• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analyzing the multilevel structure of the European airport network

    2017-11-20 12:06:50OriolLordanJoseSallan
    CHINESE JOURNAL OF AERONAUTICS 2017年2期

    Oriol Lordan,Jose M.Sallan

    Department of Management,Universitat Polite`cnica de Catalunya-BarcelonaTech,Terrassa 08222,Spain

    Analyzing the multilevel structure of the European airport network

    Oriol Lordan*,Jose M.Sallan

    Department of Management,Universitat Polite`cnica de Catalunya-BarcelonaTech,Terrassa 08222,Spain

    Air transport networks;Complex networks;k-core decomposition;Network multilevel structure;Robustness

    The multilayered structure of the European airport network(EAN),composed of connections and flights between European cities,is analyzed through thek-core decomposition of the connections network.This decomposition allows to identify the core,bridge and periphery layers of the EAN.The core layer includes the best-connected cities,which include important business air traffic destinations.The periphery layer includes cities with lesser connections,which serve low populated areas where air travel is an economic alternative.The remaining cities form the bridge of the EAN,including important leisure travel origins and destinations.The multilayered structure of the EAN affects network robustness,as the EAN is more robust to isolation of nodes of the core,than to the isolation of a combination of core and bridge nodes.

    1.Introduction

    Since its inception in the beginning of the 21st century,the development of aeronautics and air travel has deeply transformed economy and society.The fact that trips that lasted days or even weeks or months can be done today in a few hours has brought closer countries and civilizations,and the impact of air travel can only be paired with the development of the internet.A common feature of air travel and the internet is that both are networked infrastructures.In the case of air travel,the aggregation of commercial decision of airlines hascreated air route networks,where the nodes are airports or cities connected by edges when there is at least a direct flight between them.

    Complex network theory is a powerful tool to investigate networked systems such as air route networks.Taking a systems theory approach,complex network theory investigates the influence of topological features of real-world networks on phenomena such as network robustness or propagation.The results of complex networks theory have been applied extensively to the study of air transport networks.Guimera`and colleagues1,2were the first to analyze the world air route network,finding that the central cities were not necessarily the best connected nodes.Lordan et al.3analyzed the robustness of the world airport network(WAN),finding that the most effective criterion to break up the WAN is to disconnect the most central nodes(i.e.,the nodes with highest betweenness centrality).

    Regional airport networks can have different properties from the world airport network.It has been found that airport networks can have different properties depending on season(summer or winter),species(business or leisure)or scale(route vs origin-destination).4Extant research has found that the WAN has a multi-community structure2so regional networks can be different from the global network.Regional airport networks share similar topological features,although had remarkable differences in evolution and growth.For instance,while the Chinese airport network is experiencing a rapid development,5in the Brazilian network,although the number of passengers has increased,the number of routes has decreased as airlines focus on more profitable routes.6

    One of the central elements of the WAN is the European airport network(EAN),which includes all routes between European airports that have at least a direct flight.The EAN is a reflection,and a consequence,of the social and economic development of Europe.Considering Official Aviation Guide(OAG)Flights(http://analytics.oag.com/)data from August 2014,the European network has less nodes than the North-American(601 vs 899),but considerably more direct connections between airports(6401 vs 3540).

    A distinctive feature of airport networks is that they are the result of the aggregation of decisions taken by airlines about their route portfolio,which in turn are the result of different airlinebusinessmodelsand theirintegration in airline alliances.7This fact leads to consider that a more realistic modeling of airport networks can be obtained if its multi-layered structure is taken into account.Cardillo and colleagues8modeled the EAN as a network of 15 layers,corresponding to the route networks of the largest European carriers,while Verma et al.9and Du et al.10analyzed the WAN and the Chinese airport network,respectively,defining three layers for airport networks based on thek-core decomposition.11These analyses showed that the analysis of the multi-layered structure of airport networks offered remarkable insights about their properties,such as network structure and robustness.

    The aim of this paper is to model and to analyze the EAN as a multi-layered network,to better understand its internal organization and the network properties that determine its robustness to the isolation of nodes chosen either at random(attacks),or chosen intendedly as relevant or central(attacks).In the next section,a topological analysis of the EAN will be undertaken,including the analysis of its core,bridge and periphery layers.Then,a robustness analysis will be carried out,paying special attention to the role that airports of cities belonging to core and bridge play in robustness of the EAN.The results obtained,and a reflection about their operational implications,will be reported in the conclusions section.

    2.Topology of the EAN

    A sample of the EAN was obtained by including all flights between European cities(includingCanary Islandsand Madeira)in August 2014 covered by the OAG dataset.The EAN was described through its adjacency matrix A,whereaij=1 if citiesiandjare connected through at least a direct flight andaij=0 otherwise.To allow comparison of results with previous research,2,10,12,13airports serving the same city(e.g.,London City Airport and Heathrow Airport)have been collapsed into one node.The resulting network has 601 nodes and 6401 connections.The degree of a nodekiis equal to its number of connections:

    EAN has a global clustering coef ficient ofC=0.62 and average path lengthL=4.04,so it can be considered a small world network.To assess the weight of a connection,a weight matrix W has been de fined,wherewijis equal to the number of flights scheduled in August 2014 between citiesiandj.The network considered has a total of 652291 flights.The strength of a nodesiis equal to the sum of weights of edges departing from nodei:

    The multi-layer structure of the EAN can be analyzed through thek-core decomposition of its adjacency matrix.Ak-core of a graph is any subgraph which has nodes with degree equal or larger thank.18This decomposition allows to classify the nodes of the EAN in three subsets or layers9,10:the core contains the nodes belonging to thek-core of maximumkand the periphery the nodes included in thek=1 core.The rest of the nodes belong to the bridge.In Table 1 is reported the number of connections in and between core,bridge and periphery.

