張 萍,李 琛,鄭銘喆,張 華,季延紅 (西安交通大學(xué)醫(yī)學(xué)部基礎(chǔ)醫(yī)學(xué)院病原生物學(xué)和免疫學(xué)系,陜西西安710061)
BCR-ABL1+粒細(xì)胞白血病小鼠模型的建立及其鑒定
張 萍,李 琛,鄭銘喆,張 華,季延紅 (西安交通大學(xué)醫(yī)學(xué)部基礎(chǔ)醫(yī)學(xué)院病原生物學(xué)和免疫學(xué)系,陜西西安710061)
目的:建立BCR-ABL1+粒細(xì)胞白血病小鼠模型,為研究白血病的發(fā)病機(jī)制和藥物開(kāi)發(fā)提供理想的平臺(tái).方法:利用含有pMSCV?BCR/ABL1?IRES?GFP逆轉(zhuǎn)錄病毒上清感染6~10周齡C57BL/6供者小鼠的骨髓細(xì)胞,移植給致死量射線照射的同種同型受者小鼠,建立BCR-ABL1+粒細(xì)胞白血病小鼠模型;監(jiān)測(cè)移植小鼠的體質(zhì)量,生存率;流式細(xì)胞儀檢測(cè)小鼠外周血有核細(xì)胞GFP表達(dá)(代表有核細(xì)胞表達(dá)BCR/ABL1)和細(xì)胞分型;觀察小鼠脾臟、肺臟和肝臟等器官大體形態(tài)和HE染色變化.結(jié)果:移植20 d后,移植小鼠呈現(xiàn)弓背、活動(dòng)性減少、精神萎靡的狀態(tài),體質(zhì)量明顯降低;流式細(xì)胞儀檢測(cè)外周血中出現(xiàn)GFP+細(xì)胞,并且隨著移植時(shí)間的延長(zhǎng),GFP+粒細(xì)胞明顯增多.移植小鼠的生存率較對(duì)照組明顯降低.移植小鼠發(fā)病后呈現(xiàn)脾臟顯著增大、肺出血、肺臟及肝臟出現(xiàn)白色結(jié)節(jié)和HE染色呈現(xiàn)大量細(xì)胞浸潤(rùn),且小鼠脾臟中有核細(xì)胞的80%為GFP+Gr?1+細(xì)胞,即BCR-ABL1+粒細(xì)胞白血病細(xì)胞.結(jié)論:利用此方法成功建立了BCR-ABL1+粒細(xì)胞白血病小鼠模型,為研究慢性粒細(xì)胞白血病機(jī)制和治療提供了平臺(tái).
BCR-ABL1+粒細(xì)胞白血病;BCR-ABL1;小鼠;生存率;逆轉(zhuǎn)錄病毒載體
慢性粒細(xì)胞白血?。╟hronic myeloid leukemia,CML)是一種以粒細(xì)胞失去分化能力,過(guò)度增殖為特征的骨髓增生性疾病,是一種伴有t(9;22)(q34;q11)染色體易位的惡性增生性疾?。?].該易位染色體由位于9號(hào)染色體的原癌基因ABL1部分序列從其正常位置易位至22號(hào)染色體的BCR區(qū)(breakpoint cluster region,BCR)形成[2],其編碼的蛋白具有高度異常酪氨酸激酶活性,造成了CML細(xì)胞對(duì)酪氨酸激酶抑制劑的抵抗[3].因此,研究CML的發(fā)病機(jī)制和治療藥物顯得尤為重要,而一個(gè)良好的實(shí)驗(yàn)平臺(tái)是研究機(jī)制和藥理的基礎(chǔ).研究[4-5]發(fā)現(xiàn),雖然我們可以利用將CML患者的白血病細(xì)胞移植給NOD/SCID小鼠構(gòu)建的小鼠模型來(lái)研究白血病細(xì)胞是否導(dǎo)致并維持了CML,但是這種模型不能造成致死性CML且耗時(shí)較長(zhǎng);而B(niǎo)CR-ABL轉(zhuǎn)基因小鼠模型由于不能完全發(fā)展成為髓系增生性疾病且具有潛伏期長(zhǎng)的局限性,不利于治療藥物的研究[4-5].逆轉(zhuǎn)錄病毒感染骨髓細(xì)胞的移植模型則是一種穩(wěn)定高效的誘導(dǎo)方式[6],可以為研究CML的發(fā)病機(jī)制和治療藥物提供幫助.本研究在逆轉(zhuǎn)錄病毒感染骨髓細(xì)胞移植模型的基礎(chǔ)上建立了更加省時(shí)、高效且易于監(jiān)測(cè)病程和鑒定疾病類(lèi)型的方式,成功建立了容易監(jiān)測(cè)及鑒定的BCR-ABL1+粒細(xì)胞白血病小鼠模型,為CML的機(jī)制和藥物研究提供了一個(gè)良好的平臺(tái).
