• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Tracking characteristics of tracer particles for PIV measurements in supersonic flows

    2017-11-20 12:06:55ChenFngLiuHongYngZifengHuHui
    CHINESE JOURNAL OF AERONAUTICS 2017年2期

    Chen Fng,Liu Hong,Yng Zifeng,Hu Hui

    aSchool of Aeronautics and Astronautics,Shanghai Jiao Tong University,Shanghai 200240,China

    bDepartment of Mechanical and Materials Engineering,Wright State University,Dayton,OH 45435,USA

    cDepartment of Aerospace Engineering,Iowa State University,Ames,IA 50011,USA

    Tracking characteristics of tracer particles for PIV measurements in supersonic flows

    Chen Fanga,*,Liu Honga,Yang Zifengb,Hu Huic

    aSchool of Aeronautics and Astronautics,Shanghai Jiao Tong University,Shanghai 200240,China

    bDepartment of Mechanical and Materials Engineering,Wright State University,Dayton,OH 45435,USA

    cDepartment of Aerospace Engineering,Iowa State University,Ames,IA 50011,USA

    Particle Image Velocimetry(PIV);Seeding;Supersonic flow;Tracers;Tracking characteristics

    The tracking characteristics of tracer particles for particle image velocimetry(PIV)measurements in supersonic flows were investigated.The experimental tests were conducted at Mach number 4 in Multi-Mach Wind Tunnel(MMWT)of Shanghai Jiao Tong University.The motion of tracer particles carried by the supersonic flow across shockwaves was theoretically modelled,and then their aerodynamic characteristics with compressibility and rarefaction effects were evaluated.According to the proposed selection criterion of tracer particles,the PIV measured results clearly identified that the shockwave amplitude is in good agreement with theory and Schlieren visualizations.For the tracer particles in nanoscales,their effective aerodynamic sizes in the diagnostic zone can be faithfully estimated to characterize the tracking capability and dispersity performance based on their relaxation motion across oblique shockwaves.On the other hand,the seeding system enabled the tracer particles well-controlled and repeatable dispersity against the storage and humidity.

    1.Introduction

    The occurrence of shockwaves with physical interruption in compressible flows,where a significant flow deceleration occurs across a very thin region,challenges the applications of measurement techniques.1With the appearance of short interframing-time CCD cameras and nanosecond-duration double-pulsed Nd:YAG lasers,the recent extension of PIV technique in supersonic flows becomes mature and practical.Haertig et al.2performed nozzle calibration measurements in a shock tunnel at Mach number 3.5 and 4.5.Scarano3conducted a series of investigation on supersonic turbulent wakes as well as shockwave turbulent boundary-layer interaction.A challenging application of particle image velocimetry(PIV)was pioneered by Schrijer et al.4,5to investigate the flow over a double ramp configuration in a Mach number 7 flow.Schrijer and Walpot6pointed out that the reliability of PIV applications under extreme high-speed conditions demands smaller relaxation time of the tracer particles.Nanoparticlebased planar laser scattering(NPLS)method7was alsodeveloped to demonstrate the tracking ability of nanoparticles to capture the space-time structure in supersonic flows.

    The quantitative determination of the particle tracking characteristics is commonly conducted by PIV measurements with the evaluation of the particle response time across a stationary shock wave.Earlier study demonstrated a response time of 3–4 ls for TiO2and more than 20 ls for Al2O3particles.8Another PIV measurement claimed a relaxation time below 2 ls for TiO2particles from the particle velocity profile downstream of an oblique shockwave.9Then,the nanostructured Al2O3aggregates around 10 nm in diameter yield a relaxation time of 0.27 ls,which is an order of magnitude reduction with respect to the compact TiO2nanoparticles.10A more recent discussion is given by Ragni et al.11,who obtained the relaxation time of different solid particles in the range of 0.4–3.7 ls based on a systematic investigation.However,few investigation takes the characterization of compressibility and rarefaction effects into consideration.This motivates the present efforts to experimentally and theoretically analyze the particles’motion allowing for measurement conditions variation to develop the seeding-particle-selection and seeding-distribution techniques within a higher Mach number regimes.

    The experiments were conducted by PIV techniques in Multi-Mach Wind Tunnel(MMWT)of Shanghai Jiao Tong University(SJTU).The tracer particles’motion across a shockwave was theoretically modelled considering compressibility and rarefaction effects and then experimentally analyzed from PIV measurements.It can yield qualitative information on particles’motion to estimate the available size of tracer particles in selection before experiments and analyze their effective aerodynamic diameters after experiments.In order to reach the requirements for tracer particles,advances in the seeding system integrating a pressurized vessel with a fluidized bed enabled the seeded particles to track the supersonic flows.

    2.Experimental apparatus and procedure

    Fig.1 shows the diagram and components of MMWT,which is capable of providing supersonic and hypersonic flows with nominal Mach numberMa1=2.5,3,4,5,6,and 7,respectively.The blowdown-suction operation pattern extends the test duration time up to 20 s.The present experiments to analyze the characteristics of particles are operated at the freestream condition of nominal Mach number 4.The velocity of the supersonic mainflow in the test cabin is 800 m/s with total pressure of 0.5 MPa and total temperature of 400 K.