    2.1.Core layer:global European city

    There are 25 cities of the core whereRcab>Rian,of which the first 17 are coincident with the cities of highest degree shown in Table 2.Of the remaining eight cities,four are also among the 25 core cities with highest degree(Manchester,Antalya,Malaga and St.Petersburg).The other four cities are Birmingham,Stuttgart,Alicante and Tenerife.These cities connect the core of the EAN to the bridge,playing a central role in theconnectivity of the European air travel system.It must be noted that most of these cities belong to Western Europe,Russia and Turkey.Some of these central cities are business destinations and hubs of full-service carriers(e.g.,London,Paris,Amsterdam and Frankfurt),while other destinations are mainly leisure(e.g.,Palma de Mallorca,Malaga or Tenerife).

    Table 1 Number of nodes,direct connections and flights in core(co),bridge(br)and periphery(perip.,pe)of the European airport network,together with connections and flights between core,bridge and periphery.

    Table 2 Top 17 airports of the European core layer.

    Fig.1 Connections within the core(Rian)and between core and bridge(Rcab),and flights within the core(Rifn)and between core and bridge(Rcfb)for the nodes of the core layer.

    2.2.Bridge layer:leisure air travel origins and destinations

    In Fig.2(a)are depicted the values ofRianandRbacas a function of degreek,and in Fig.2(b)are representedRifnandRbfcalso as a function ofk.Fig.2(a)shows that bridge nodes with low degree are mainly connected to the core,as they have high values ofRbac,while bridge nodes with high degree have low values ofRbacso they are connected mainly with other cities of the bridge.This results are different from the analysis of Du et al.10for the Chinese network.In the Chinese network,most bridge nodes,even the ones with highest degree,have val-ues ofRbacabove 0.5.Results of Fig.2(b)for flights reveal a similar pattern as in Fig.2(a)for connections.The existence of bridge nodes with high degree with connections mainly with other bridge nodes can be explained by that these cities are senders and receivers of touristic traf fic,thus con figuring a subnetwork of cities belonging to the bridge layer.

    Table 3 Top 15 airports of the European bridge layer.

    Fig.2 Connections within the bridge(Rian)and between bridge and core(Rbac),and flights within the bridge(Rifn)and between bridge and core(Rbfc)for the nodes of the bridge layer.

    Fig.3 shows additional information about the relationship of ratios of connections and flights for the core and the bridge layers.In Fig.3(a)can be seen thatRifnis larger thanRianor the nodes of the core layer.A reversed relationship can be observed in Fig.3(b)betweenRcfbandRcab.This results reveal that the routes within the core layer are the ones with most flights scheduled.The average number of flights per connection within the core layer is 185.44,and the same ratio falls to 82.07 for routes between bridge and core(data taken from Table 1).This result reinforces the idea that the European airport network has a core of strongly knit cities(in number of routes and in number of scheduled flights).

    2.3.Periphery layer:local destinations

    The periphery layer has low significance in EAN connectivity.Consists of 88 nodes(14.64%of total nodes),with only 27 connections with the bridge and 63 with the core(see Table 1).In Table 2 can be seen that Moscow,Istanbul,Oslo and Stockholm have signi ficant values ofRcapandRcfp.As most cities of the periphery are located in Russia,Turkey and Scandinavia,the periphery of the EAN consist mainly of local airports in these countries,connected only with a single airport.It is worth noticing that the EAN periphery is quite large,compared with the Chinese airport network,10suggesting that there are more local airports in Europe than in the Chinese airport network.

    3.Influence of multilayer structure on EAN robustness

    The robustness analysis of the EAN allows to detect the critical nodes19,20or edges21critical to maintain the connectivity of the whole network.Network robustness to node isolation can be assessed through the size of the giant component as a function of the number of disconnected cities.The giant component is the connected component of the network with the largest number of nodes,that is,the largest set of nodes that are connected directly through an edge or indirectly through a path.In a robust network,a significant reduction of the giant component is reached only when a large proportion of nodes is disconnected.

    Fig.3 Relationship between ratios of connections and flights of nodes of the core layers.

    An important prediction of complex network theory is that network robustness is dependent on degree distributionP(k),the distribution of the probability that a node has degreek.We have used the cumulative degree distributionP(k)cum,the probability that a node has degree larger thank,to report degree distribution.Scale-free networks,with a cumulative degree distribution following a power law,are robust to errors(disconnection of nodes at random)but not to targeted attacks(disconnection of central nodes,chosen with a selection criterion).22,23Fig.4(a)depicts the cumulative degree distribution of the EAN.As stated in Section 2,EAN degree distribution follows a two-regime power law.This degree distribution can make EAN robust to isolation of nodes chosen at random,but not to node selection criterion based on isolation of central nodes.So,a robustness analysis of the EAN can help to detect its critical nodes.

