 少妇的逼水好多| www.自偷自拍.com| 丝袜脚勾引网站| 又粗又硬又长又爽又黄的视频| 国产av一区二区精品久久| 国产成人欧美| 国产成人av激情在线播放| 精品久久蜜臀av无| 男女边摸边吃奶| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲精品av麻豆狂野| 成人国产麻豆网| 国产麻豆69| 国产精品av久久久久免费| 精品人妻一区二区三区麻豆| 99热全是精品| 午夜福利视频精品| 日韩一卡2卡3卡4卡2021年| 婷婷色麻豆天堂久久| 亚洲一区二区三区欧美精品| 另类亚洲欧美激情| 999久久久国产精品视频| 日韩一区二区三区影片| 激情视频va一区二区三区| 欧美日韩精品网址| 久久午夜福利片| 欧美日韩视频高清一区二区三区二| 亚洲国产av影院在线观看| 中文欧美无线码| 成人亚洲精品一区在线观看| kizo精华| 国产精品久久久久久精品古装| 男女边吃奶边做爰视频| 啦啦啦中文免费视频观看日本| 九色亚洲精品在线播放| 久久久久久人人人人人| 欧美老熟妇乱子伦牲交| 国产精品国产av在线观看| 久久国产精品男人的天堂亚洲| 成年av动漫网址| 中文欧美无线码| 日本色播在线视频| 精品午夜福利在线看| 国产精品女同一区二区软件| 一级毛片我不卡| 亚洲欧美日韩另类电影网站| 亚洲美女搞黄在线观看| 人妻 亚洲 视频| 90打野战视频偷拍视频| 天天操日日干夜夜撸| 搡女人真爽免费视频火全软件| 亚洲欧洲日产国产| 丰满少妇做爰视频| 一区二区三区激情视频| 欧美97在线视频| 大香蕉久久网| 91aial.com中文字幕在线观看| 欧美日韩一级在线毛片| 国产精品秋霞免费鲁丝片| 久久久精品94久久精品| 精品国产国语对白av| 三级国产精品片| 亚洲精品国产av蜜桃| 考比视频在线观看| 日本免费在线观看一区| 国产精品无大码| 大码成人一级视频| av在线播放精品| 欧美日韩av久久| 极品少妇高潮喷水抽搐| 不卡视频在线观看欧美| 国产成人精品久久二区二区91 | 嫩草影院入口| 狂野欧美激情性bbbbbb| 午夜精品国产一区二区电影| 午夜福利乱码中文字幕| 亚洲成色77777| 汤姆久久久久久久影院中文字幕| 国产一区二区在线观看av| 日韩不卡一区二区三区视频在线| 日韩不卡一区二区三区视频在线| 黑人欧美特级aaaaaa片| 欧美人与性动交α欧美软件| 18禁动态无遮挡网站| 午夜免费男女啪啪视频观看| 欧美最新免费一区二区三区| av在线观看视频网站免费| 各种免费的搞黄视频| 国产成人免费无遮挡视频| 麻豆精品久久久久久蜜桃| 极品少妇高潮喷水抽搐| 久久久久国产网址| 男女啪啪激烈高潮av片| 亚洲av男天堂| 人人澡人人妻人| 色婷婷久久久亚洲欧美| 如何舔出高潮| kizo精华| 母亲3免费完整高清在线观看 | 在线 av 中文字幕| 飞空精品影院首页| 亚洲视频免费观看视频| 成人毛片60女人毛片免费| 又大又黄又爽视频免费| 亚洲欧洲精品一区二区精品久久久 | 少妇被粗大的猛进出69影院| 国产男女超爽视频在线观看| 日韩中字成人| 我的亚洲天堂| 少妇人妻精品综合一区二区| 少妇精品久久久久久久| 国产男女超爽视频在线观看| 看非洲黑人一级黄片| 欧美日韩视频高清一区二区三区二| 亚洲国产精品成人久久小说| 国产日韩欧美亚洲二区| 黄色一级大片看看| 