    2.1.PIV system setup

    Fig.1 shows a double-frame digital PIV system composed of the laser,CCD camera,and synchronizer.The solid-state frequency-doubled Nd:YAG laser with a wavelength of 532 nm has a nominal energy of 500 mJ(stability±4%)per pulse.Lasers are available with pulse width about 5 ns,and repetition rate of 1–10 Hz.The test cabin holds three windows with 200 mm diameter,which can be optically accessible for PIV measurements.PIV pictures within the illuminated region are taken from the front view by an IPX-11M CCD camera(4000-2672 pixels,11 M resolutions,12 bits).The camera uses high-performance progressive-scan interline CCD chips,capable of acquiring two images with a minimum pulse separation of 200 ns and framing rate of 5 Hz.The time interval between pulses is a critical parameter,i.e.the particles moving timet,for matching the PIV system to the flow velocity.The particle images are recorded at 5 Hz resulting in 50 image pairs per tunnel run.A 105 mm SIGMA lens atf#=2.8 is carefully chosen to gain the particle images with sufficient collected energy and reduce the image blur due to aero-optical aberrations.The camera is fitted with a narrowband-pass 532 nm filterto minimizeambientlightinterferenceand almost tangential to the wall to alleviate the reflections.

    2.2.Particles’seeding technique

    Fig.1 Multi-Mach numbers wind tunnel(Ma1=2.5–7)and PIV system setup.

    Fine and non-agglomerated particles are required for PIV measurements under the extreme high-speed conditions.TiO2particles with nominal diameter of 30 nm are chosen as the tracers in the present flow measurement.However,the humidity and prolonged storage make these particles a strong tendency to form agglomerates several times larger than the primary sizes.A tracer particles’seeding system is newly designed to disperse the particles(Fig.2).The interactive force among the particles resulted from the charge of solid tracer particles will be negligible next to nothing in consideration of the electric conductivity of the metallic particle seeding device.In contrast,a mechanism is developed to disperse the dehydrated powders in a fluidized-bed like device in a oncemolded vessel with high tensile and compressive strength of 16 MPa,which is driven by a swirling dry air jet with both high pressure gradient and high momentum.It is expected to ensure particles fully mixing with the flow and to make the aerosol(the mixture of air flow and suspended particles)uniformity in the PIV measured region.This device also vastly simplifies the process to supply and clean the particles during the experiments.The jet flow with 2 MPa beyond the mainflow will provide a suitable flow rate of 0.01 kg/s carrying the seeding particles,yielding appropriate concentration among several preliminary runs.

    3.Characteristic analysis of tracer particles

    3.1.Tracers’motion across a shockwave

    wheretis the tracer particles’moving time and s the relaxation time to qualify the particle’s response.It is characterized in terms of the drag coefficientCDas

    The particle Reynolds numberRepis dictated with respect to the relative velocity between the particle velocity and the gas velocity far from the particle surface as:

    where l is dynamic viscosity of the flow,and qpanddpare the density and diameter of the particle,respectively.

    The experimentally inferred particle relaxation time s becomes a crucial factor for the velocity measurement in high-speed flows.When a particle with initial velocityUp(0)is seeded into the flow,the particle will accelerate with the surrounding flow at the rate of 1/s.The corresponding velocityUp(t)gradually increases close to,but never up to the flow velocityU.Similarly,the tracer particles across a shockwave,as shown in Fig.3,decelerate with an exponential decay to follow the actual flow streamlines downstream of the shockwave in a finite time instead of a theoretical discontinuity at the shockwave.Here,a dimensionless velocityU*,i.e.,the slip velocity of a particle is defined as

    where e is natural logarithm,Upn(t)is specified as the normal velocity of the particle,Un1andUn2represent the normal velocity of the flow before and after the shockwave.It is assumed that all seeded particles would be well-mixed and uniform while they travel till the vicinity of the shockwave.

    Fig.2 Tracer particles’seeding system.

    Further information regarding the response of particles across shockwaves can be found in Dring13or Tedeschi et al.14Such a procedure was adopted in the previous investigations2,15,16to obtain the velocity profile across a planar oblique shockwave,following the fact that the tracer particles decelerate gradually due to inertia.9In those supersonic flow tests are conducted over the wedge with a small deflection angle,5,10,11the induced shockwave strength i.e.normal Mach number is typically lower than 1.4.By treating the particle’s deceleration across a shock in a piecewise way,the relaxation is always given to be approximately linear11as follows:

    Fig.3 Motion of tracer particles across a shockwave in supersonic flows.

    where the particle relaxation distance

    Obviously,the dimensionless displacementx*always obeys the relationship with the dimensionless slip velocityU*in Eq.(6),which is determined by the ratio oft/s.In general,the present model of Eq.(6),which properly represents the particles relaxation process regardless of the effects of shockwave strength,has outperformed the empirical expression of Eq.(5).

    By using the normal shockwave relations,Eq.(7)can be clearly changed into

    3.2.Particles selection criteria

    By revealing the effects of time ratiot/s,i.e.,slip velocityU*of the particles on the dimensionless displacementx*,a semielasticity concept,17also as a popular economic tool,is introduced to analyze the responsiveness of a function to changes in parameters.Algebraically,the semi-elasticitySof a functionfat pointxis

    Generally,semi-elasticity indicates variables sensitive to a percentage change,which is useful to evaluate how the change in slip velocityU*affects the particle dimensionless displacementx*.From this point of view,the semi-elasticity of dimensionless displacementx*is dominated by the variable slip velocityU*as the following equation:

    It should be noted that this linear dependence of drag on the relative velocity is only available to the incompressible and continuum flow,but it represents a conservative estimate of the tracking ability of particles for small relative velocity.Eq.(9)can be therefore greatly simplified:

    Fig.4 Semi-elasticity of relaxation process for responsiveness of slip velocity.