    Fig.4(b)shows the size of giant component as a function of the fraction of nodes disconnected following several selection criteria.To simulate errors,a random selection criterion has been tested,and to simulate attacks,three of the most effective node selection removal strategies for airport networks3have been tested:selection of nodes of highest degree and highest betweenness centrality,and selection of nodes of highest damage,being damage the reduction of size of giant component when a specific node is isolated.All criteria are used adopting an adaptive strategy,that is,node parameters are recalculated after each disconnection.The results of the robustness analysis of the EAN appear in Fig.4(b).Comparing this results with other airport networks,the EAN appears as particularly robust.The most effective node selection criterion,betweenness centrality,needs to disconnect up to 20%of nodes to reduce size of giant component to almost zero.Previous research shows that this fraction is of around 11%of the world airport network,3and around 13%in the Chinese airport network using a degree criterion.8

    The multilayer structure of the EAN explains why betweenness is more effective than degree to disconnect the network.If we consider the 60 nodes with highest betweenness,14 belong to the bridge and the rest to the core.But only 4 of the 60 nodes with highest degree belong to the bridge,and the remaining 56 to the core.Then,adopting a degree strategy implies isolating mainly core nodes.As the core is a redundant,strongly knit layer,isolating a core node can have a relatively low impacton sizeofgiantcomponent.Adoptinga betweenness-based selection criterion implies disconnecting bridge nodes in early stages of the process.The disconnection of bridge nodes of high degree can have a bigger impact on network connectivity,as they have a highRbacratio(see Fig.2(a)),and the bridge layer is less connected than the core.This result suggests that other network properties apart from degree distribution can affect network’s response to targeted attacks.

    Fig.4 Cumlative degree distribution(in a log-log scale),and size of the giant component(measured as a function of the number of isolated airports),using several node selection criteria.

    4.Conclusions

    In this research,the multilayer structure of the European airport network is analyzed,defining its three main layers:core,bridge and periphery.The core is thek-core of highest degree.In the case of the EAN includes 69 highly connected cities with a dense web of connections.Being located in one of the core cities mean that it is easy to reach the rest of core cities by plane,so it can be said that core cities shape a global European city connected by flight.The most connected core cities are listed in Table 1.The list shows not only cities which are the hubs of full-service carriers,such as Frankfurt,Paris or Amsterdam,but also cities like Barcelona,Du¨sseldorf or Palma de Mallorca,which are important bases of airlines with a low cost or hybrid business model.

    The periphery is thek-core of degree one,so it includes the less connected cities of the EAN.The 88 periphery cities are located mainly in Russia,Turkey and Scandinavia.

    The remaining 444 cities are included in the third layer,the bridge.As can be seen in Fig.1,the bridge is connected to the core through the core cities nodes of highest degree.Bridge nodes of low degree have a large proportion of connections and flights with core cities.This fact,together with the high density of the core layer,leads to high values of clustering coefficient for these cities.Bridge nodes of high degree,on the con-trary,have a large proportion of connections with other bridge nodes(see Fig.2).Bridge cities of highest degree are listed in Table 3.Most of these cities have mainly leisure traffic,as they are origins(Glasgow,Eindhoven,Nottingham)and destinations(Las Palmas,Faro,Lanzarote)of trips of Northern European tourists to South European vacation destinations(and in reverse).A large part of this demand is covered(and created)by low-cost carriers.The structure of the core and bridge of the EAN shows the importance of airlines with a low-cost or hybrid business model in the European air traffic market.24

    It is possible to compare the multilayer structure of the EAN with other airport networks,such as the Chinese.10The proportion of cities in the bridge is similar(around 74%)in both networks,but the EAN has more cities in the periphery(14%of total)than the Chinese(around 7%).Furthermore,the presence of cities like Las Palmas and Glasgow in the bridge of the European network reveal the existence of an important leisure traffic,served mainly by European lowcost carriers.Finally,the European core layer is smaller than the Chinese,showing that the weight of large airports in Europe is smaller than in China.5,17

    The robustness of the EAN to errors(isolation of nodes chosen at random)and attacks(isolation of central nodes chosen with specific selection criterion)has been investigated assessing the evolution of the size of giant component as a function of the proportion of isolated nodes for several node selection criteria,similarly to Lordan et al.3or the robustness analysis of Petreska et al.19for the power grid.As is shown in Fig.4(b),the EAN behaves in a similar way as other airport networks3,25,as the most effective way to disconnect the network is to isolate the nodes with highest betweenness.In the EAN,isolating the nodes of highest degree implies isolating mainly nodes belonging to the core,while isolating the nodes of highest betweenness leads to isolate earlier a larger proportion of bridge nodes.This fact shows that,although degree distribution affects network robustness,other network properties such as its multilayered structure can affect robustness as well.A systematic comparison of regional airport networks might help to explain better the possible influence of the corebridge-periphery structure on network robustness.

