• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Real-time human activity recognition based on time-domain features of multi-sensor

    2017-11-17 02:13:45LIUYuYUYueLUYongleGUOJunqiDIKeCHENYongwei
    關(guān)鍵詞:郵電大學(xué)模式識別時(shí)域

    LIU Yu, YU Yue, LU Yong-le, GUO Jun-qi, DI Ke, CHEN Yong-wei

    (Photoelectrical Engineering Institute; Chongqing University of Posts and Telecommunications,Chongqing 400065, China)

    Real-time human activity recognition based on time-domain features of multi-sensor

    LIU Yu, YU Yue, LU Yong-le, GUO Jun-qi, DI Ke, CHEN Yong-wei

    (Photoelectrical Engineering Institute; Chongqing University of Posts and Telecommunications,Chongqing 400065, China)

    An algorithm of activity pattern recognition based on the time-domain features of accelerometer,gyroscope and barometer was proposed for high-accuracy real-time human activity pattern recognition. The time-domain feature obtained from multi-sensor is selected as the only feature parameter, and the activity recognition is realized through feature extraction operation. The data tests on the independent hardware and software platforms in the laboratory indicate that the average recognition rate, for the real-time activity with 8 kinds of daily activities and 4 kinds of falling down activities, is above 94% with extremely short recognition time of about 2 s each time. The test result proves that this algorithm not only significantly improves the real-time precision of the present algorithms, but also expands the types of activity recognition, which has great application prospect in wearable intelligent terminal areas.

    activity pattern; real-time recognition; multi-sensor; time-domain feature

    With the continuous development of MEMS technology, the MEMS sensors with low price, small volume and high sensitivity are widely used in most kinds of wearable intelligent terminal. Accelerometer, gyroscope and barometer are integrated in the wearable intelligent terminal developed in the laboratory which can obtain real-time three-axis data of acceleration, three-axis data of angular velocity and air pressure. Human activity patterns can be speculated according to the signal feature extraction and classification algorithm based on multisensor[1-3]. Using multi-sensor to achieve activity recognition is a new field of pattern recognition research direction, and has a wide prospect of application.

    Feature extraction is the most important part of the activity recognition. Feature extraction and selection can seriously affect the recognition result. Preece and others[4]studied many methods about feature extraction, and compared the characteristics of wavelet and frequency domain characteristics. It is found that the recognition effect based on frequency domain is better. HE and others[5]classified the coefficients of the supported vector machine and the acceleration signal auto-regressive model. It is found that, although the frequency domain characteristic is better than the time domain characteristic, the frequency domain characteristic, like the usual FFT (Fast Fourier Transformation), requires a large amount of calculation. It is clear that the frequency domain features are not suitable for activity recognition on wearable intelligent terminal.

    In this paper, the time-domain features of accelerometer, gyroscope and barometer are evaluated as realtime parameters. Through feature extraction algorithm,the feature computation time is reduced so that real-time human activity pattern recognition is efficiently realized.The recognition time is extremely short, about once every 2 s. By analyzing a large amount of time-domain data from multi-sensors, the most appropriate features are extracted to obtain stable and precise recognition results. Actions which can be identified contains 8 kinds of daily activities and 4 kinds of specific patterns of falling: still, walk, run, jump, sit down, fall down, go upstairs, go downstairs, fall forward, fall backward,left-side lying, right-side lying.

    1 Flow of algorithm

    In this paper, 100 sets of real-time data obtained from accelerometer, gyroscope and barometer are used to identify the activity patterns. The acquisition frequency of the data is 50 Hz. Because of the efficient timedomain feature extraction, the recognition time is extremely short, and the recognition time is about 2 s. First, 3-axis(x, y, z) data of acceleration, 3-axis data of gyroscope,and barometer data are acquired every 2 s. The original data of the accelerometer, gyroscope and barometer are pre-processed by filtering algorithm, then the multisensor data is processed to extract the features. A total of 12 eigen values are extracted by using the time-domain feature (variance of acceleration modulo value, crosscorrelation coefficient and so on). 12 eigen values will be composed of 12-dimensional eigenvectors, inputted to the trained BP (Back Propagation) neural network in order to obtain the result. The flowchart of the algorithm is shown in Fig.1.

    Fig.1 Flowchart of the algorithm

    2 Flow of the data processing

    2.1 Raw data processing of accelerometer

    Much noise is contained in the original signal of acceleration, not suitable for direct feature extraction and classification. Therefore, it is necessary to preprocess the original signal, eliminate the noise and glitches as much as possible and keep the original features of data. The curve of acceleration can be smoothed by filtering processing and become more suitable for feature extraction and classification after filtering processing. In this paper,Hamming window filter is used to preprocess the original signal. The width of the filter window can be set to achieve the desired effect. The effects before and after using Hamming window filter are shown in Fig.2.