    3.3.Compressbility and rarefaction effects

    where c is specific heat ratio of gas flow andRis gas constant.In other words,weaker relative Mach number shows better tracking performance.Considering the low density of gas flow,which usually appears under supersonic simulation conditions,the particle Knudsen numberKnpis no longer small.It is defined as the ratio of the mean free path of the surrounding molecules to the particle diameter,which can be written in terms of the particle Mach number and Reynolds number as

    This expression with correction factors of Eq.(15)has been proven quite robust in comparison with experimental and DSMC data.Fig.5 illustrates the compressibility and rarefaction effects on the drag coefficient within the concerned range of governing parameters from Table 1.Also shown in Fig.5 is the probable parameter ranges for present PIV measurements.For these conditions in the present study,the drag coefficient is dominated by the variation of particle Knudsen numberKnp.Besides,the effect of particle Mach numberMapis small but not negligible.Since the magnitude of the relaxation time is primarily dependent on the particle size,this accurate estimate of the particles relaxation is also constrained by appropriate particle tracking.It can be clearly seen that the actual drag coefficient tends to be smaller than Stokes’resistance so that Eq.(11)would conservatively estimate the desired size of the tracer particles for tracking the flow across a shockwave.According to Eqs.(2)and(15)and the probable parameters of the present study,the corresponding diameter of tracer particles is preliminarily calculated as only approximately the onefifth of the overrated value from Eq.(11)for the same relaxation time s.

    Table 1 Flow regimes for PIV measurements in supersonic flows.

    Fig.5 Rarefaction and compression effects on drag coefficient of a particle in thermal equilibrium,expressed in Eqs.(15)–(18)by Loth22for Rep<45.

    Fig.6 Relaxation process across an oblique shockwave in Mach number 4.0 flow.

    4.Results and discussions

    The calibration tests have been firstly performed in the empty wind tunnel operation at freestream Mach number 4.A pair of images is analyzed with cross-correlation algorithm using Micro Vec2 software employing 32×16 pixels with 50%overlapping.The resulting time-averaged velocity vector distributions of tracer particles are also compared to calculated values from total pressure rake.A rather homogeneous velocity field in spatial distribution is demonstrated in the core flow.The averaged PIV measured velocity field for free stream is very close to the calculated velocity with the uncertainty of less than 2%.16TiO2particles with a nominal crystal size of 30 nm showing better dispersity are finally used.

    The present work assumes ideal imaging and tracking conditions,i.e.,pixelization effects are neglected.The time intervaltbetween exposures is set as 500 ns,which is assumed small enough to neglect the time averaging effect on the velocity.Furthermore,the averaging effect of the finite interrogation window size is neglected as well.The velocity considered is that of the particle,which may differ from the actual local flow velocity due to particle relaxation.The magnitude of the velocity error is reduced in the measurement by amplitude modulation in the cross-correlation.The velocity vector field is calculated from 200 image pairs in several repetition runs to minimize the position and velocity error due to any shock movement or displacement of the field of view.

    Fig.7 PIV images and measured flow field over 2D wedge models vs Schlieren images.

    Table 2 Induced shockwave characteristics over wedge models.

    Since the storage and humidity tends to cluster the seeding particles as porous agglomerates,these particles are found to be approximately 200 nm inspected by a scanning electron microscope(SEM)imaging.SEM can only be used to the geometric features of the compact agglomerates in the seeding system before dispersing into the main flow.However,owing to the inevitable agglomeration in the seeding process,the actual aerodynamic diameter of the tracking particles accessible to the test section,which determine the relaxation process across a shockwave,is still unknown.It is noteworthy that the combination of Eqs.(2),(6),(7)and(15)–(18)can qualify the effective aerodynamic diameter of the tracer particles based on the collected velocity distributions.The particle relaxation time s across the incident shockwave can be easily analyzed according to Eq.(7).The relaxation time is mainly dependent on the size of primary particles,although there may be a distribution of particle with variable sizes.Note that the no-shielding assumption exists while the primary particles size is much smaller than the mean free path of the gas molecules.Moreover,the particles in nanoscales present much more stable illumination.As a matter of fact,the applied particles for two wedge models may be considered as the similar size due to the same kind of particles,seeding system and wind tunnel.In practice,the relation between the relaxation time and the corresponding size renders us a possibility for investigating the particles size from PIV measurements across the shockwave.

    The particles tracking performance and seeding efficiency are therefore evaluated.By performing an iteration based on Eqs.(2),(6)and(7)integrated with Eqs.(15)–(18),which is robustly fit to the rarefaction dominated regime as discussed before,the particle size can be obtained.It is noted that this value is unable to attain directly in that the particle relative parameters,Rep,Knpare highly dependent on the unknown particle diameter.Attributable to the compressibility and rarefaction effects,the actual particle size in the experiments for both models is evaluated to be almost the same,40 nm for 15°wedge and 50 nm for 30°wedge,respectively.In comparison with the other calculations,all the estimated results of the particle size rounded to the nearest 10 and the corresponding flow parameters are listed in Table 3.It can be seen in Fig.9 that a significant difference in the particle sizes for the?two wedges,which is calculated from empirical Eq.(5),also gives a clear disproof for its limited reliability.On the other hand,Eq.(11)approximately five times overrates the particle size as the actual drag coefficient tends to be lower than Stokes’drag law so that it is also proven unreasonable.