1.1 材料
1.1.1 載體和試劑 pMSCV?BCR/ABL1?IRES?GFP、pkat?ampac逆轉(zhuǎn)錄病毒包裝載體由本實(shí)驗(yàn)室保存.5?Fluorouracil(5?Fu,Cat#6627)、HEPES和polybrene來(lái)自Sigma.抗小鼠Gr?1?APC(Cat#553129)流式抗體來(lái)自BD.SCF、IL?3、IL?6來(lái)自Peprotech.
1.1.2 實(shí)驗(yàn)動(dòng)物 6~10周齡的C57BL/6小鼠購(gòu)買(mǎi)并飼養(yǎng)于西安交通大學(xué)醫(yī)學(xué)部SPF級(jí)動(dòng)物房.
1.2 方法
1.2.1 pMSCV?BCR/ABL1?IRES?GFP逆轉(zhuǎn)錄病毒的制備 用293T細(xì)胞培養(yǎng)基(DMEM培養(yǎng)液含有10%FBS、1%青鏈霉素,200 mM谷氨酸和1%MEM non?essential氨基酸)將293T細(xì)胞于10 cm培養(yǎng)皿培養(yǎng)至密度為80%時(shí),利用pMSCV?BCR/ABL1?IRES?GFP逆轉(zhuǎn)錄病毒載體轉(zhuǎn)染293T細(xì)胞,48 h后收集pMSCV?BCR/ABL1?IRES?GFP逆轉(zhuǎn)錄病毒上清液立即使用或儲(chǔ)存-80℃.
1.2.2 采集和體外培養(yǎng)供者小鼠骨髓細(xì)胞 要求供者和受者小鼠屬于同一品系.通常情況下,10只供者小鼠可提供2~3×107骨髓細(xì)胞.第1天,取6~10周齡SPF級(jí)C57BL/6小鼠20只,尾靜脈注射0.6 mL 5?Fu/只,按200 mg/kg計(jì)算.第4天時(shí),處死小鼠獲取4~6×107骨髓細(xì)胞,將供者骨髓細(xì)胞分為兩等分,即實(shí)驗(yàn)組和對(duì)照組,用48 mL骨髓細(xì)胞刺激培養(yǎng)基(含有77%DMEM,20%FBS,1%青鏈霉素,200 mM谷氨酸,18 ng/mL小鼠重組IL?3,20 ng/mL小鼠重組IL?6以及100 ng/mL小鼠重組SCF)分別懸于兩個(gè)六孔板中,在CO2培養(yǎng)箱內(nèi)培養(yǎng)24 h.