    Fig.2 Acceleration signal filtering

    2.2 Raw data processing of gyroscope

    Gyroscope can be affected by the random errors in the actual measurement process, making the data irregularly fluctuate. In this paper, a Kalman filter is used to improve the gyroscope’s output. It can effectively converge and inhibit random errors, making the output value of gyroscope closer to the true value.

    Kalman filtering is an optimal estimation method under the minimum error covariance criterion. It has short computation time and high real-time performance.Actual motion parameters are used to modify the estimated value of future motion state and improve the estimation accuracy and stability.

    The state equation and the measurement equations of Kalman filter is:

    Where: A is the state transition matrix; H is the measurement matrix; W and V is the state and the measured noise matrix respectively, which are uncorrelated Gaussian white noise; Q and R are the variance of the noise.

    The state vector prediction equation is:

    The state vector covariance matrix prediction is:

    The state vector updating equation is:

    The state vector covariance update equation is:

    The Kalman gain matrix is:

    The result about using Kalman filter before and after is shown in Fig.3.

    It can be seen from Fig.3 that, after several iterations, the Kalman filter can accurately get the true output of the gyroscope.

    Fig.3 Using Kalman filter before and after

    2.3 Raw data processing of barometer

    In order to eliminate the pulsed and cyclical disturbance of the barometer data, the average median filter is used to process the barometer data[8]. First, N pieces of data are continuously collected from barometer. Then the maximum and minimum values are removed, and the remained N–2 data are averaged. The filtering method combines the characteristics of the median filter with the arithmetic average filter, which can eliminate the occasional impulsive interferences and has good inhibition to the periodic interferences. The results of filtering are shown in Fig.4.

    Fig.4 Barometer signal filtering

    It can be seen from Fig.4 that the fluctuation of barometer data is within ± 0.2 m after filtering, which is improved by nearly 80%.

    3 Feature extraction

    The time-domain features of one accelerometer can also be used into the application of pattern recognition[6-7].With the increasing demand for activity pattern recognition with high accuracy and rich types, one accelerometer has been unable to meet the demand.

    In this paper, extensive data analysis has been made among the daily activities of human body, and the timedomain eigen values of accelerometer, gyroscope and barometer are used to determine the pattern. The type of pattern recognition is increased and the accuracy of corresponding recognition is improved by using multi-sensors.

    Based on the pretreatment of each signal, the signal feature parameters of multi-sensor are extracted. Experiments in this paper only use time-domain features. In this paper, the Variance of Acceleration Modulus, Crosscorrelation coefficient, Mean of the barometer output difference, Output variance of barometer, Extreme value of acceleration, and Degree of inclination are used as eigen values. Specific formula as follows:

    1)Variance of acceleration modulus

    In this formula, Aiis acceleration modulo value,the number of data, A is the average of acceleration modulo values.

    2)Cross-correlation coefficient

    The cross-correlation coefficient C is the ratio of the covariance of the two-axis acceleration to the product of the standard deviations of the two-axis acceleration. For example, the cross-correlation coefficient of X-axis and Y-axis is:

    In this paper, four kinds of activities can be distinguished by using variance of acceleration modulo value and acceleration cross-correlation coefficient of y- and z-axis. The distribution of eigen values is shown in Fig.5.

    Fig.5 Eigenvalue distribution

    3)Mean of the barometer output difference

    4)Output variance of barometer

    In this paper, barometer’s difference in the preceding paragraph and the barometer’s output variance are used to distinguish the movement of walking up and down stairs or at the same height. The recognition result is shown in Fig.6

    Fig.6 Distribution of mean of barometer output difference and output variance of barometer

    5)Extreme value of acceleration:

    In this formula, T is the range of the accelerometer,are the maximum and minimum values,respectively, during the sampling period. This value is used to describe the carrier in a very short period of time occurred in the amplitude of the acceleration.

    6)Degree of inclination

    It is found through a large number of data analysis that: when human body’s pitch angle is greater than 45°or less than -30°, people may easily fall, and when human body’s roll angle is greater than 30° or less than-30°, people is also prone to fall. The extreme value of acceleration and degree of inclination can be used as an important basis for judging the state of human fall. Two modes, like fall backward and sit down, can be recognized by extreme value of accelerometer’s Y-axis and degree of inclination of gyroscope’s Y-axis. Comparison chart is shown in Fig.7.

    The use of extreme value of acceleration and degree of inclination can effectively distinguish fall and sit down, can also be used to identify four specific patterns of falling down, including: falling forward, falling backward, left-side lying, right-side lying. Distribution of acceleration’s extreme values and degrees of inclination is shown in Tab.1.