    Fig.8 PIV measurement of normal velocity across shockwave.

    Table 3 Relaxation time and diameter analysis of tracer particles.

    Interestingly,the estimated size of the tracer particles is found to be very close to their nominal diameter,even though the limitation of the PIV spatial resolution is considered.This value is greatly smaller than SEM inspection data,which only respects the storage status as a result of inevitable humidity and carriage.Therefore,the seeding system demonstrates a great capability to mitigate the agglomeration of tracer particles.On the other hand,TiO2particles with nominal 30 nm diameter are proven as the candidate with better tracking characteristics with negligible agglomeration.In general,the tracking deviation of particles may slightly influence the measurement of the shock thickness,whereas the particles can capture the actual flow field over a wedge with a relatively accurate velocity before and after the shockwave.

    Fig.9 Aerodynamic diameters of seeding particles.

    5.Conclusions

    (1)An extension of particles response model is proposed for supersonic research compared to the traditional model limited toMan<1.4 regime.The criterion of selecting appropriate particles is described to satisfy the relationship of the relaxation time:t/s=0.25–3.00.The desired particles to ensure effective capturing of the flow field under well-controlled conditions of Mach number 4 should be approximately 20–50 nm in diameter with the time intervalt=500 ns in consideration of compressibility and rarefaction effects.

    (2)Powders of TiO2particles with 30 nm diameter are used inthe presentworkfor PIV measurements.The advances in the seeding system by integrating a pressurized cyclone with a fluidized bed demonstrate a distinct improvement of seeding performance.These tracers in nanoscales for PIV measurements prove successful to capture the actual flow field over a wedge with a relatively accurate velocity before and after the shockwave.That the actual size of tracer particles is estimated to be very close to their nominal diameter shows a high dispersity efficiency of the seeding system.

    Acknowledgements

    This study was supported by the National Natural Science Foundation ofChina (Nos.11672183,91641129 and 91441205).

    1.Scarano F.Overview of PIV in supersonic flows.Top Appl Phys2008;112(1):445–63.

    2.Haertig J,Havermann M,Rey C,George A.Particle image velocimetry in Mach 3.5 and 4.5 shock-tunnel flows.AIAA J2002;40(6):1056–60.

    3.Scarano F.Overview of PIV in supersonic flows.Berlin Heidelberg:Springer;2007.p.445–63.

    4.Schrijer FFJ,Scarano F,Van Oudheusden BW,Bannink WJ.Application of PIV in a hypersonic double-ramp flow.Reston:AIAA;2005 Report No.:AIAA-2005-3331.

    5.Schrijer FFJ,Scarano F,Van Oudheusden BW.Application of PIV in a Mach 7 double-ramp flow.Exp Fluids2006;41(2):353–63.

    6.Schrijer FFJ,Walpot LMGFM.Experimental investigation of the supersonic wake of a reentry capsule.Reston:AIAA;2010 Report No.:AIAA-2010-1251.

    7.Wang D,Xia Z,Zhao Y,Wang B,Zhao Y.Imaging of the spacetime structure of a vortex generator in supersonic flow.Chin J Aeronaut2012;25(1):57–63.

    8.Urban WD,Mungal MG.Planar velocity measurements in compressible mixing layers.J Fluid Mech2001;431(486):189–222.

    9.Scarano F,Van Oudheusden BW.Planar velocity measurements of a two-dimensional compressible wake.Exp Fluids2003;34(3):430–41.

    10.Ghaemi S,Schmidt-Ott A,Scarano F.Nanostructured tracers for laser-based diagnostics in high-speed flows.Meas Sci Technol2010;21(10):105403.

    11.Ragni D,Schrijer F,Van Oudheusden BW,Scarano F.Particle tracer response across shocks measured by PIV.Exp Fluids2011;50(1):53–64.

    12.Melling A.Tracer particles and seeding for particle image velocimetry.Meas Sci Technol1997;8(12):1406–16.

    13.Dring RP.Sizing criteria for laser anemometry particles.J Fluid Eng1982;104(1):15–7.

    14.Tedeschi G,Gouin H,Elena M.Motion of tracer particles in supersonic flows.Exp Fluids1999;26(4):288–96.

    15.Amatucci VA,Dutton JC,Kuntz DW,Addy AL.Two-stream,supersonic,wake flow field behind a thick base.I-General features.AIAA J1992;30(8):2039–46.

    16.Chen F,Liu H,Rong Z.Development and application of nanoparticle tracers for PIV in supersonic and hypersonic flows.Reston:AIAA;2012 Report No.:AIAA-2012-0036.

    17.Wooldridge J.Introductoryeconometrics:Amodern approach.Mason(OH):Cengage Learning;2012.

    18.Stokes GG.On the effect of the internal friction of fluids on the motion of pendulums.Trans Cambridge Philos Soc1851;9(2):8.

    19.Koike S,Takahashi H,Tanaka K,Hirota M,Takita K,Masuya G.Correction method for particle velocimetry data based on the Stokes drag law.AIAA J2007;45(11):2770–7.

    20.Humble RA,Scarano F,Van Oudheusden BW.Particle image velocimetry measurements of a shock wave/turbulent boundary layer interaction.Exp Fluids2007;43(2–3):173–83.

    21.Mathijssen T,Bannink WJ,Scarano F.Investigation of a sharpedged delta wing in a supersonic flow using stereo PIV.Reston:AIAA;2009 Report No.:AIAA-2009-3896.