1.2.3 pMSCV?BCR/ABL1?IRES?GFP逆轉(zhuǎn)錄病毒感染供者小鼠骨髓細(xì)胞 第5天,向?qū)嶒?yàn)組的六孔板加入pMSCV?BCR/ABL1?IRES?GFP逆轉(zhuǎn)錄病毒第一次轉(zhuǎn)染骨髓細(xì)胞培養(yǎng)基(含有50%pMSCV?BCR/ABL1?IRES?GFP逆轉(zhuǎn)錄病毒上清,18 ng/mL小鼠重組IL?3,20 ng/mL小鼠重組IL?6,100 ng/mL小鼠重組SCF,1%HEPES和20μg/mL polybrene),每孔2 mL,對(duì)照組的六孔板加入骨髓細(xì)胞刺激培養(yǎng)基,每孔2 mL,輕柔混勻后,室溫2300 rpm離心90 min,繼續(xù)在CO2培養(yǎng)箱中培養(yǎng)3~4 h.室溫下1500 rpm離心10 min,丟棄上清液,各加入24 mL骨髓細(xì)胞刺激培養(yǎng)基,過(guò)夜培養(yǎng).第6天,向?qū)嶒?yàn)組的六孔板加入pMSCV?BCR/ABL1?IRES?GFP逆轉(zhuǎn)錄病毒第二次轉(zhuǎn)染骨髓細(xì)胞培養(yǎng)基(含有50%pMSCV?BCR/ABL1?IRES?GFP逆轉(zhuǎn)錄病毒上清,18 ng/mL小鼠重組IL?3,20 ng/mL小鼠重組IL?6,100 ng/mL小鼠重組SCF,1%HEPES和20 μg/mL polybrene),每孔2 mL,懸浮第一次轉(zhuǎn)染后的骨髓細(xì)胞,向?qū)φ战M的六孔板加入骨髓細(xì)胞刺激培養(yǎng)基,每孔2 mL,輕柔混勻后,室溫2300 rpm離心90 min,CO2培養(yǎng)箱培養(yǎng)3 h.最后用Hank's緩沖液懸浮兩組骨髓細(xì)胞,準(zhǔn)備注射受者小鼠.
1.2.4 致死量射線照射受者小鼠并進(jìn)行骨髓移植第6天,采用醫(yī)用電子直線加速器(英國(guó)Eiekta)照射6~10周齡SPF級(jí)的C57BL/6小鼠12只,輻射劑量920 cGy.將上述pMSCV?BCR/ABL1?IRES?GFP逆轉(zhuǎn)錄病毒感染后的供者小鼠骨髓細(xì)胞,尾靜脈注射給6只受照射后的受者小鼠作為實(shí)驗(yàn)組,同樣,將未使用逆轉(zhuǎn)錄病毒感染后的供者小鼠骨髓細(xì)胞,尾靜脈注射給6只受照射后的受者小鼠作為對(duì)照組,細(xì)胞用量為1×106/0.4 mL/只.SPF級(jí)動(dòng)物房飼養(yǎng)移植后小鼠.每隔一天觀察小鼠存活情況、稱取體質(zhì)量;每周采用流式細(xì)胞儀檢測(cè)受者小鼠外周血GFP陽(yáng)性細(xì)胞數(shù)量,即代表表達(dá)BCR-ABL1的細(xì)胞.大約15~20 d可建立BCR-ABL1+粒細(xì)胞白血病小鼠模型.
1.2.5 BCR-ABL1+粒細(xì)胞白血病小鼠模型的鑒定
1.2.5.1 移植小鼠體質(zhì)量和生存率監(jiān)測(cè) 每隔一天稱取并記錄實(shí)驗(yàn)組小鼠和對(duì)照組小鼠的體質(zhì)量,計(jì)算實(shí)驗(yàn)組小鼠和對(duì)照組小鼠的生存率.
1.2.5.2 流式細(xì)胞儀檢測(cè) 每周取移植受者小鼠內(nèi)眥血于抗凝劑中,經(jīng)紅細(xì)胞裂解液裂解8 min去掉紅細(xì)胞后,1×PBS洗2次,檢測(cè)外周血有核細(xì)胞中GFP+白血病細(xì)胞的百分比并計(jì)數(shù).將瀕死的移植受者小鼠處死后觀察小鼠脾臟,盡快收集病鼠的骨髓細(xì)胞及脾臟細(xì)胞,經(jīng)紅細(xì)胞裂解液裂解5 min去掉紅細(xì)胞后,1×PBS洗2次,利用抗小鼠Gr?1抗體對(duì)移植受者小鼠的骨髓和脾臟細(xì)胞避光孵育20 min,1×PBS洗2次,1×PBS懸起后流式細(xì)胞儀檢測(cè)進(jìn)行免疫分型.以Gr?1+GFP+表示粒細(xì)胞白血病細(xì)胞.