    Fig.7 Distribution of extreme values of accelerometer and degree of inclination

    Tab.1 Four specific patterns of fall down

    4 Experimental results analysis and discussion

    In this paper, a feed forward BP neural network classifier is chose as the classification algorithm. The neural network is composed of one input layer, two hidden layers and one output layer. The input layer contains 12 neurons; the first hidden layer contains 7 neurons, the second hidden layer contains 6 neurons; the output layer contains 8 neurons. The feed forward BP neural network classifier needs many times of training to obtain the most suitable network weight.

    Experimental terminal used in laboratory integrates one 3-axis accelerometer, one 3-axis gyroscope and one barometer. The device is worn at the waist of the tester,as shown in Fig.8a. Man-machine interface is used to make a communication with terminal, and each group of actions data from terminal is displayed and simulated on the man-machine interface, as shown in Fig.8b.In order to train the neural network model, the experimental data were collected from 30 subjects (21 men and 9 women). Testers were asked to collect data for eight daily patterns of motion and four specific patterns of falling down, and each time the data was collected as one data sample. These samples were used to train BP neural networks. Inputting the eigen values of the real-time calculation into the trained BP neural network can quickly identify each action of the tester. 20 subjects (15 males, 5 females) were randomly selected from the 30 subjects for accurate statistics. The results of the experimental precisions are shown in Tab.2 and Tab.3.

    It can be seen from the Tab.2 and Tab.3 that, in the case of pattern recognition once every 2s, the recognition accuracies of 8 daily activities and 4 patterns of falling are all higher than 90%, and the result of recognition is good.

    Fig.8 Real-time recognition test

    Tab.2 Recognition accuracy of 8 daily activities

    Tab.3 Recognition accuracy of 4 types of fallings

    5 Concluding remarks

    The feature extraction algorithm using frequency domain and wavelet is too complex, not conducive to realtime identification, and one single accelerometer has been unable to meet the increasing demand for activity pattern recognition with high accuracy and rich types. In this paper, an algorithm based on the time-domain features of accelerometer, gyroscope and barometer is proposed. The complexity of the algorithm is reduced, for which the time of feature computing is decreased and the real-time performance is effectively improved. The algorithm is tested on the wearable intelligent terminal developed by the laboratory. Under the condition of once every 2 s, the average recognition precision of the test is over 94%, and the recognition accuracy of the activity pattern about go upstairs and go downstairs is more than 93%. The recognition accuracy of the activity pattern is greatly improved compared with other algorithms. Therefore, the proposed algorithm of real-time human activity pattern recognition based on multi-sensor has great application prospect.

    [1]Halabi A E, Artail H. Integrating pressure and accelerometer sensing for improved activity recognition on smartphones[C]//Third International Conference on Communications and Information Technology. IEEE, 2013: 121-125.

    [2]Liu S, Gao R X, John D, et al. Multi-sensor data fusion for physical activity assessment[J]. IEEE Transactions on Biomedical Engineering, 2012, 59(3): 687-96.

    [3]Palumbo F, Barsocchi P, Gallicchio C, et al. Multi-sensor data fusion for activity recognition based on reservoir computing[J]. Communications in Computer & Information Science, 2013, 386(2): 24-35.

    [4]Preece S J, Goulermas J Y, Kenney L P J, et al. A comparison of feature extraction methods for the classifycation of dynamic activities from accelerometer data[J].IEEE Transactions on Biomedical Engineering, 2009, 56(3): 871-879.

    [5]He Zhen-Yu, Jin Lian-wen. Activity recognition from acceleration data using AR model representation and SVM[C]//International Conference on Machine Learning and Cybernetics. 2008: 2245-2250.

    [6]Lau S L, David K. Movement recognition using the acelerometer in smartphones[C]//Future Network and Mobile Summit. 2010: 1-9.

    [7]Bujari A, Licar B, Palazzi C E. Movement pattern recognition through smartphone’s accelerometer[C]//Proceedings of the IEEE Consumer Communications and Networking Conference. 2012: 502-506.

    [8]Zhu You-lian, Huang Cheng. An improved median filtering algorithm combined with average filtering[C]//Third International Conference on Measuring Technology and Mechatronics Automation. IEEE, 2011: 420-423.

    [9]Qian Wei-xing, Zeng Qing-hua, Wan Jun-wei, et al. Pedestrian navigation method based on kinematic mechanism of human lower limb[J]. Journal of Chinese Inertial Technology, 2015, 23(1): 24-28.

    [10]Lu Yong-le, Zhang Xin, Gong Shuang, et al. Recognition of multiple human motion patterns based on MEMS inertial sensors[J]. Journal of Chinese Inertial Technology, 2016,24(5): 589-594.