两性夫妻黄色片| 在线观看国产h片| 国产精品久久久久成人av| 伊人久久大香线蕉亚洲五| 人妻 亚洲 视频| 永久免费av网站大全| 国产97色在线日韩免费| 9191精品国产免费久久| 18禁观看日本| 欧美+日韩+精品| 麻豆av在线久日| 色哟哟·www| av不卡在线播放| 丁香六月天网| 国产成人精品在线电影| 波多野结衣一区麻豆| 美女xxoo啪啪120秒动态图| 色婷婷久久久亚洲欧美| 一个人免费看片子| 亚洲av电影在线进入| 亚洲欧洲国产日韩| 校园人妻丝袜中文字幕| 人妻系列 视频| 秋霞伦理黄片| 国产成人精品无人区| 搡女人真爽免费视频火全软件| 精品少妇久久久久久888优播| 久久久精品区二区三区| 赤兔流量卡办理| 久久99一区二区三区| 可以免费在线观看a视频的电影网站 | 又粗又硬又长又爽又黄的视频| 中文字幕精品免费在线观看视频| 亚洲精品第二区| 国产精品国产av在线观看| 日韩人妻精品一区2区三区| 99久久中文字幕三级久久日本| 免费av中文字幕在线| 亚洲婷婷狠狠爱综合网| 久久精品久久久久久久性| 欧美老熟妇乱子伦牲交| 亚洲人成电影观看| 色哟哟·www| 国产精品99久久99久久久不卡 | 欧美变态另类bdsm刘玥| 91午夜精品亚洲一区二区三区| 18禁裸乳无遮挡动漫免费视频| 王馨瑶露胸无遮挡在线观看| 亚洲精品一区蜜桃| 女人久久www免费人成看片| 欧美bdsm另类| 91在线精品国自产拍蜜月| 精品国产超薄肉色丝袜足j| 两个人免费观看高清视频| 日韩av不卡免费在线播放| 免费不卡的大黄色大毛片视频在线观看| 一本久久精品| 国产在线一区二区三区精| 夫妻性生交免费视频一级片| 亚洲av成人精品一二三区| 国精品久久久久久国模美| 亚洲国产欧美日韩在线播放| 中文字幕人妻丝袜一区二区 | 国产极品粉嫩免费观看在线| 国精品久久久久久国模美| 亚洲国产欧美日韩在线播放| 国产毛片在线视频| 成人黄色视频免费在线看| 人人妻人人添人人爽欧美一区卜| 少妇熟女欧美另类| 80岁老熟妇乱子伦牲交| 一级片免费观看大全| 伦理电影免费视频| 少妇熟女欧美另类| 热99久久久久精品小说推荐| 亚洲av中文av极速乱| 国产视频首页在线观看| 99热全是精品| 99国产精品免费福利视频| 亚洲色图 男人天堂 中文字幕| 亚洲,一卡二卡三卡| 丝瓜视频免费看黄片| 美女脱内裤让男人舔精品视频| 性少妇av在线| 美女高潮到喷水免费观看| 一区在线观看完整版| 天堂8中文在线网| 韩国高清视频一区二区三区| 人人妻人人爽人人添夜夜欢视频| 日本色播在线视频| 在线观看免费高清a一片| 久久精品国产鲁丝片午夜精品| 久久鲁丝午夜福利片| 日韩不卡一区二区三区视频在线| 国产免费一区二区三区四区乱码| 韩国精品一区二区三区| 99精国产麻豆久久婷婷| 亚洲精品乱久久久久久| 亚洲国产成人一精品久久久| 街头女战士在线观看网站| 又黄又粗又硬又大视频| 老汉色av国产亚洲站长工具| 中国三级夫妇交换| 国产爽快片一区二区三区| 纵有疾风起免费观看全集完整版| 亚洲色图综合在线观看| 日韩欧美一区视频在线观看| 亚洲av.av天堂| 丰满饥渴人妻一区二区三| 亚洲av日韩在线播放| 免费观看性生交大片5| 国产xxxxx性猛交| 69精品国产乱码久久久| 精品国产超薄肉色丝袜足j| 成人毛片60女人毛片免费| 