    1.Guimera`R,Amaral La N.Modeling the worldwide airport network.Eur Phys J B2004;387540(2):381–5.

    2.Guimera`R,Mossa S,Turtschi A,Amaral La N.The worldwide air transportation network:anomalous centrality,community structure,and cities’global roles.Proc Natl Acad Sci USA2005;102(22):7794–9.

    3.Lordan O,Sallan JM,Simo P,Gonzalez-Prieto D.Robustness of the airtransportnetwork.TransportResE-Log2014;68(68):155–63.

    4.Neal Z.The devil is in the details:differences in air traffic networks by scale,species,and season.Soc Networks2014;38(3):63–73.

    5.Wang J,Mo H,Wang F,Jin F.Exploring the network structure and nodal centrality of China’s air transport network:A complex network approach.J Transp Geogr2011;19(4):712–21.

    6.da Rocha LEC.Structural evolution of the Brazilian airport network.J Stat Mech:Theory E2008;2009(4):P04020.

    7.Lordan O,Sallan JM,Simo P.Study of the topology and robustness of airline route networks from the complex network approach:asurveyand researchagenda.JTranspGeog2014;37:112–20.

    8.Cardillo A,Zanin M,Gomez-Gardenes J,Romance M,Garcia del Amo AJ,Boccaletti S.Modeling the multi-layer nature of the European Air Transport Network:resilience and passengers rescheduling under random failures.Eur Phys J-Spec Top2013;215(1):23–33.

    9.Verma T,Arau′jo NAM,Herrmann HJ.Revealing the structure of the world airline network.Sci Rep2014;4:5638.

    10.Du WB,Zhou XL,Lordan O,Wang Z,Zhao C,Zhu YB.Analysis of the Chinese airline network as multi-layer networks.Transport Res E-Log2016;89:108–16.

    11.Dorogovtsev SN,Goltsev AV,Mendes JFF.K-core organization of complex networks.Phys Rev Lett2006;96(4):040601.

    12.Liu HK,Zhang XL,Zhou T.Structure and external factors of Chinese city airline network.Phys Proced2010;3(5):1781–9.

    13.Zhang J,Cao XB,Du WB,Cai KQ.Evolution of Chinese airport network.Phys A2010;389(18):3922–31.

    14.Wilkinson SM,Dunn S,Ma S.The vulnerability of the European air traffic network to spatial hazards.Nat Hazards2011;60(3):1027–36.

    15.Chi LP,Wang R,Su H,Xu XP,Zhao JS,Li W,et al.Structural properties of US flight network.Chinese Phys Lett2003;20(8):1393–6.

    16.Bagler G.Analysis of the airport network of India as a complex weighted network.Phys A2008;387(12):2972–80.

    17.Cai KQ,Zhang J,Du WB,Cao XB.Analysis of the Chinese air route network as a complex network.Chin Phys B2012;21(2):028903.

    18.Batagelj V,Zaversnik M.An O(m)algorithm for cores decomposition of networks.Comput Sci2003;1(6):34–7.

    19.Petreska I,Tomovski I,Gutierrez E,Kocarev L,Bono F,Poljansek K.Application of modal analysis in assessing attack vulnerability of complex networks.Commun Nonlinear Sci2010;15(4):1008–18.

    20.Sun X,Wandelt S.Assessment of node importance in air transportation networks using multi-criteria decision analysis.Air transport and operations symposium;2015 Jul 20-23;TU Delft,Netherlands.2015.

    21.Du WB,Liang BY,Yan G,Lordan O,Cao XB.Identifying vital edges in Chinese air route network via memetic algorithm.Chin J Aeronaut2017;30(1):330–6.

    22.Albert R,Jeong H,Baraba′si AL.Error and attack tolerance of complex networks.Nature2000;406(6794):378–82.

    23.Cao XB,Hong C,Du WB,Zhang J.Improving the network robustness against cascading failures by adding links.Chaos Soliton Fract2013;57(4):35–40.

    24.Klophaus R,Conrady R,Fichert F.Low cost carriers going hybrid:evidence from Europe.J Air Transp Manage2012;23(7):54–8.

    25.Lordan O,Sallan JM,Simo P,Gonzalez-Prieto D.Robustness of airline alliance route networks.Commun Nonlinear Sci2015;22(1–3):587–95.

    4 June 2016;revised 19 July 2016;accepted 16 December 2016

    Available online 14 February 2017

    *Corresponding author.

    E-mail address:oriol.lordan@upc.edu(O.Lordan).

    Peer review under responsibility of Editorial Committee of CJA.