    1005-6734(2017)04-0455-06

    10.13695/j.cnki.12-1222/o3.2017.04.006

    2017-04-05;

    2017-07-14

    國家自然科學(xué)基金資助項(xiàng)目(51175535);國際聯(lián)合研究中心科技平臺與基地建設(shè)(cstc2014gjhz0038);重慶市基礎(chǔ)與前沿研究計(jì)劃項(xiàng)目(cstc2015jcyjBX0068);重慶郵電大學(xué)博士啟動基金(A2015-40);重慶郵電大學(xué)自然科學(xué)基金(A2015-49);重慶高校優(yōu)秀成果轉(zhuǎn)化資助項(xiàng)目:基于自主傳感的消防單兵定位與體征及環(huán)境檢測多功能可穿戴系統(tǒng)(KJZH17115)

    劉宇(1972—),男,碩士生導(dǎo)師,教授,主要從事慣性導(dǎo)航及傳感器件的研究。E-mail: liuyu@cqupt.edu.cn

    基于多傳感器時(shí)域特征的實(shí)時(shí)人體行為識別

    劉 宇,余 躍,路永樂,郭俊啟,邸 克,陳永煒
    (重慶郵電大學(xué) 光電工程學(xué)院,重慶 400065)

    提出了一種基于加速度計(jì)、陀螺儀、氣壓計(jì)輸出時(shí)域特征的高精度、高實(shí)時(shí)性的人體行為模式識別算法。該算法選取多傳感器輸出的時(shí)域特征值作為唯一特征量,通過特征提取運(yùn)算實(shí)現(xiàn)行為的實(shí)時(shí)識別。通過在實(shí)驗(yàn)室自主研發(fā)的軟硬件平臺上進(jìn)行測試,在識別時(shí)間縮短到 2 s一次的條件下,對于8種人體日常行為模式和4種摔倒模式的平均識別率可達(dá)到94%以上。該算法對于現(xiàn)有算法實(shí)時(shí)精度有明顯提高,且拓展了模式識別的種類,在可穿戴智能終端領(lǐng)域具有很好的應(yīng)用前景。