    22.Loth E.Compressibility and rarefaction effects on drag of a spherical particle.AIAA J2008;46(9):2219–28.

    6 April 2016;revised 18 September 2016;accepted 29 September 2016

    Available online 14 February 2017

    *Corresponding author.

    E-mail address:fangchen@sjtu.edu.cn(F.Chen).

    Peer review under responsibility of Editorial Committee of CJA.

    一级毛片我不卡| 国产一区二区 视频在线| 欧美日韩视频精品一区| 亚洲欧美成人综合另类久久久| 亚洲欧洲国产日韩| 麻豆国产av国片精品| 日本色播在线视频| 欧美日韩福利视频一区二区| 十分钟在线观看高清视频www| e午夜精品久久久久久久| 国产成人啪精品午夜网站| 亚洲欧美日韩高清在线视频 | 国产日韩欧美亚洲二区| 国产精品麻豆人妻色哟哟久久| 美女高潮到喷水免费观看| 国产精品偷伦视频观看了| 国产成人啪精品午夜网站| videosex国产| 亚洲国产av新网站| 人妻人人澡人人爽人人| av在线老鸭窝| 国产成人精品久久二区二区91| 七月丁香在线播放| av电影中文网址| 丝袜在线中文字幕| 五月开心婷婷网| 国产一区二区三区av在线| 精品一区在线观看国产| 久久国产精品影院| 午夜福利,免费看| 亚洲精品日韩在线中文字幕| 久久午夜综合久久蜜桃| 国产成人欧美| 捣出白浆h1v1| 免费在线观看黄色视频的| 色视频在线一区二区三区| 欧美成人午夜精品| 老汉色av国产亚洲站长工具| 精品国产乱码久久久久久小说| 黄色a级毛片大全视频| 亚洲欧美激情在线| 亚洲国产日韩一区二区| 亚洲欧洲国产日韩| 亚洲国产最新在线播放| 国产真人三级小视频在线观看| 你懂的网址亚洲精品在线观看| 亚洲国产av影院在线观看| 丝袜美足系列| av在线老鸭窝| 一级,二级,三级黄色视频| 国产男女内射视频| 日韩一区二区三区影片| 国产伦理片在线播放av一区| 国产黄色免费在线视频| 国产99久久九九免费精品| 超碰97精品在线观看| 免费在线观看完整版高清| 汤姆久久久久久久影院中文字幕| 伦理电影免费视频| 飞空精品影院首页| 黄色一级大片看看| 国产一区二区在线观看av| 中文字幕高清在线视频| 黑人巨大精品欧美一区二区蜜桃| 亚洲中文av在线| 国产成人av教育| 真人做人爱边吃奶动态| 在线亚洲精品国产二区图片欧美| 欧美日本中文国产一区发布| 观看av在线不卡| 日本av手机在线免费观看| 晚上一个人看的免费电影| 国产在线视频一区二区| 在线观看免费午夜福利视频| 日日夜夜操网爽| 女人被躁到高潮嗷嗷叫费观| 国产精品九九99| 亚洲人成电影免费在线| 一本久久精品| h视频一区二区三区| 男的添女的下面高潮视频| 国产精品欧美亚洲77777| 老司机在亚洲福利影院| 人人妻人人爽人人添夜夜欢视频| 香蕉国产在线看| 黄色怎么调成土黄色| 999精品在线视频| 国产一区二区三区综合在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 一级毛片女人18水好多 | 中文字幕色久视频| 一级a爱视频在线免费观看| 欧美变态另类bdsm刘玥| 亚洲一卡2卡3卡4卡5卡精品中文| 中文字幕av电影在线播放| 国产爽快片一区二区三区| 看十八女毛片水多多多| 狂野欧美激情性xxxx| 国产片特级美女逼逼视频| 国产av一区二区精品久久| 国产黄色免费在线视频| 免费一级毛片在线播放高清视频 | 日韩一区二区三区影片| 人人妻人人澡人人爽人人夜夜| 亚洲伊人久久精品综合| 午夜激情av网站| 国产又色又爽无遮挡免| 女警被强在线播放| 免费日韩欧美在线观看| 久久久欧美国产精品| 大香蕉久久成人网| 亚洲精品av麻豆狂野| 人人妻,人人澡人人爽秒播 | 黄色毛片三级朝国网站| av在线app专区| 男女之事视频高清在线观看 | 无遮挡黄片免费观看| 男女下面插进去视频免费观看| 伦理电影免费视频| av线在线观看网站| 亚洲黑人精品在线| 青青草视频在线视频观看| 少妇粗大呻吟视频| 欧美激情高清一区二区三区| 色综合欧美亚洲国产小说| 久久久久国产精品人妻一区二区| a级片在线免费高清观看视频| 欧美精品一区二区免费开放| 国精品久久久久久国模美| 极品少妇高潮喷水抽搐| 欧美xxⅹ黑人| 欧美日韩视频高清一区二区三区二| 国产成人欧美| 亚洲av日韩在线播放| av一本久久久久| 亚洲五月色婷婷综合| 久久精品国产亚洲av涩爱| 国产成人一区二区三区免费视频网站 | 欧美国产精品一级二级三级| 欧美日韩黄片免| av有码第一页| 欧美另类一区| 老熟女久久久| 一级片免费观看大全| 91老司机精品| 久久国产精品男人的天堂亚洲| 久久精品成人免费网站| 亚洲国产欧美网| 国产日韩欧美在线精品| 麻豆国产av国片精品| 熟女少妇亚洲综合色aaa.