    老司机午夜福利在线观看视频| 3wmmmm亚洲av在线观看| 狠狠狠狠99中文字幕| 综合色av麻豆| 国产黄a三级三级三级人| 久久久精品94久久精品| 日韩欧美精品免费久久| 亚洲av免费高清在线观看| 深爱激情五月婷婷| 亚洲av免费在线观看| 亚洲av美国av| 国产av不卡久久| 色噜噜av男人的天堂激情| 日韩中字成人| 色吧在线观看| 亚洲自偷自拍三级| 激情 狠狠 欧美| 嫩草影院新地址| 最后的刺客免费高清国语| av女优亚洲男人天堂| 久久99热6这里只有精品| 最新在线观看一区二区三区| 久久精品国产亚洲av天美| 亚洲在线自拍视频| 久久久久久久久久成人| 国内精品久久久久精免费| 婷婷亚洲欧美| 亚洲精品成人久久久久久| 乱人视频在线观看| 亚洲国产精品成人久久小说 | 欧美另类亚洲清纯唯美| 欧美日韩国产亚洲二区| 天天躁夜夜躁狠狠久久av| 精品久久久久久久久av| 国产真实乱freesex| 亚洲欧美日韩高清在线视频| 久久精品91蜜桃| 在线免费观看的www视频| 午夜福利在线观看吧| 午夜精品国产一区二区电影 | 不卡一级毛片| 美女黄网站色视频| 一区二区三区免费毛片| 亚洲不卡免费看| 又黄又爽又免费观看的视频| av国产免费在线观看| 日韩成人av中文字幕在线观看 | 久久精品国产亚洲av香蕉五月| 亚洲aⅴ乱码一区二区在线播放| 免费看av在线观看网站| 国产午夜精品论理片| 午夜影院日韩av| 最近视频中文字幕2019在线8| 国产中年淑女户外野战色| 亚洲中文日韩欧美视频| 男女啪啪激烈高潮av片| 欧美一区二区国产精品久久精品| 毛片女人毛片| 极品教师在线视频| 日韩,欧美,国产一区二区三区 | 日产精品乱码卡一卡2卡三| 一级毛片电影观看 | a级毛片免费高清观看在线播放| 国产真实乱freesex| av专区在线播放| 久久热精品热| 中文字幕熟女人妻在线| 国产中年淑女户外野战色| 91在线观看av| 亚洲成人精品中文字幕电影| 99九九线精品视频在线观看视频| 99热这里只有是精品在线观看| 中国美白少妇内射xxxbb| 国产午夜精品久久久久久一区二区三区 | 在线观看午夜福利视频| 在线播放国产精品三级| 精品不卡国产一区二区三区| 免费电影在线观看免费观看| 午夜免费激情av| 国产色爽女视频免费观看| 成人特级黄色片久久久久久久| 丰满人妻一区二区三区视频av| 国产成人影院久久av| 中文字幕人妻熟人妻熟丝袜美| 插逼视频在线观看| 国产一区亚洲一区在线观看| 国产欧美日韩一区二区精品| 看片在线看免费视频| 18禁裸乳无遮挡免费网站照片| 精品午夜福利视频在线观看一区| 亚洲av五月六月丁香网| 久久99热这里只有精品18| 中国美女看黄片| 一本精品99久久精品77| 日本-黄色视频高清免费观看| 天堂√8在线中文| 午夜爱爱视频在线播放| 真人做人爱边吃奶动态| 最好的美女福利视频网| 亚洲av第一区精品v没综合| 人妻久久中文字幕网| 亚洲色图av天堂| 热99在线观看视频| 最后的刺客免费高清国语| 成人美女网站在线观看视频| 成人毛片a级毛片在线播放| 99久久中文字幕三级久久日本| 国产精品嫩草影院av在线观看| 精品一区二区三区av网在线观看| 国产一级毛片七仙女欲春2| 亚洲av成人av| 99热6这里只有精品| 伦精品一区二区三区| 一a级毛片在线观看| 精品久久久久久久末码| 国产在线精品亚洲第一网站| 国产精品综合久久久久久久免费| 国产精品爽爽va在线观看网站| 女人被狂操c到高潮| 免费无遮挡裸体视频| 菩萨蛮人人尽说江南好唐韦庄 | 精品人妻偷拍中文字幕| 全区人妻精品视频| 色5月婷婷丁香| 尾随美女入室| 日韩欧美在线乱码| 黄色一级大片看看| 男女啪啪激烈高潮av片| 美女黄网站色视频| 99久久无色码亚洲精品果冻| 午夜激情欧美在线| 久久久欧美国产精品| 国产成人精品久久久久久| 国产一区二区在线观看日韩| 激情 狠狠 欧美| 久久久国产成人免费| 国产精品永久免费网站| 国内精品一区二区在线观看| 婷婷精品国产亚洲av在线| 亚洲精品粉嫩美女一区| 禁无遮挡网站| 最新在线观看一区二区三区| 国产精品一区二区三区四区免费观看 | 国产精品一区www在线观看| 18+在线观看网站| www日本黄色视频网| 高清毛片免费观看视频网站| 免费人成在线观看视频色| 神马国产精品三级电影在线观看| 观看美女的网站| 色av中文字幕| 亚洲中文字幕日韩| 欧美一区二区国产精品久久精品| 欧美成人精品欧美一级黄| 三级男女做爰猛烈吃奶摸视频| 国产高清视频在线观看网站| 国产亚洲欧美98| 欧美潮喷喷水| 亚洲国产高清在线一区二区三| 久久久久久久久久黄片| 69人妻影院| 内地一区二区视频在线| 不卡一级毛片| 中国国产av一级| 综合色丁香网| av.