    行為模式;實(shí)時(shí)識別;多傳感器;時(shí)域特征

    U666.1

    A

    猜你喜歡
    郵電大學(xué)模式識別時(shí)域
    《西安郵電大學(xué)學(xué)報(bào)》征稿啟事
    西安郵電大學(xué)設(shè)計(jì)作品
    包裝工程(2022年10期)2022-05-27 05:17:12
    《西安郵電大學(xué)學(xué)報(bào)》征稿啟事
    基于時(shí)域信號的三電平逆變器復(fù)合故障診斷
    淺談模式識別在圖像識別中的應(yīng)用
    電子測試(2017年23期)2017-04-04 05:06:50
    第四屆亞洲模式識別會議
    重慶郵電大學(xué)學(xué)報(bào)( 自然科學(xué)版》2016年第28卷第1-6期總第114-125期
    基于極大似然準(zhǔn)則與滾動時(shí)域估計(jì)的自適應(yīng)UKF算法
    基于時(shí)域逆濾波的寬帶脈沖聲生成技術(shù)
    基于時(shí)域波形特征的輸電線雷擊識別
    電測與儀表(2015年2期)2015-04-09 11:28:50
    大又大粗又爽又黄少妇毛片口| 国产精品久久久久久精品电影| 欧美一区二区国产精品久久精品| 欧美在线一区亚洲| 亚洲国产色片| 精品人妻一区二区三区麻豆 | 在线天堂最新版资源| 国产 一区精品| 91久久精品国产一区二区三区| 亚洲av第一区精品v没综合| 成人性生交大片免费视频hd| 久久人妻av系列| 久久精品国产亚洲av涩爱 | 亚洲av免费在线观看| 亚洲精品影视一区二区三区av| 成年免费大片在线观看| 日本撒尿小便嘘嘘汇集6| 99久久成人亚洲精品观看| 熟女人妻精品中文字幕| 深夜a级毛片| 18禁黄网站禁片免费观看直播| 久久精品国产自在天天线| 丰满人妻一区二区三区视频av| 亚州av有码| 国产成人福利小说| АⅤ资源中文在线天堂| 国产精品日韩av在线免费观看| 国产精品久久久久久av不卡| 狂野欧美白嫩少妇大欣赏| 亚洲人成网站在线播| 人人妻人人看人人澡| 黄色配什么色好看| 99久久九九国产精品国产免费| 中文字幕av成人在线电影| 婷婷六月久久综合丁香| 国产成人91sexporn| 偷拍熟女少妇极品色| 午夜福利在线观看吧| 最近的中文字幕免费完整| 欧美国产日韩亚洲一区| 小蜜桃在线观看免费完整版高清| 免费无遮挡裸体视频| 亚洲真实伦在线观看| 在线免费观看的www视频| 欧美日韩乱码在线| 亚洲人与动物交配视频| 久久久久久久久久久丰满| 人人妻人人看人人澡| 亚洲国产高清在线一区二区三| 欧美日本亚洲视频在线播放| 午夜影院日韩av| 十八禁网站免费在线| 嫩草影院新地址| 成人av在线播放网站| 久久午夜亚洲精品久久| 欧美3d第一页| 精品久久久久久成人av| 亚洲国产精品久久男人天堂| 男女那种视频在线观看| 可以在线观看毛片的网站| 国产伦在线观看视频一区| 人人妻人人澡人人爽人人夜夜 | 青春草视频在线免费观看| 欧美日本视频| 婷婷精品国产亚洲av| 欧美+亚洲+日韩+国产| 色综合亚洲欧美另类图片| 国产精品日韩av在线免费观看| 搡老妇女老女人老熟妇| av女优亚洲男人天堂| 亚洲第一电影网av| 欧美激情国产日韩精品一区| 国产精品1区2区在线观看.| 亚洲美女视频黄频| 欧美一区二区亚洲| 日韩亚洲欧美综合| 国产视频内射| 男人狂女人下面高潮的视频| av专区在线播放| 日本成人三级电影网站| 最新中文字幕久久久久| 国产精品日韩av在线免费观看| videossex国产| 久久午夜亚洲精品久久| 欧美另类亚洲清纯唯美| 亚洲不卡免费看| 国产乱人偷精品视频| 人妻制服诱惑在线中文字幕| 国产亚洲精品久久久久久毛片| 日本五十路高清| 免费高清视频大片| 国产一区二区三区在线臀色熟女| 国产精品嫩草影院av在线观看| 亚洲欧美精品综合久久99| 中文字幕久久专区| 欧美日韩综合久久久久久| 欧美一区二区精品小视频在线| 日本色播在线视频| 久久久久久国产a免费观看| 午夜免费激情av| 亚洲av不卡在线观看| 国产又黄又爽又无遮挡在线| 伦精品一区二区三区| 两个人的视频大全免费| 菩萨蛮人人尽说江南好唐韦庄 | 99久久精品国产国产毛片| 精品一区二区三区视频在线| 国产成人freesex在线 | 嫩草影院入口| 女人被狂操c到高潮| 啦啦啦观看免费观看视频高清| 熟女电影av网| 无遮挡黄片免费观看| 欧美性猛交╳xxx乱大交人| 欧美色视频一区免费| 在线播放国产精品三级| 搞女人的毛片| 成人毛片a级毛片在线播放| 