1.2.5.3 移植受者小鼠肺臟和肝臟HE染色 將瀕死的移植受者小鼠處死后觀察小鼠肺臟和肝臟,將肺臟和肝臟組織標(biāo)本經(jīng)石蠟包埋,切片和HE染色后,顯微鏡下觀察白血病細(xì)胞的浸潤(rùn)情況.
2.1 移植小鼠體質(zhì)量和生存率變化將pMSCV?BCR/ABL1?IRES?GFP逆轉(zhuǎn)錄病毒感染后的C57BL/6供者小鼠骨髓細(xì)胞,尾靜脈注射給受照射后的C57BL/6受者小鼠作為實(shí)驗(yàn)組,以接受同樣劑量照射并移植未感染病毒的供者骨髓細(xì)胞的C57BL/6受者小鼠作為對(duì)照組,每隔一天稱取體質(zhì)量,監(jiān)測(cè)小鼠體質(zhì)量變化.由于致死量照射,移植后的C57BL/6小鼠體質(zhì)量呈現(xiàn)照射性降低,隨后在一周之內(nèi)恢復(fù)體質(zhì)量并且持續(xù)平穩(wěn),在移植后3周時(shí),實(shí)驗(yàn)組小鼠體質(zhì)量連續(xù)降低,而對(duì)照組小鼠體質(zhì)量保持平穩(wěn)(圖1A),C57BL/6實(shí)驗(yàn)組小鼠與C57BL/6對(duì)照組小鼠的體質(zhì)量變化比較,差異具有統(tǒng)計(jì)學(xué)意義(P<0.05).實(shí)驗(yàn)組小鼠的生存率較對(duì)照組明顯降低(圖1B),3~4周時(shí)相繼死去.
圖1 C57BL/6骨髓移植受者小鼠的體質(zhì)量及生存率
2.2 移植小鼠外周血白血病細(xì)胞監(jiān)測(cè)情況C57BL/6受者小鼠接受供者的小鼠骨髓細(xì)胞后,每周取移植受者小鼠內(nèi)眥血,監(jiān)測(cè)受者小鼠外周血中GFP+白血病細(xì)胞的水平.通過(guò)流式細(xì)胞儀檢測(cè)后發(fā)現(xiàn),C57BL/6實(shí)驗(yàn)組小鼠7 d后外周血中即出現(xiàn)GFP+細(xì)胞(圖2A),并且隨著移植時(shí)間推移,GFP+粒細(xì)胞明顯增多(圖2B).至白血病細(xì)胞占外周血有核細(xì)胞80%時(shí),小鼠迅速死亡.C57BL/6對(duì)照組小鼠外周血中始終未出現(xiàn)GFP+細(xì)胞.
圖2 C57BL/6實(shí)驗(yàn)組小鼠外周血GFP+白血病細(xì)胞
2.3 移植小鼠粒細(xì)胞白血病建模成功骨髓移植20 d左右時(shí),實(shí)驗(yàn)組小鼠呈現(xiàn)弓背、活動(dòng)性減少、精神萎靡、進(jìn)食減少的狀態(tài)(圖3A).當(dāng)實(shí)驗(yàn)組小鼠體質(zhì)量連續(xù)減輕且外周血白血病細(xì)胞持續(xù)增高時(shí),處死實(shí)驗(yàn)組小鼠和對(duì)照組小鼠,觀察肺臟、脾臟及肝臟,發(fā)現(xiàn)實(shí)驗(yàn)組小鼠脾臟較對(duì)照組體積增大顯著,且出現(xiàn)肉眼可見(jiàn)大小不一數(shù)個(gè)白色突起(圖3B),實(shí)驗(yàn)組小鼠肺臟呈現(xiàn)出血、粗糙且布滿白色點(diǎn)狀結(jié)節(jié)(圖3C),肝臟布滿白色結(jié)節(jié)(圖3D).將肺臟和肝臟進(jìn)行HE染色,觀察到實(shí)驗(yàn)組小鼠肺臟和肝臟有大量白細(xì)胞浸潤(rùn)(圖3E、3F).將脾臟進(jìn)行HE染色,同樣觀察到實(shí)驗(yàn)組小鼠脾臟有大量白血病細(xì)胞浸潤(rùn)(圖3G),收集實(shí)驗(yàn)組小鼠的骨髓細(xì)胞及脾臟細(xì)胞,通過(guò)流式細(xì)胞儀檢測(cè)發(fā)現(xiàn)脾臟中主要為大細(xì)胞(圖3H),且脾臟中GFP+細(xì)胞占有核細(xì)胞的90%(圖3I),利用抗小鼠Gr?1抗體對(duì)實(shí)驗(yàn)組小鼠的骨髓和脾臟細(xì)胞進(jìn)行免疫分型(以Gr?1+GFP+表示粒細(xì)胞白血病細(xì)胞),通過(guò)流式細(xì)胞儀檢測(cè)發(fā)現(xiàn)脾臟中有核細(xì)胞的80%為GFP+Gr?1+細(xì)胞,進(jìn)一步證實(shí)是BCR-ABL1+粒細(xì)胞白血病(圖3J).