| 国产精品国产三级国产专区5o| 欧美日本中文国产一区发布| 女人精品久久久久毛片| 国产亚洲av高清不卡| 日韩,欧美,国产一区二区三区| 国产成人91sexporn| 色婷婷久久久亚洲欧美| 国产在线免费精品| 丰满人妻熟妇乱又伦精品不卡| 一边摸一边做爽爽视频免费| 19禁男女啪啪无遮挡网站| 两人在一起打扑克的视频| 一边摸一边抽搐一进一出视频| 亚洲第一av免费看| 成人手机av| 丝袜美足系列| 亚洲,欧美精品.| 黄色片一级片一级黄色片| 不卡av一区二区三区| 熟女av电影| 精品久久久久久电影网| 国产精品国产三级国产专区5o| 国产免费现黄频在线看| 伦理电影免费视频| 国产亚洲av片在线观看秒播厂| 久久免费观看电影| 王馨瑶露胸无遮挡在线观看| 久久久精品免费免费高清| 亚洲一卡2卡3卡4卡5卡精品中文| 99九九在线精品视频| 精品人妻1区二区| av有码第一页| 色网站视频免费| 男女之事视频高清在线观看 | 老司机在亚洲福利影院| 亚洲精品国产色婷婷电影| 9热在线视频观看99| 日韩电影二区| 亚洲黑人精品在线| 午夜久久久在线观看| a级毛片黄视频| 国产xxxxx性猛交| 国产成人精品无人区| 精品欧美一区二区三区在线| 五月天丁香电影| 精品国产一区二区三区四区第35| 大话2 男鬼变身卡| 又粗又硬又长又爽又黄的视频| 国产精品99久久99久久久不卡| 老汉色∧v一级毛片| 极品少妇高潮喷水抽搐| 久久人妻福利社区极品人妻图片 | 久久精品国产综合久久久| 亚洲国产精品国产精品| 国产av精品麻豆| 母亲3免费完整高清在线观看| 亚洲av美国av| 1024香蕉在线观看| 亚洲av国产av综合av卡| 国产日韩一区二区三区精品不卡| 侵犯人妻中文字幕一二三四区| 成年动漫av网址| 色精品久久人妻99蜜桃| 国产熟女午夜一区二区三区| 久久精品亚洲av国产电影网| 国产人伦9x9x在线观看| 国产精品久久久久久精品古装| 国产欧美日韩一区二区三 | 婷婷成人精品国产| 国产伦理片在线播放av一区| 狠狠婷婷综合久久久久久88av| 操美女的视频在线观看| 大片免费播放器 马上看| 涩涩av久久男人的天堂| 国产熟女欧美一区二区| 免费久久久久久久精品成人欧美视频| 午夜激情av网站| 免费看不卡的av| 久久性视频一级片| 黄色怎么调成土黄色| 久久久久久久国产电影| 视频区欧美日本亚洲| 国产一区二区在线观看av| 亚洲欧美清纯卡通| 国产精品麻豆人妻色哟哟久久| 大型av网站在线播放| xxx大片免费视频| 亚洲午夜精品一区,二区,三区| 久久精品aⅴ一区二区三区四区| 亚洲精品自拍成人| 青春草亚洲视频在线观看| 免费在线观看影片大全网站 | 在线观看免费午夜福利视频| 国产精品99久久99久久久不卡| 午夜福利在线免费观看网站| 欧美大码av| 精品亚洲成国产av| 一区二区av电影网| 在线观看www视频免费| 久久99一区二区三区| 国精品久久久久久国模美| 亚洲人成网站在线观看播放| 成人国产av品久久久| 亚洲 欧美一区二区三区| 久久亚洲精品不卡| 亚洲综合色网址| 亚洲专区中文字幕在线| 波多野结衣一区麻豆| 亚洲午夜精品一区,二区,三区| 精品久久久久久久毛片微露脸 | 精品少妇内射三级| 黄色视频不卡| 人人澡人人妻人| 国产免费又黄又爽又色| 日本wwww免费看| 国产无遮挡羞羞视频在线观看| 国产免费福利视频在线观看| 国产成人免费无遮挡视频| 另类亚洲欧美激情| 日韩中文字幕视频在线看片| 中文字幕亚洲精品专区| 麻豆国产av国片精品| 侵犯人妻中文字幕一二三四区| 肉色欧美久久久久久久蜜桃| 国产成人免费无遮挡视频| a级片在线免费高清观看视频| 精品欧美一区二区三区在线| 亚洲av成人不卡在线观看播放网 | 午夜免费鲁丝| 宅男免费午夜| 国产精品久久久久成人av| 亚洲精品美女久久av网站| 久久久精品94久久精品| 久热这里只有精品99| 国产成人欧美在线观看 | 久久天堂一区二区三区四区| 最黄视频免费看| 日本av手机在线免费观看| 久久久精品94久久精品| a 毛片基地| 欧美人与善性xxx| 最黄视频免费看| 美女国产高潮福利片在线看| 日韩 欧美 