看非洲黑人一级黄片| 亚洲七黄色美女视频| 最近2019中文字幕mv第一页| 国产乱人偷精品视频| 免费av观看视频| 色哟哟哟哟哟哟| 天堂动漫精品| 少妇猛男粗大的猛烈进出视频 | 久久午夜亚洲精品久久| 午夜激情欧美在线| 成熟少妇高潮喷水视频| 国产精品野战在线观看| 国产精品乱码一区二三区的特点| 1000部很黄的大片| 丰满的人妻完整版| 亚洲最大成人av| 国产精华一区二区三区| 免费黄网站久久成人精品| 搡老熟女国产l中国老女人| 夜夜看夜夜爽夜夜摸| 搡老岳熟女国产| 淫秽高清视频在线观看| 性色avwww在线观看| 晚上一个人看的免费电影| 赤兔流量卡办理| 国产爱豆传媒在线观看| 久久国产乱子免费精品| 亚洲自偷自拍三级| 成年女人永久免费观看视频| 乱系列少妇在线播放| 国产aⅴ精品一区二区三区波| 亚洲国产日韩欧美精品在线观看| 国产在线男女| 精品福利观看| 一进一出抽搐gif免费好疼| 免费av毛片视频| 我要看日韩黄色一级片| 好男人在线观看高清免费视频| 校园春色视频在线观看| 波多野结衣巨乳人妻| 国产熟女欧美一区二区| 精品国产三级普通话版| 最近中文字幕高清免费大全6| 国产精品美女特级片免费视频播放器| 男女那种视频在线观看| 国产白丝娇喘喷水9色精品| 久久精品国产自在天天线| 亚洲国产精品成人综合色| av在线老鸭窝| 亚洲精品在线观看二区| 性插视频无遮挡在线免费观看| 久久久精品大字幕| 国产午夜精品久久久久久一区二区三区 | 久久精品夜夜夜夜夜久久蜜豆| 给我免费播放毛片高清在线观看| 亚洲人成网站在线观看播放| 婷婷色综合大香蕉| 亚洲四区av| 91在线观看av| 日韩制服骚丝袜av| 能在线免费观看的黄片| 久久久久国产精品人妻aⅴ院| 免费电影在线观看免费观看| 少妇人妻精品综合一区二区 | 精品一区二区三区视频在线观看免费| 我要看日韩黄色一级片| 亚洲第一电影网av| 男女啪啪激烈高潮av片| 欧美zozozo另类| 天堂网av新在线| 国产三级在线视频| 国产成人影院久久av| 亚洲人成网站在线观看播放| 国产高清激情床上av| 亚洲国产精品成人久久小说 | 五月伊人婷婷丁香| 国产精品嫩草影院av在线观看| 国产精品99久久久久久久久| 99久久中文字幕三级久久日本| 久久人人爽人人片av| 变态另类成人亚洲欧美熟女| a级毛片免费高清观看在线播放| 校园春色视频在线观看| 一进一出抽搐gif免费好疼| 岛国在线免费视频观看| 中文字幕久久专区| 国产一区二区在线观看日韩| 成人性生交大片免费视频hd| 熟妇人妻久久中文字幕3abv| 日韩三级伦理在线观看| 女人被狂操c到高潮| 久久久欧美国产精品| 久久久久久九九精品二区国产| 日日干狠狠操夜夜爽| 国产色婷婷99| 婷婷色综合大香蕉| av女优亚洲男人天堂| 黄色一级大片看看| 有码 亚洲区| 国产精品久久电影中文字幕| 中文字幕av成人在线电影| 男女视频在线观看网站免费| 国产伦精品一区二区三区四那| 男女下面进入的视频免费午夜| 麻豆成人午夜福利视频| 欧美激情久久久久久爽电影| 国产成人福利小说| 校园春色视频在线观看| 中文字幕av成人在线电影| 六月丁香七月| 国产精品人妻久久久久久| 丰满的人妻完整版| 国产亚洲欧美98| 你懂的网址亚洲精品在线观看 | 九色成人免费人妻av| 晚上一个人看的免费电影| 国产高清视频在线播放一区| 欧美在线一区亚洲| 人人妻人人看人人澡| 我的女老师完整版在线观看| 男人狂女人下面高潮的视频| 国产高清视频在线播放一区| 嫩草影院入口| 亚洲性久久影院| 亚洲自偷自拍三级| 亚洲人成网站在线播| 中文字幕av成人在线电影| 久久午夜福利片| 国产精品不卡视频一区二区| 免费不卡的大黄色大毛片视频在线观看 | 久久99热6这里只有精品| 久久人妻av系列| 免费观看在线日韩| 变态另类丝袜制服| 午夜激情欧美在线| 欧美激情久久久久久爽电影| 99riav亚洲国产免费| 一进一出抽搐动态| 18+在线观看网站| 亚洲精品成人久久久久久| 久久6这里有精品| 午夜久久久久精精品| av福利片在线观看| 成人av在线播放网站| 人人妻人人看人人澡| 18禁黄网站禁片免费观看直播| 国模一区二区三区四区视频| 亚洲人成网站高清观看| 波多野结衣高清无吗| 国产精品三级大全| 最新在线观看一区二区三区| 婷婷亚洲欧美| 99热网站在线观看| av女优亚洲男人天堂| 亚洲性久久影院| 国产精品一及| 午夜爱爱视频在线播放| 日日摸夜夜添夜夜添av毛片| 亚洲国产精品sss在线观看| 听说在线观看完整版免费高清| 精品99又大又爽又粗少妇毛片| 亚洲经典国产精华液单| 国产精品久久久久久精品电影| 亚洲精品久久国产高清桃花| 久久精品国产亚洲av天美| 