在线天堂| 国产亚洲精品久久久久久毛片| 悠悠久久av| 国产高清视频在线观看网站| 亚洲精品久久国产高清桃花| 国产亚洲欧美98| 又黄又爽又刺激的免费视频.| 不卡视频在线观看欧美| av中文乱码字幕在线| 床上黄色一级片| 亚洲国产精品成人久久小说 | 99热这里只有精品一区| 国产探花极品一区二区| av在线观看视频网站免费| 国产精品日韩av在线免费观看| 高清毛片免费观看视频网站| 午夜久久久久精精品| 亚洲经典国产精华液单| 五月伊人婷婷丁香| 天美传媒精品一区二区| 免费看av在线观看网站| 少妇熟女欧美另类| 99在线视频只有这里精品首页| 精品久久久久久久久久免费视频| 国产女主播在线喷水免费视频网站 | 熟妇人妻久久中文字幕3abv| 日韩av不卡免费在线播放| 久久综合国产亚洲精品| 亚洲久久久久久中文字幕| 亚洲专区国产一区二区| 亚洲av免费在线观看| 午夜老司机福利剧场| 少妇熟女欧美另类| 午夜精品一区二区三区免费看| 国产视频一区二区在线看| 日韩欧美一区二区三区在线观看| 亚洲国产精品成人综合色| 精品午夜福利视频在线观看一区| 特级一级黄色大片| 国产三级在线视频| 免费大片18禁| 少妇熟女欧美另类| 在线播放无遮挡| 自拍偷自拍亚洲精品老妇| 亚洲性夜色夜夜综合| 夜夜夜夜夜久久久久| 男人舔奶头视频| 一个人免费在线观看电影| 最近最新中文字幕大全电影3| 最好的美女福利视频网| 午夜福利视频1000在线观看| 久久久久久久久久成人| 国产男人的电影天堂91| 精品99又大又爽又粗少妇毛片| 一区二区三区高清视频在线| 91久久精品国产一区二区成人| 99精品在免费线老司机午夜| www日本黄色视频网| 国产真实乱freesex| 伦理电影大哥的女人| 国产成人福利小说| 人妻久久中文字幕网| 午夜福利高清视频| 18禁在线无遮挡免费观看视频 | 深爱激情五月婷婷| 亚洲在线观看片| 少妇人妻一区二区三区视频| 麻豆国产av国片精品| 人妻制服诱惑在线中文字幕| 精品久久久久久久久av| 亚洲图色成人| 亚洲精品在线观看二区| 99riav亚洲国产免费| 中国美白少妇内射xxxbb| 黑人高潮一二区| 又爽又黄无遮挡网站| 亚洲成人久久性| 欧美激情在线99| 赤兔流量卡办理| 日韩欧美一区二区三区在线观看| 美女高潮的动态| 两个人的视频大全免费| 18禁在线无遮挡免费观看视频 | 成人无遮挡网站| 91在线观看av| 十八禁网站免费在线| 国产精品久久电影中文字幕| 日产精品乱码卡一卡2卡三| 国产亚洲精品久久久com| 天天一区二区日本电影三级| 色哟哟·www| 亚洲天堂国产精品一区在线| www日本黄色视频网| 美女cb高潮喷水在线观看| av专区在线播放| 看免费成人av毛片| 免费黄网站久久成人精品| 一级黄色大片毛片| 国产精品爽爽va在线观看网站| 欧美高清性xxxxhd video| 免费av不卡在线播放| 国产一区亚洲一区在线观看| 成人鲁丝片一二三区免费| 国产视频一区二区在线看| 精品午夜福利在线看| 成人性生交大片免费视频hd| 中文资源天堂在线| 色综合亚洲欧美另类图片| 99久国产av精品国产电影| 欧美日韩国产亚洲二区| 五月玫瑰六月丁香| 麻豆av噜噜一区二区三区| 内射极品少妇av片p| 国产精品免费一区二区三区在线| 午夜激情欧美在线| 国产高清不卡午夜福利| 亚洲国产欧美人成| 精品久久久久久成人av| 精品一区二区三区人妻视频| 亚洲av一区综合| 久久久精品大字幕| 神马国产精品三级电影在线观看| 日韩av在线大香蕉| 大又大粗又爽又黄少妇毛片口| 亚洲精品一区av在线观看| av视频在线观看入口| 老师上课跳d突然被开到最大视频| 12—13女人毛片做爰片一| 偷拍熟女少妇极品色| 亚洲av成人精品一区久久| 日韩人妻高清精品专区| 亚洲aⅴ乱码一区二区在线播放| 国产色婷婷99| 亚洲自拍偷在线| 六月丁香七月| 女的被弄到高潮叫床怎么办| 波野结衣二区三区在线| 99久久精品热视频| 一边摸一边抽搐一进一小说| 亚洲在线自拍视频| 日本五十路高清| av在线播放精品| 又黄又爽又刺激的免费视频.