丝袜美足系列| av有码第一页| 国产综合精华液| 一级爰片在线观看| 欧美bdsm另类| 丝袜在线中文字幕| 亚洲一区二区三区欧美精品| 亚洲欧美中文字幕日韩二区| 国产免费福利视频在线观看| 亚洲精品国产av成人精品| 免费大片黄手机在线观看| 国产人伦9x9x在线观看 | 激情五月婷婷亚洲| 久久婷婷青草| 制服诱惑二区| 午夜激情av网站| 欧美最新免费一区二区三区| 午夜福利视频精品| 岛国毛片在线播放| 看免费av毛片| 国产探花极品一区二区| 国产综合精华液| 一区二区日韩欧美中文字幕| 熟女少妇亚洲综合色aaa.| 极品少妇高潮喷水抽搐| 免费播放大片免费观看视频在线观看| 欧美日韩亚洲高清精品| 大香蕉久久成人网| 亚洲精品成人av观看孕妇| 免费观看在线日韩| 美女福利国产在线| 在线天堂中文资源库| 中国国产av一级| av线在线观看网站| 国产精品秋霞免费鲁丝片| 国产精品久久久久久精品古装| 精品福利永久在线观看| av女优亚洲男人天堂| 香蕉丝袜av| av卡一久久| 欧美+日韩+精品| 激情五月婷婷亚洲| 少妇的逼水好多| av网站在线播放免费| 99久久人妻综合| 中文字幕人妻熟女乱码| 日韩 亚洲 欧美在线| 国产av码专区亚洲av| 免费不卡的大黄色大毛片视频在线观看| 18禁动态无遮挡网站| 久久99蜜桃精品久久| 人妻少妇偷人精品九色| 亚洲国产精品一区二区三区在线| 免费日韩欧美在线观看| 丝袜美腿诱惑在线| 王馨瑶露胸无遮挡在线观看| 国产男女超爽视频在线观看| 欧美日韩国产mv在线观看视频| 五月开心婷婷网| 伦理电影免费视频| 18禁国产床啪视频网站| 精品一区在线观看国产| 午夜福利乱码中文字幕| 免费av中文字幕在线| 美女中出高潮动态图| 国产麻豆69| 国产欧美日韩一区二区三区在线| 视频在线观看一区二区三区| 亚洲欧美精品综合一区二区三区 | 国产成人a∨麻豆精品| 伦精品一区二区三区| 国产精品一区二区在线不卡| 久久久欧美国产精品| 男女边吃奶边做爰视频| 亚洲人成网站在线观看播放| 亚洲av.av天堂| 国产在线一区二区三区精| 国产极品粉嫩免费观看在线| 日韩制服丝袜自拍偷拍| 日韩不卡一区二区三区视频在线| 精品99又大又爽又粗少妇毛片| 亚洲精品视频女| 97人妻天天添夜夜摸| 亚洲精品aⅴ在线观看| 一本大道久久a久久精品| 国产av精品麻豆| 免费观看无遮挡的男女| 五月开心婷婷网| 亚洲,一卡二卡三卡| 久久久久精品人妻al黑| 亚洲av电影在线观看一区二区三区| 国产精品国产av在线观看| 国产精品 欧美亚洲| 精品一区二区三卡| 啦啦啦在线观看免费高清www| 亚洲少妇的诱惑av| 亚洲综合色惰| 亚洲欧美色中文字幕在线| 各种免费的搞黄视频| tube8黄色片| 性少妇av在线| 国产一区有黄有色的免费视频| 国产极品粉嫩免费观看在线| 亚洲精品一区蜜桃| 成人国语在线视频| 国产一区有黄有色的免费视频| 一本—道久久a久久精品蜜桃钙片| 精品亚洲成a人片在线观看| 99热国产这里只有精品6| 久久精品久久久久久久性| 91国产中文字幕| 激情视频va一区二区三区| 国产精品偷伦视频观看了| 久久精品久久久久久久性| 两性夫妻黄色片| 蜜桃国产av成人99| 免费播放大片免费观看视频在线观看| 精品亚洲乱码少妇综合久久| 国产一区二区在线观看av| 国产乱人偷精品视频| 