国产亚洲精品久久久久久毛片| 亚州av有码| 精品人妻熟女av久视频| 尾随美女入室| 国产一区二区在线观看日韩| 欧美激情在线99| 国产精品永久免费网站| 欧美日韩一区二区视频在线观看视频在线 | 性色avwww在线观看| 中文字幕久久专区| 亚洲真实伦在线观看| 69人妻影院| 人妻丰满熟妇av一区二区三区| 午夜影院日韩av| 日日干狠狠操夜夜爽| 国产精品野战在线观看| 日本精品一区二区三区蜜桃| 亚洲第一电影网av| 少妇丰满av| 最新在线观看一区二区三区| 此物有八面人人有两片| 麻豆国产av国片精品| 插逼视频在线观看| 卡戴珊不雅视频在线播放| 亚洲,欧美,日韩| 成人特级av手机在线观看| 老女人水多毛片| 五月伊人婷婷丁香| 欧美3d第一页| 成年女人看的毛片在线观看| 国产黄色小视频在线观看| 中文字幕av在线有码专区| 精品午夜福利在线看| 亚洲国产精品国产精品| 久久精品国产自在天天线| 欧美3d第一页| av中文乱码字幕在线| 1024手机看黄色片| 欧美最新免费一区二区三区| 激情 狠狠 欧美| a级一级毛片免费在线观看| 国产男人的电影天堂91| 一本精品99久久精品77| 菩萨蛮人人尽说江南好唐韦庄 | 99久久无色码亚洲精品果冻| 亚洲国产精品合色在线| 一个人免费在线观看电影| 亚洲精华国产精华液的使用体验 | 最近2019中文字幕mv第一页| 一区二区三区高清视频在线| 好男人在线观看高清免费视频| av福利片在线观看| 国产精品久久久久久av不卡| 99久久九九国产精品国产免费| 嫩草影院新地址| 伦精品一区二区三区| 国产精品精品国产色婷婷| 波多野结衣巨乳人妻| 色哟哟·www| 大又大粗又爽又黄少妇毛片口| 深夜精品福利| 丝袜喷水一区| 免费电影在线观看免费观看| 级片在线观看| 精品一区二区免费观看| 内地一区二区视频在线| avwww免费| 精品午夜福利视频在线观看一区| 99国产极品粉嫩在线观看| 亚洲人与动物交配视频| 男女啪啪激烈高潮av片| 午夜激情欧美在线| 久久欧美精品欧美久久欧美| 亚洲人与动物交配视频| 97碰自拍视频| 在线免费观看不下载黄p国产| 久久精品人妻少妇| 国产麻豆成人av免费视频| ponron亚洲| 国产真实乱freesex| 亚洲第一区二区三区不卡| 亚洲精品国产av成人精品 | 乱系列少妇在线播放| 成人毛片a级毛片在线播放| 亚洲国产色片| 22中文网久久字幕| 狂野欧美白嫩少妇大欣赏| 日韩av不卡免费在线播放| 51国产日韩欧美| 一进一出抽搐gif免费好疼| 精品欧美国产一区二区三| 日本黄大片高清| 99久国产av精品国产电影| 国内精品美女久久久久久| 欧美色视频一区免费| 悠悠久久av| av女优亚洲男人天堂| 欧美一区二区精品小视频在线| 好男人在线观看高清免费视频| 国内精品美女久久久久久| 欧美色视频一区免费| 1000部很黄的大片| 国产美女午夜福利| 高清午夜精品一区二区三区 | 亚洲久久久久久中文字幕| 国内揄拍国产精品人妻在线| 亚洲第一电影网av| 在线免费观看的www视频| 亚洲人成网站高清观看| 国产成年人精品一区二区| 国产在线精品亚洲第一网站| АⅤ资源中文在线天堂| 欧美最黄视频在线播放免费| 色哟哟·www| 国产伦精品一区二区三区四那| 亚洲精品粉嫩美女一区| 国产激情偷乱视频一区二区| 91久久精品国产一区二区三区| av专区在线播放| 亚洲av成人av| 少妇的逼水好多| or卡值多少钱| 欧美激情国产日韩精品一区| 日日摸夜夜添夜夜爱| 亚洲经典国产精华液单| 男人的好看免费观看在线视频| 亚洲第一区二区三区不卡| 亚洲国产色片| 99国产极品粉嫩在线观看| 免费看av在线观看网站| 欧美bdsm另类| 一本精品99久久精品77| 国产av不卡久久| 日韩一区二区视频免费看| 久久久久久大精品| 国产伦一二天堂av在线观看| 免费大片18禁| 久久鲁丝午夜福利片| 国产国拍精品亚洲av在线观看| 国产v大片淫在线免费观看| 在线观看66精品国产| 少妇的逼好多水| 国产大屁股一区二区在线视频| www日本黄色视频网| 日本撒尿小便嘘嘘汇集6| 老熟妇仑乱视频hdxx| 日本一二三区视频观看| 亚洲色图av天堂| 色综合站精品国产| 亚洲在线观看片| 成人国产麻豆网| 狂野欧美白嫩少妇大欣赏| 三级男女做爰猛烈吃奶摸视频| 成人特级av手机在线观看| 丝袜喷水一区| 3wmmmm亚洲av在线观看| 麻豆乱淫一区二区| av在线蜜桃| 岛国在线免费视频观看| 在线播放无遮挡| 有码 亚洲区| 亚洲不卡免费看| av在线观看视频网站免费| 国产片特级美女逼逼视频| 在线天堂最新版资源| 综合色丁香网| 亚洲人成网站在线观看播放| 