| 亚洲精品日韩在线中文字幕 | 男女边吃奶边做爰视频| 国产单亲对白刺激| 熟女电影av网| 久久久久久久午夜电影| 免费看日本二区| 欧美日韩综合久久久久久| 长腿黑丝高跟| 色av中文字幕| 美女大奶头视频| 久久久久性生活片| 日韩精品青青久久久久久| 亚洲国产精品成人久久小说 | 国产欧美日韩精品亚洲av| 乱码一卡2卡4卡精品| 久久精品久久久久久噜噜老黄 | 在线看三级毛片| 一进一出抽搐gif免费好疼| 给我免费播放毛片高清在线观看| 变态另类成人亚洲欧美熟女| 天天躁日日操中文字幕| 黄色一级大片看看| 午夜亚洲福利在线播放| 国产精品亚洲美女久久久| 久久久久久久午夜电影| 国产av麻豆久久久久久久| 亚洲熟妇中文字幕五十中出| 最近最新中文字幕大全电影3| 久久婷婷人人爽人人干人人爱| 老司机午夜福利在线观看视频| 国产精品福利在线免费观看| 非洲黑人性xxxx精品又粗又长| 国产高清视频在线播放一区| 久久久国产成人免费| 国产一级毛片七仙女欲春2| 亚洲欧美清纯卡通| 国产老妇女一区| 一个人观看的视频www高清免费观看| 少妇熟女aⅴ在线视频| 免费看美女性在线毛片视频| 日韩成人伦理影院| 亚洲性夜色夜夜综合| 久久久欧美国产精品| 欧美一区二区国产精品久久精品| 国产激情偷乱视频一区二区| 亚洲av成人av| 精品国内亚洲2022精品成人| 精品午夜福利在线看| 国产成人a区在线观看| 国产精品免费一区二区三区在线| 国产又黄又爽又无遮挡在线| 亚洲av美国av| 成人美女网站在线观看视频| 亚洲熟妇中文字幕五十中出| 联通29元200g的流量卡| 国产男人的电影天堂91| 国产探花在线观看一区二区| 国产成人福利小说| 麻豆一二三区av精品| 97在线视频观看| 国产在线男女| 成人特级av手机在线观看| 国产三级在线视频| 午夜老司机福利剧场| 小说图片视频综合网站| 最近手机中文字幕大全| 午夜福利在线观看免费完整高清在 | 久久久久九九精品影院| 久久精品91蜜桃| 午夜精品在线福利| 色哟哟哟哟哟哟| 亚洲欧美中文字幕日韩二区| 91午夜精品亚洲一区二区三区| 在线免费观看不下载黄p国产| 大型黄色视频在线免费观看| 美女 人体艺术 gogo| 国产三级中文精品| 日本一二三区视频观看| av在线蜜桃| 好男人在线观看高清免费视频| 亚洲成人久久性| 亚洲成人久久爱视频| 日本免费一区二区三区高清不卡| 一级黄片播放器| 亚洲成人久久性| 国产精品美女特级片免费视频播放器| 午夜福利在线在线| 99热这里只有是精品在线观看| 色在线成人网| 欧美极品一区二区三区四区| 日韩制服骚丝袜av| 中文在线观看免费www的网站| 我的女老师完整版在线观看| 成人综合一区亚洲| 深夜精品福利| 天堂av国产一区二区熟女人妻| 淫秽高清视频在线观看| 久久亚洲国产成人精品v| 午夜亚洲福利在线播放| 亚洲色图av天堂| 欧美成人一区二区免费高清观看| 午夜福利在线观看免费完整高清在 | 麻豆精品久久久久久蜜桃| 久久人人精品亚洲av| 91精品国产九色| 久久精品国产自在天天线| 亚洲图色成人| 亚洲18禁久久av| 亚洲av中文字字幕乱码综合| 俄罗斯特黄特色一大片| 免费看光身美女| 99久久无色码亚洲精品果冻| 成人特级黄色片久久久久久久| 99在线视频只有这里精品首页| 久久精品人妻少妇| 日本黄色片子视频| avwww免费| 国产精品永久免费网站| 天堂动漫精品| 免费av观看视频| 一级毛片久久久久久久久女| 色综合色国产| 禁无遮挡网站| 嫩草影视91久久| 久久99热6这里只有精品| 91av网一区二区| 亚洲图色成人| 国产欧美日韩精品亚洲av| 看黄色毛片网站| 免费观看人在逋| 三级经典国产精品| 久久久色成人| 国产男靠女视频免费网站| 特大巨黑吊av在线直播| 久久久久久伊人网av| 青春草视频在线免费观看| 天堂√8在线中文| 国产精品不卡视频一区二区| 欧美在线一区亚洲| 熟女电影av网| 久久精品夜色国产| www日本黄色视频网| 中文字幕人妻熟人妻熟丝袜美| 久久人人爽人人爽人人片va| av在线亚洲专区| 一个人观看的视频www高清免费观看| 国产熟女欧美一区二区| 狂野欧美白嫩少妇大欣赏| 少妇人妻一区二区三区视频| 日韩欧美国产在线观看| 色综合站精品国产| 一个人看视频在线观看www免费| 男女下面进入的视频免费午夜| 又爽又黄无遮挡网站| 亚洲欧美成人综合另类久久久 | 欧美高清性xxxxhd video| 日韩三级伦理在线观看| 国产精品野战在线观看| 一个人免费在线观看电影| .