日日撸夜夜添| 在线观看人妻少妇| 国产亚洲欧美精品永久| 久久久欧美国产精品| 久久午夜综合久久蜜桃| 精品人妻熟女毛片av久久网站| 久久99热这里只频精品6学生| 亚洲国产日韩一区二区| 国产1区2区3区精品| 亚洲,欧美,日韩| 亚洲情色 制服丝袜| 91精品三级在线观看| 我的亚洲天堂| 亚洲成色77777| 午夜91福利影院| 一级毛片黄色毛片免费观看视频| 亚洲四区av| 午夜福利网站1000一区二区三区| 水蜜桃什么品种好| 国产精品成人在线| 在线观看www视频免费| 最新的欧美精品一区二区| 九色亚洲精品在线播放| 黄片无遮挡物在线观看| 欧美 日韩 精品 国产| 又大又黄又爽视频免费| 丝袜喷水一区| 啦啦啦在线观看免费高清www| 久久精品aⅴ一区二区三区四区 | 亚洲精品久久成人aⅴ小说| 一本大道久久a久久精品| 男女免费视频国产| 九色亚洲精品在线播放| 国产一区二区三区av在线| 久久久久久久大尺度免费视频| 少妇人妻 视频| 韩国高清视频一区二区三区| 老鸭窝网址在线观看| 久久精品国产综合久久久| 欧美变态另类bdsm刘玥| 大码成人一级视频| 日日啪夜夜爽| 大片电影免费在线观看免费| 熟女av电影| 免费观看性生交大片5| 成人亚洲精品一区在线观看| 亚洲四区av| 精品人妻偷拍中文字幕| 日韩中文字幕欧美一区二区 | 亚洲精品aⅴ在线观看| 在线免费观看不下载黄p国产| 国产精品 国内视频| 国产日韩欧美视频二区| 99热国产这里只有精品6| 极品少妇高潮喷水抽搐| 有码 亚洲区| 亚洲第一青青草原| 美女福利国产在线| 久久精品国产亚洲av高清一级| 日韩 亚洲 欧美在线| 国产精品偷伦视频观看了| 纯流量卡能插随身wifi吗| 国产成人免费观看mmmm| 久久久精品免费免费高清| 多毛熟女@视频| 免费看不卡的av| 成人18禁高潮啪啪吃奶动态图| 久久久久国产网址| 婷婷色综合www| 电影成人av| 婷婷色av中文字幕| 国产成人免费观看mmmm| 人妻 亚洲 视频| 日韩成人av中文字幕在线观看| 亚洲经典国产精华液单| 亚洲综合精品二区| 边亲边吃奶的免费视频| 一级黄片播放器| 五月伊人婷婷丁香| 天天躁狠狠躁夜夜躁狠狠躁| 精品一区在线观看国产| av有码第一页| 亚洲精品日本国产第一区| 天天操日日干夜夜撸| 国产精品一二三区在线看| 最新中文字幕久久久久| 精品一区二区三卡| 欧美日韩视频高清一区二区三区二| 欧美国产精品va在线观看不卡| 久久精品熟女亚洲av麻豆精品| 少妇的丰满在线观看| 国产一区有黄有色的免费视频| 久久久久视频综合| 午夜福利视频在线观看免费| 精品一区二区免费观看| 乱人伦中国视频| 日韩中字成人| 中文字幕亚洲精品专区| 日本午夜av视频| 成人二区视频| 欧美bdsm另类| 伊人久久大香线蕉亚洲五| 日韩不卡一区二区三区视频在线| 在线亚洲精品国产二区图片欧美| 麻豆av在线久日| 亚洲欧美日韩另类电影网站| 最新的欧美精品一区二区| 一区二区三区激情视频| 两性夫妻黄色片| 欧美亚洲日本最大视频资源| 18在线观看网站| 国产亚洲一区二区精品| 中文天堂在线官网| 我要看黄色一级片免费的| 午夜福利在线免费观看网站| 激情五月婷婷亚洲| 一区福利在线观看| 国产男女内射视频| 男女无遮挡免费网站观看| 国产成人精品婷婷| 秋霞伦理黄片| 免费av中文字幕在线| 