圖3 C57BL/6BCR-ABL1+粒細(xì)胞白血病小鼠模型
CML是一種由于粒細(xì)胞大量增生卻失去分化能力的髓系增生性疾病,來(lái)源于造血干細(xì)胞并且由于含有致癌基因BCR-ABL而獲得增殖快速于正常造血干細(xì)胞的優(yōu)勢(shì)[7-8],由于致癌基因產(chǎn)生的蛋白具有高度異常的酪氨酸激酶活性,持續(xù)活化其下游信號(hào)分子通路,促進(jìn)了CML細(xì)胞的增殖和抗凋亡能力,造成CML細(xì)胞的惡性轉(zhuǎn)化[9].在CML進(jìn)程中CML?BP(blastic phase)患者對(duì)酪氨酸激酶抑制性藥物、異體造血干細(xì)胞移植、或者聯(lián)合化療效果均較差,死亡率極高[10].此外,相對(duì)于CML?CP(chronic phase)期,CML?BP期基因組的復(fù)雜性和異質(zhì)性均更高[11].雖然酪氨酸激酶抑制劑伊馬替尼對(duì)CML的治療有革命性的突破,但是BCR-ABL1基因的突變產(chǎn)生了伊馬替尼的耐藥問(wèn)題[12-13].因此,研究BCR-ABL1+粒細(xì)胞白血病的發(fā)生、耐藥機(jī)制以及新的藥物對(duì)治療CML至關(guān)重要.雖然我們可以利用CML細(xì)胞異體移植小鼠模型和BCR-ABL轉(zhuǎn)基因小鼠模型來(lái)研究CML的發(fā)病機(jī)制,但是由于這些小鼠模型構(gòu)建潛伏期較長(zhǎng),均不利于CML治療藥物的研究.本研究利用逆轉(zhuǎn)錄病毒感染骨髓細(xì)胞的移植模型具有穩(wěn)定且潛伏期短的優(yōu)勢(shì),在其基礎(chǔ)上對(duì)照射方式進(jìn)行了改進(jìn),使得照射一次性成功,耗時(shí)大大縮短,為實(shí)驗(yàn)過(guò)程節(jié)省了寶貴的時(shí)間;此外,本研究還利用流式細(xì)胞儀檢測(cè)外周血有核細(xì)胞中GFP+白血病細(xì)胞數(shù)來(lái)監(jiān)測(cè)整個(gè)病程周期,可以準(zhǔn)確地了解移植受者小鼠的移植成功率和病程進(jìn)展,為CML治療藥物的研究提供精確的控制窗口,使得便捷地觀測(cè)到藥物的治療效果成為可能.這種容易監(jiān)測(cè)及鑒定的BCR-ABL1+粒細(xì)胞白血病小鼠模型,可以為CML的機(jī)制和藥物研究提供極大的幫助.