国产精品久久| 在现免费观看毛片| 色在线成人网| 中文在线观看免费www的网站| 国产精品三级大全| 久久久久国产网址| 国内精品宾馆在线| 午夜福利18| 国产乱人偷精品视频| 有码 亚洲区| 国产免费男女视频| 日本一二三区视频观看| av中文乱码字幕在线| 九九爱精品视频在线观看| 国产精品一区二区三区四区久久| 欧美日韩国产亚洲二区| 性色avwww在线观看| 久久精品人妻少妇| 蜜桃久久精品国产亚洲av| 亚洲熟妇中文字幕五十中出| 国产精品99久久久久久久久| 亚洲精品国产av成人精品 | 午夜福利成人在线免费观看| 国产男人的电影天堂91| 国产免费男女视频| 午夜福利视频1000在线观看| 2021天堂中文幕一二区在线观| 亚洲图色成人| 97在线视频观看| 亚洲国产精品合色在线| 久久久色成人| 美女免费视频网站| 亚洲欧美日韩高清在线视频| 观看美女的网站| 高清午夜精品一区二区三区 | 国产精品99久久久久久久久| 春色校园在线视频观看| 午夜影院日韩av| 天堂影院成人在线观看| 久久久久久大精品| av天堂中文字幕网| 99热6这里只有精品| 久久这里只有精品中国| 少妇的逼水好多| 亚洲国产精品成人综合色| 国产女主播在线喷水免费视频网站 | 日韩一本色道免费dvd| 校园春色视频在线观看| 精品久久国产蜜桃| 国产白丝娇喘喷水9色精品| 国产人妻一区二区三区在| av国产免费在线观看| 黄色欧美视频在线观看| 国产高清有码在线观看视频| 国产女主播在线喷水免费视频网站 | 大型黄色视频在线免费观看| 欧美高清性xxxxhd video| 国产精品三级大全| 一个人看的www免费观看视频| 一进一出抽搐动态| 最新中文字幕久久久久| 成人一区二区视频在线观看| 免费人成视频x8x8入口观看| 在线观看av片永久免费下载| 内地一区二区视频在线| 91久久精品国产一区二区三区| 99久久九九国产精品国产免费| 午夜爱爱视频在线播放| 国产精品av视频在线免费观看| 欧美潮喷喷水| 欧美成人a在线观看| 嫩草影视91久久| 久久精品国产鲁丝片午夜精品| 国产精品爽爽va在线观看网站| 成人亚洲欧美一区二区av| 在线看三级毛片| 久久中文看片网| 亚洲欧美成人精品一区二区| 最近手机中文字幕大全| 国产 一区精品| 成人综合一区亚洲| 日韩av在线大香蕉| 97碰自拍视频| 国产大屁股一区二区在线视频| 国产精品女同一区二区软件| 亚洲第一区二区三区不卡| 亚洲一区高清亚洲精品| 亚洲av免费在线观看| 日韩国内少妇激情av| 最近在线观看免费完整版| 亚洲成人中文字幕在线播放| 成人欧美大片| 欧美成人a在线观看| 婷婷精品国产亚洲av在线| 国产综合懂色| 日本爱情动作片www.在线观看 | 又爽又黄无遮挡网站| 波多野结衣高清作品| 亚洲最大成人中文| 亚洲国产精品成人久久小说 | 日韩欧美精品免费久久| 亚洲成人精品中文字幕电影| 大又大粗又爽又黄少妇毛片口| 色播亚洲综合网| 97碰自拍视频| 最后的刺客免费高清国语| av中文乱码字幕在线| 精品久久久久久久久久免费视频| 国产高清有码在线观看视频| 日韩一本色道免费dvd| 日韩欧美国产在线观看| 搡老妇女老女人老熟妇| 亚洲成人久久性| 亚洲国产精品久久男人天堂| 黄色视频,在线免费观看| 午夜福利在线观看免费完整高清在 | 国产又黄又爽又无遮挡在线| 精品免费久久久久久久清纯| 国内少妇人妻偷人精品xxx网站| 久久精品国产鲁丝片午夜精品| 久久综合国产亚洲精品| 国产女主播在线喷水免费视频网站 | 午夜影院日韩av| 亚洲三级黄色毛片| 91久久精品国产一区二区成人| 日韩精品青青久久久久久| 真实男女啪啪啪动态图| 美女xxoo啪啪120秒动态图| 国内精品美女久久久久久| 亚洲av不卡在线观看| 国产精品爽爽va在线观看网站| 免费观看在线日韩| 成年av动漫网址| 成人漫画全彩无遮挡| 日本黄大片高清| 日本三级黄在线观看| 欧美性感艳星| 一进一出抽搐gif免费好疼| av黄色大香蕉| 国产黄色小视频在线观看| 日韩一本色道免费dvd| 国产色爽女视频免费观看| 亚洲国产精品成人综合色| 亚洲精品一区av在线观看| 国产探花在线观看一区二区| videossex国产| 亚洲精品成人久久久久久| 日韩在线高清观看一区二区三区|