亚洲 中文字幕| 观看av在线不卡| 无限看片的www在线观看| 国产亚洲精品第一综合不卡| 男的添女的下面高潮视频| svipshipincom国产片| 精品国产超薄肉色丝袜足j| 国产在线免费精品| av又黄又爽大尺度在线免费看| 久久国产精品影院| 19禁男女啪啪无遮挡网站| 国产成人欧美在线观看 | 18禁观看日本| 黄频高清免费视频| 亚洲国产精品一区三区| 亚洲图色成人| 天天操日日干夜夜撸| 日本av手机在线免费观看| 亚洲成人免费av在线播放| a级毛片在线看网站| 少妇猛男粗大的猛烈进出视频| 天天躁狠狠躁夜夜躁狠狠躁| 国产黄色免费在线视频| 亚洲中文日韩欧美视频| 亚洲国产看品久久| 成人黄色视频免费在线看| 丰满少妇做爰视频| 欧美激情 高清一区二区三区| 老司机午夜十八禁免费视频| 亚洲欧美日韩另类电影网站| 人体艺术视频欧美日本| 久久久久精品国产欧美久久久 | 亚洲男人天堂网一区| www.熟女人妻精品国产| 成年动漫av网址| 亚洲国产欧美在线一区| 亚洲欧美色中文字幕在线| 国产成人免费观看mmmm| tube8黄色片| 两人在一起打扑克的视频| 麻豆乱淫一区二区| 亚洲人成77777在线视频| 久久人人爽av亚洲精品天堂| 美女午夜性视频免费| 一区在线观看完整版| 美国免费a级毛片| 欧美精品亚洲一区二区| 色播在线永久视频| 少妇猛男粗大的猛烈进出视频| av在线老鸭窝| 亚洲国产欧美一区二区综合| 高清不卡的av网站| www.自偷自拍.com| 最近最新中文字幕大全免费视频 | 欧美精品亚洲一区二区| 看免费成人av毛片| 国产成人欧美在线观看 | 啦啦啦在线观看免费高清www| 免费看av在线观看网站| 国产免费福利视频在线观看| 黄色a级毛片大全视频| 免费黄频网站在线观看国产| 亚洲av日韩在线播放| 天天添夜夜摸| 欧美国产精品一级二级三级| 97精品久久久久久久久久精品| 国产高清不卡午夜福利| 啦啦啦在线观看免费高清www| 18禁观看日本| 波野结衣二区三区在线| 免费av中文字幕在线| 狠狠精品人妻久久久久久综合| 大型av网站在线播放| 啦啦啦在线免费观看视频4| h视频一区二区三区| 久久这里只有精品19| 亚洲精品第二区| 丝袜美腿诱惑在线| 亚洲av电影在线观看一区二区三区| 久久久国产欧美日韩av| 波多野结衣一区麻豆| 下体分泌物呈黄色| 狠狠婷婷综合久久久久久88av| 色视频在线一区二区三区| 精品视频人人做人人爽| 99精品久久久久人妻精品| 亚洲精品成人av观看孕妇| 欧美激情高清一区二区三区| 校园人妻丝袜中文字幕| 美女中出高潮动态图| av福利片在线| 日韩免费高清中文字幕av| 亚洲成av片中文字幕在线观看| 精品欧美一区二区三区在线| 国产欧美日韩一区二区三区在线| 欧美在线一区亚洲| 国产成人a∨麻豆精品| 91麻豆精品激情在线观看国产 | 免费在线观看黄色视频的| 久久久久久久国产电影| 国产成人免费观看mmmm| 日韩 欧美 亚洲 中文字幕| 国产男女内射视频| 久久亚洲国产成人精品v| 黄片播放在线免费| 19禁男女啪啪无遮挡网站| 99国产精品99久久久久| 中文字幕另类日韩欧美亚洲嫩草| 又黄又粗又硬又大视频| 纵有疾风起免费观看全集完整版| 手机成人av网站| 色精品久久人妻99蜜桃| 亚洲av综合色区一区| 后天国语完整版免费观看| 少妇粗大呻吟视频| 操美女的视频在线观看| 精品国产一区二区三区四区第35| 夫妻午夜视频| 99re6热这里在线精品视频| 黄色怎么调成土黄色| 美女高潮到喷水免费观看| 99久久99久久久精品蜜桃| 精品国产乱码久久久久久男人| 在现免费观看毛片| 又大又爽又粗| 久久久久久久大尺度免费视频| 午夜老司机福利片| 一个人免费看片子| 欧美另类一区| 精品人妻熟女毛片av久久网站| 真人做人爱边吃奶动态| 男女之事视频高清在线观看 | 叶爱在线成人免费视频播放| www日本在线高清视频| 男女边摸边吃奶| 亚洲精品在线美女| 亚洲国产av新网站| 久久狼人影院| 欧美黄色淫秽网站| 韩国精品一区二区三区| 男女之事视频高清在线观看 | 日本黄色日本黄色录像| 国产成人一区二区三区免费视频网站 | www日本在线高清视频| 天天添夜夜摸| 中文字幕高清在线视频| 十八禁网站网址无遮挡| 制服人妻中文乱码| 男人添女人高潮全过程视频| 中文字幕色久视频| 精品亚洲乱码少妇综合久久| 久久精品久久久久久噜噜老黄| 精品国产超薄肉色丝袜足j| 久久免费观看电影| 亚洲精品日本国产第一区| 精品久久久久久久毛片微露脸 | 久久久久国产一级毛片高清牌| 欧美精品一区二区免费开放| 精品国产超薄肉色丝袜足j| 国产精品成人在线| 日韩一区二区三区影片| 