97超视频在线观看视频| aaaaa片日本免费| 久久热精品热| 国产亚洲精品久久久com| 国产亚洲精品久久久久久毛片| 久久久国产成人免费| 99国产极品粉嫩在线观看| 精品午夜福利视频在线观看一区| 午夜a级毛片| 久久久久久久亚洲中文字幕| 91麻豆精品激情在线观看国产| 国产成人a区在线观看| 亚洲熟妇熟女久久| 熟妇人妻久久中文字幕3abv| 在线观看午夜福利视频| 亚洲成人久久性| 国产精品一二三区在线看| 91av网一区二区| 级片在线观看| 国产精品三级大全| 国产毛片a区久久久久| 俄罗斯特黄特色一大片| 三级经典国产精品| 国产淫片久久久久久久久| 欧美日本亚洲视频在线播放| 欧美国产日韩亚洲一区| 麻豆国产97在线/欧美| 伦精品一区二区三区| 一区二区三区免费毛片| 日韩人妻高清精品专区| 中出人妻视频一区二区| 免费不卡的大黄色大毛片视频在线观看 | 国产精品福利在线免费观看| 亚洲第一电影网av| 久久精品综合一区二区三区| 国产成人freesex在线 | 亚洲精品一区av在线观看| 成熟少妇高潮喷水视频| 波多野结衣高清作品| 搡老熟女国产l中国老女人| av卡一久久| 国产一级毛片七仙女欲春2| 欧美色欧美亚洲另类二区| 日韩精品有码人妻一区| 联通29元200g的流量卡| 日韩成人av中文字幕在线观看 | 亚洲成人久久爱视频| 成人三级黄色视频| 十八禁国产超污无遮挡网站| 狂野欧美激情性xxxx在线观看| 伦理电影大哥的女人| 久久久色成人| 久久国产乱子免费精品| 久久久久久久亚洲中文字幕| 欧美一区二区亚洲| 女同久久另类99精品国产91| 中文字幕精品亚洲无线码一区| 精华霜和精华液先用哪个| 又黄又爽又刺激的免费视频.| 最近视频中文字幕2019在线8| 婷婷亚洲欧美| 人妻少妇偷人精品九色| 色噜噜av男人的天堂激情| 国产色婷婷99| 69人妻影院| 亚洲一区二区三区色噜噜| 国产亚洲欧美98| 亚洲av.av天堂| 国产精品人妻久久久久久| 六月丁香七月| 久久欧美精品欧美久久欧美| 国产精品永久免费网站| 亚洲精品国产成人久久av| 国产黄片美女视频| 亚洲成人久久爱视频| 久久精品久久久久久噜噜老黄 | 日本三级黄在线观看| 国产一区二区亚洲精品在线观看| 白带黄色成豆腐渣| 最近2019中文字幕mv第一页| 国产精品av视频在线免费观看| 国产色婷婷99| 亚洲av熟女| 亚洲成人久久性| 人妻久久中文字幕网| 亚洲av成人av| 国产精品国产高清国产av| 国产真实乱freesex| 国产一区二区在线观看日韩| 成人一区二区视频在线观看| 岛国在线免费视频观看| 成人毛片a级毛片在线播放| 成人亚洲精品av一区二区| 亚洲内射少妇av| 日韩精品中文字幕看吧| 简卡轻食公司| 婷婷六月久久综合丁香| 国产亚洲精品综合一区在线观看| 一边摸一边抽搐一进一小说| 亚洲真实伦在线观看| 久久人妻av系列| 欧美日韩乱码在线| 国产免费一级a男人的天堂| 精品午夜福利视频在线观看一区| 亚洲内射少妇av| 欧美不卡视频在线免费观看| 国产美女午夜福利| 丰满的人妻完整版| 搡老熟女国产l中国老女人| 一本久久中文字幕| 成人三级黄色视频| 一级毛片aaaaaa免费看小| 免费搜索国产男女视频| 又粗又爽又猛毛片免费看| 国内久久婷婷六月综合欲色啪| 亚洲精品国产成人久久av| 小说图片视频综合网站| 美女高潮的动态| 国产男人的电影天堂91| 婷婷亚洲欧美| 非洲黑人性xxxx精品又粗又长| 久久久久久久久大av| 欧美+日韩+精品| 亚洲欧美日韩高清专用| 一a级毛片在线观看| 亚洲人成网站在线观看播放| 日韩高清综合在线| 日韩欧美精品v在线| 日韩大尺度精品在线看网址| 免费搜索国产男女视频| 午夜福利在线在线| 亚洲人成网站高清观看| 日日摸夜夜添夜夜爱| 亚洲av中文av极速乱| 丝袜喷水一区| 一区二区三区四区激情视频 | 九九热线精品视视频播放| 亚洲成人av在线免费| 性欧美人与动物交配| 亚洲内射少妇av| 在线观看66精品国产| 干丝袜人妻中文字幕| 亚洲国产欧洲综合997久久,| 伦理电影大哥的女人| aaaaa片日本免费| 日本精品一区二区三区蜜桃| 国产毛片a区久久久久| 99热6这里只有精品| 黑人高潮一二区| 亚洲色图av天堂| 夜夜夜夜夜久久久久| 国产av不卡久久| 一级黄色大片毛片| 成年免费大片在线观看| 国产欧美日韩精品亚洲av| 亚洲精品一卡2卡三卡4卡5卡| 国产视频内射| 国产欧美日韩精品亚洲av| 黄色日韩在线| 国产单亲对白刺激| 欧美一区二区国产精品久久精品| 你懂的网址亚洲精品在线观看 | 少妇人妻精品综合一区二区 | 99九九线精品视频在线观看视频| 亚洲中文字幕一区二区三区有码在线看|