国产又色又爽无遮挡免| 久久久国产一区二区| 高清视频免费观看一区二区| 日韩免费高清中文字幕av| freevideosex欧美| 飞空精品影院首页| 国产成人精品婷婷| 日韩,欧美,国产一区二区三区| 人妻人人澡人人爽人人| 超色免费av| 亚洲国产精品国产精品| 亚洲欧洲精品一区二区精品久久久 | 在线 av 中文字幕| 免费观看a级毛片全部| 一个人免费看片子| 两个人看的免费小视频| 一级毛片黄色毛片免费观看视频| 天堂俺去俺来也www色官网| 美女国产视频在线观看| 午夜福利乱码中文字幕| 少妇猛男粗大的猛烈进出视频| 天天操日日干夜夜撸| 女人被躁到高潮嗷嗷叫费观| 少妇的丰满在线观看| 国产成人一区二区在线| 性色avwww在线观看| 男女边摸边吃奶| 丝瓜视频免费看黄片| 免费av中文字幕在线| videosex国产| 亚洲欧美中文字幕日韩二区| 免费在线观看黄色视频的| 天天影视国产精品| 久久精品久久精品一区二区三区| 成人毛片60女人毛片免费| 香蕉精品网在线| 啦啦啦在线观看免费高清www| 老汉色av国产亚洲站长工具| 中文乱码字字幕精品一区二区三区| 中文欧美无线码| 欧美av亚洲av综合av国产av | 国产精品久久久久久久久免| 午夜激情久久久久久久| 国产在线免费精品| 最近2019中文字幕mv第一页| 精品久久久久久电影网| 国产精品不卡视频一区二区| 日韩免费高清中文字幕av| 成人手机av| 日本91视频免费播放| 国产成人av激情在线播放| 制服丝袜香蕉在线| 女的被弄到高潮叫床怎么办| 色哟哟·www| 人人妻人人澡人人爽人人夜夜| 午夜激情av网站| 日本wwww免费看| 18禁国产床啪视频网站| 欧美人与性动交α欧美软件| 国产熟女午夜一区二区三区| 亚洲精品久久成人aⅴ小说| 毛片一级片免费看久久久久| 2022亚洲国产成人精品| 波多野结衣av一区二区av| 成人漫画全彩无遮挡| 国产av码专区亚洲av| 国产无遮挡羞羞视频在线观看| 亚洲av福利一区| 不卡视频在线观看欧美| 欧美日韩av久久| 国产一区二区在线观看av| 亚洲第一青青草原| 99久国产av精品国产电影| 欧美日韩一级在线毛片| 两个人免费观看高清视频| 欧美日韩国产mv在线观看视频| 久久99蜜桃精品久久| 美女午夜性视频免费| 一区二区三区四区激情视频| 欧美精品一区二区大全| 亚洲国产精品国产精品| 黄片播放在线免费| 国产成人精品无人区| 亚洲美女搞黄在线观看| 国产日韩一区二区三区精品不卡| 亚洲欧美一区二区三区黑人 | 又粗又硬又长又爽又黄的视频| 国产精品.久久久| 亚洲欧美精品综合一区二区三区 | 三上悠亚av全集在线观看| av一本久久久久| 美女脱内裤让男人舔精品视频| 亚洲精品中文字幕在线视频| 国产精品三级大全| 美女脱内裤让男人舔精品视频| 欧美亚洲日本最大视频资源| √禁漫天堂资源中文www| 叶爱在线成人免费视频播放| 亚洲国产欧美日韩在线播放| 黑人猛操日本美女一级片| 一级毛片黄色毛片免费观看视频| 女人被躁到高潮嗷嗷叫费观| 91久久精品国产一区二区三区| 叶爱在线成人免费视频播放| 晚上一个人看的免费电影| 男女国产视频网站| 午夜福利在线观看免费完整高清在| 欧美 日韩 精品 国产| av一本久久久久| 午夜福利在线观看免费完整高清在| 成年av动漫网址| 人人澡人人妻人| 天天躁夜夜躁狠狠久久av|