BCR-ABL1逆轉(zhuǎn)錄病毒感染骨髓細(xì)胞移植模型可以誘導(dǎo)出3種疾?。侯?lèi)似于CML的髓系增生性疾病,急性淋巴細(xì)胞白血病以及單核細(xì)胞性白血病,表明BCR-ABL1逆轉(zhuǎn)錄病毒感染后的骨髓細(xì)胞呈現(xiàn)出一種混亂的造血方式[14-15].5?Fu為細(xì)胞周期特異性化療藥物,主要?dú)至哑诩?xì)胞,從而富集髓系多能干細(xì)胞,因此,本研究利用5?Fu處理供者小鼠的骨髓細(xì)胞,可以提高骨髓中髓系多能干細(xì)胞的百分比,使轉(zhuǎn)染效率極大提高,然后使用粒系干細(xì)胞所需的細(xì)胞因子培養(yǎng)供者骨髓細(xì)胞,能夠?qū)е滤柘蹈杉?xì)胞向粒系發(fā)展,最終發(fā)展為CML小鼠模型[16].
本研究利用細(xì)胞因子體外培養(yǎng)5?Fu處理后小鼠供者骨髓細(xì)胞,再利用BCR?ABL1?GFP逆轉(zhuǎn)錄病毒感染供者的骨髓細(xì)胞,并移植給致死量照射后的同種系受者小鼠,通過(guò)監(jiān)測(cè)受者小鼠的體質(zhì)量、生存率、流式細(xì)胞儀檢測(cè)受者小鼠外周血有核細(xì)胞表達(dá)GFP的情況來(lái)判定小鼠的病程進(jìn)展,簡(jiǎn)單且高效,此外,利用抗小鼠Gr?1抗體對(duì)發(fā)病后的受者小鼠的骨髓和脾臟細(xì)胞進(jìn)行免疫分型,進(jìn)一步證實(shí)了BCR-ABL1+粒細(xì)胞白血病的小鼠模型建立成功,利用流式檢測(cè)技術(shù)可以高效地監(jiān)測(cè)整個(gè)建模過(guò)程,且容易判定模型類(lèi)別.此外,通過(guò)觀察受者小鼠脾臟和肺臟等器官,我們發(fā)現(xiàn)白血病細(xì)胞于肺臟和肝臟均有浸潤(rùn),這顯示我們的模型起源于骨髓造血干細(xì)胞且具有多器官浸潤(rùn)的能力,這與人的CML較為相似,可以作為較理想的CML小鼠模型,為CML治療藥物的研究提供易觀測(cè)、易控制的平臺(tái),為白血病的治療提供較大的幫助.
[1] Soverini S,de Benedittis C,Mancini M,et al.Mutations in the BCR?ABL1 kinasedomainandelsewhereinchronicmyeloid leukemia[J].Clin Lymphoma Myeloma Leuk,2015,15 Suppl:S120-128.
[2] Nowell PC,Hungerford DA.Chromosome studies on normal and leukemic human leukocytes[J].J Natl Cancer Inst,1960,25:85-109.
[3] Kang ZJ,Liu YF,Xu LZ,et al.The Philadelphia chromosome in leukemogenesis[J].Chin J Cancer,2016,35:48.
[4] Wang JC,Lapidot T,Cashman JD,et al.High level engraftment of NOD/SCID mice by primitive normal and leukemic hematopoietic cells from patients with chronic myeloid leukemia in chronic phase[J].Blood,1998,91(7):2406-2414.
[5] Ma W,Ma N,Chen X,et al.An overview of chronic myeloid leukemia and its animal models[J].Sci China Life Sci,2015,58(12):1202-1208.
[6] Kelliher MA,McLaughlin J,Witte ON,et al.Induction of a chronic myelogenous leukemia?like syndrome in mice with v?abl and BCR/ABL[J].Proc Natl Acad Sci U S A,1990,87(17):6649-6653.
[7] Schneckenleithner C,Hoelbl?Kovacic A,Sexl V.Modeling BCR/ABL?driven malignancies in the mouse[J].Methods Mol Biol,2015,1267:263-282.
[8] Ren R.Mechanisms of BCR?ABL in the pathogenesis of chronic myelogenous leukaemia[J].Nat Rev Cancer,2005,5(3):172-183.
[9] Chereda B,Melo JV.Natural course and biology of CML[J].Ann Hematol,2015,94 Suppl 2:S107-121..
[10] Perrotti D,Jamieson C,Goldman J,et al.Chronic myeloid leukemia:mechanisms of blastic transformation[J].J Clin Invest,2010,120(7):2254-2264.