天天躁夜夜躁狠狠久久av| 亚洲免费av在线视频| 人妻人人澡人人爽人人| 国产成人一区二区在线| 欧美国产精品一级二级三级| 男人添女人高潮全过程视频| 中文字幕色久视频| 精品亚洲成国产av| 精品久久久久久电影网| 久久人人97超碰香蕉20202| 别揉我奶头~嗯~啊~动态视频 | 久热爱精品视频在线9| 最近最新中文字幕大全免费视频 | 日本a在线网址| 美国免费a级毛片| 最近中文字幕2019免费版| 午夜福利视频精品| 成年人免费黄色播放视频| 欧美久久黑人一区二区| 国产一卡二卡三卡精品| 777米奇影视久久| 男女午夜视频在线观看| 国产成人av教育| 悠悠久久av| 欧美成狂野欧美在线观看| 国产精品一二三区在线看| 亚洲激情五月婷婷啪啪| 狂野欧美激情性bbbbbb| 看十八女毛片水多多多| 欧美日韩视频精品一区| 老汉色∧v一级毛片| 日本色播在线视频| 国产成人欧美| 两性夫妻黄色片| 国产高清视频在线播放一区 | 亚洲色图 男人天堂 中文字幕| 国产精品国产三级国产专区5o| 最新的欧美精品一区二区| 侵犯人妻中文字幕一二三四区| 老司机影院毛片| 精品熟女少妇八av免费久了| 久久久久久免费高清国产稀缺| 免费人妻精品一区二区三区视频| 麻豆乱淫一区二区| 国产一区有黄有色的免费视频| 如日韩欧美国产精品一区二区三区| 性色av一级| 欧美精品一区二区免费开放| 99热全是精品| 免费人妻精品一区二区三区视频| 美女视频免费永久观看网站| 免费人妻精品一区二区三区视频| 亚洲精品日本国产第一区| 黄色一级大片看看| 色播在线永久视频| 欧美日本中文国产一区发布| 免费一级毛片在线播放高清视频 | 亚洲精品日韩在线中文字幕| 少妇 在线观看| 青草久久国产| 999精品在线视频| 国产成人av教育| 丝瓜视频免费看黄片| 如日韩欧美国产精品一区二区三区| 欧美日韩av久久| 日韩av不卡免费在线播放| 亚洲熟女毛片儿| 美女主播在线视频| 亚洲av成人不卡在线观看播放网 | 国产高清videossex| 亚洲男人天堂网一区| 久久99热这里只频精品6学生| 精品人妻熟女毛片av久久网站| 久久99热这里只频精品6学生| 国产精品一区二区在线观看99| 国产99久久九九免费精品| 女性生殖器流出的白浆| 少妇猛男粗大的猛烈进出视频| 日韩,欧美,国产一区二区三区| 男男h啪啪无遮挡| 亚洲成色77777| 欧美乱码精品一区二区三区| 中文字幕另类日韩欧美亚洲嫩草| 99国产精品一区二区三区| 精品福利永久在线观看| 亚洲精品一卡2卡三卡4卡5卡 | av有码第一页| 国产成人精品久久二区二区免费| 精品国产一区二区三区久久久樱花| 又黄又粗又硬又大视频| 国产女主播在线喷水免费视频网站| 亚洲欧美一区二区三区国产| 欧美日韩成人在线一区二区| 亚洲av综合色区一区| 18禁黄网站禁片午夜丰满| 老熟女久久久| 中文字幕色久视频| 成人午夜精彩视频在线观看| 久久热在线av| 日本黄色日本黄色录像| 9191精品国产免费久久| 精品免费久久久久久久清纯 | av视频免费观看在线观看| 天堂8中文在线网| 午夜福利免费观看在线| 老司机影院成人| 亚洲精品日韩在线中文字幕| 免费看av在线观看网站| 少妇人妻 视频| 热99久久久久精品小说推荐| 一本综合久久免费| 亚洲天堂av无毛| 国产精品香港三级国产av潘金莲 | 亚洲av欧美aⅴ国产| 日韩制服丝袜自拍偷拍| 亚洲精品国产色婷婷电影| 99国产综合亚洲精品| 亚洲成人免费电影在线观看 | 超碰97精品在线观看| 婷婷色麻豆天堂久久| 亚洲欧美成人综合另类久久久| 亚洲国产成人一精品久久久| 日本vs欧美在线观看视频| 99久久人妻综合| 亚洲伊人久久精品综合| 国产一区有黄有色的免费视频| 国产精品免费大片| 1024香蕉在线观看| 女人精品久久久久毛片| 亚洲图色成人| 桃花免费在线播放| 在线观看一区二区三区激情| 国产精品欧美亚洲77777| 中文字幕人妻丝袜一区二区| 91精品伊人久久大香线蕉| 中文字幕另类日韩欧美亚洲嫩草| 精品福利观看| 日本av免费视频播放| av在线app专区| 久久久久精品国产欧美久久久 | 免费在线观看影片大全网站 | 日本欧美国产在线视频| 1024视频免费在线观看| 久久久久久久大尺度免费视频| 国产97色在线日韩免费| 考比视频在线观看| av在线播放精品| 久久人妻熟女aⅴ| 亚洲欧美激情在线| 18禁黄网站禁片午夜丰满| 国产日韩欧美在线精品| www.熟女人妻精品国产| 国产在线免费精品| 色婷婷久久久亚洲欧美| 国产色视频综合| 国产深夜福利视频在线观看| 免费久久久久久久精品成人欧美视频| 亚洲成av片中文字幕在线观看| 精品少妇内射三级| 天天操日日干夜夜撸|