[11] Shah K,Parikh S,Rawal R.Tyrosine Kinase Inhibitors in Ph+Chronic Myeloid Leukemia Therapy:a Review[J].Asian Pac J Cancer Prev,2016,17(7):3025-3033.
[12] Ma L,Shan Y,Bai R,et al.A therapeutically targetable mechanism of BCR?ABL?independent imatinib resistance in chronic myeloid leukemia[J].Sci Transl Med,2014,6(252):252ra121.
[13] Zeng X,Zhao H,Li Y,et al.Targeting Hedgehog signaling pathway and autophagy overcomes drug resistance of BCR?ABL?positive chronic myeloid leukemia[J].Autophagy,2015,11(2):355-372.
[14] Daley GQ,Van Etten RA,Baltimore D.Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome[J].Science,1990,247(4944):824-830.[15]Li S,Ilaria RL,Million RP,et al.The P190,P210,and P230 forms of the BCR/ABL oncogene induce a similar chronic myeloid leukemia?like syndromeinmicebuthavedifferentlymphoid leukemogenic activity[J].J Exp Med,1999,189(9):1399-1412.
[16] 張文萍,馮文莉,黃世峰,等.bcr?abl逆轉(zhuǎn)錄病毒介導(dǎo)的小鼠慢性粒細(xì)胞白血病樣模型的建立[J].第四軍醫(yī)大學(xué)學(xué)報(bào),2008,29(15):1377-1381.
EstablishmentandidentificationofBCRABL1+myeloid leukemia mouse model
ZHANG Ping,LI Chen,ZHENG Ming-Zhe,ZHANG Hua,JI Yan-Hong
Department of Pathogenic Biology and Immunology,School of Basic Medical Sciences,Xi’an Jiaotong University Health Sci?ence Center,Xi’an 710061,China
AIM:To establish the BCR-ABL1+myeloid leukemia model and provide a better platform for studying the mechanism of BCR-ABL1+myeloid leukemia and the effect of therapeutic drugs in vivo.METHODS:The bone marrow cells from C57BL/6 donor mouse treated by 5?Fu were transfected with the pMSCV?BCR/ABL1?IRES?GFP retroviral supernatant,then transplanted into irradiated C57BL/6 recipient mice to establish the BCRABL1+myeloid leukemia mouse model.The weight loss,morbidi?ty,volume of spleen and lung of transplantation mice were moni?tored daily for signs.The GFP expression(wihch represent BCR/ABL1 expression)in the peripheral blood nucleated cells of the recipient mice and the cell classification were detected by flow cytometry.The spleen,lungs and other organs in general form and HE staining of mice were observed.RESULTS:The recipient mice obviously lost weight 20 days after transplantation.The GFP+leukemic cells are found in peripheral blood and the number of GFP+leukemic cells in peripheral blood increased with time.After transplantation,the survival rate of recipient mice was significantly lower than that of the control group.The recipient mice showed a significant increase in the spleen size,and the white nodules appeared on the lung and liver,the HE staining of lung and liver presented a large number of cell infiltrates,and the 80%of nucle?ated cells in the mice spleen was the GFP+Gr?1+cells,namely the BCR-ABL1+granulocyte leukemia cells.CONCLUSION:We utilize this method to establish BCR-ABL1+myeloid leukemia mouse model successfully in order to provide a better platform for studying the mechanism of BCR-ABL1+myeloid leukemia and the effect of therapeutic drugs in vivo.
BCR-ABL1+myeloidleukemia;BCR-ABL1;mouse;survival rate;retroviral vector
R392.9
A
2017-07-20;接受日期:2017-08-08
國(guó)家自然科學(xué)基金面上項(xiàng)目(31170821,31370874,81670157)
張 萍.博士生.研究方向:V(D)J重組脫靶效應(yīng)和腫瘤免疫.E?mail:zhangp2010@stu.xjtu.edu.cn
季延紅.博士,博導(dǎo),教授.研究方向:抗體多樣性機(jī)制.Tel:029?82655182 E?mail:jiyanhong@xjtu.edu.cn
2095?6894(2017)10?31?04